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Abstract

Structural events, (i.e., the structure of clauses
and disfluencies) in spontaneous speech, are
important components of human speaking and
have been used to measure language devel-
opment. However, they have not been ac-
tively used in automated speech assessment
research. Given the recent substantial progress
on automated structural event detection on
spontaneous speech, we investigated the de-
tection of clause boundaries and interruption
points of edit disfluencies on transcriptions
of non-native speech data and extracted fea-
tures from the detected events for speech
assessment. Compared to features com-
puted on human-annotated events, the features
computed on machine-generated events show
promising correlations to holistic scores that
reflect speaking proficiency levels.

1 Introduction

Spontaneous speech utterances are organized in a
structured way and generated dynamically with op-
tional disfluencies. In second language acquisition
(SLA) research, information related to the structure
of utterances and profile of disfluencies has been
widely used to monitor speakers’ language develop-
ment processes (Iwashita, 2006). However, struc-
tural events in human conversations have not been
actively used in the automated speech assessment re-
search. For example, most research that used Auto-
matic Speech Recognition (ASR) technology to au-
tomatically score speaking proficiency (Neumeyer
et al., 2000; Zechner et al., 2007) focused on word-
level cues for fluency and accuracy.

In the last decade, a large amount of research (Go-
toh and Renals, 2000; Shriberg et al., 2000; Liu,
2004; Ostendorf et al., 2008) has been conducted
on structural event detection (i.e., sentence and dis-
fluency structure). This research has resulted in
better models for structural event detection. The
detected structural events have been found to help
many of the following natural language processing
(NLP) tasks: speech parsing, information retrieval,
machine translation, and extractive speech summa-
rization (Ostendorf et al., 2008).

Because structural event information: (1) is im-
portant for understanding/processing speech, (2)
has been successfully used in monitoring language
development, which will be summarized in Sec-
tion 2, (3) has received limited attention in auto-
mated speech assessment, and (4) has been actively
investigated in the speech research domain in the
past decade, it is worthwhile investigating the util-
ity of using structural event detection on automated
speech assessment. Because of the fairly low word
accuracy currently achieved when recognizing spon-
taneous non-native speech of mixed proficiency lev-
els and native language backgrounds, this study will
focus on the transcribed words rather than speech
recognition outputs.

This paper is organized as follows: Section 2 re-
views previous research; Section 3 reports on the
data used in the paper, including the collection, scor-
ing, transcription, and annotation processes; Sec-
tion 4 discusses the methods we utilized for struc-
tural event detection; Section 5 describes the exper-
iments of structural event detection; Section 6 de-
scribed the features derived from the event sequence
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for assessing speech and evaluation results on these
features; Section 7 discusses the findings of our re-
search and plans for future directions.

2 Previous Research

In the SLA and child language development research
fields, language development is measured accord-
ing to fluency, accuracy, and complexity (Iwashita,
2006). Structural events are used to derive the fea-
tures measuring syntactic complexity. For example,
typical metrics for measuring syntactic complexity
include: length of production units (e.g., T-units1,
clauses, verb phrases, and sentences), amount of
embedding, subordination and coordination, range
of structural types, and structural sophistication.
Iwashita (2006) investigated several measures of
syntactic complexity on data generated by learners
of Japanese. The author reported that some mea-
surements (e.g., T-unit length, the number of clauses
per T-unit, and the number of independent clauses
per T-unit) were good at predicting learners’ profi-
ciency levels.

In addition, speech disfluencies are used to mea-
sure language development. For example, Lennon
(1990) used a dozen features related to speed,
pauses, and several disfluency markers, such as
filled pauses per T-unit, to measure the improvement
of English proficiency for four German-speaking
women during a six-month study in England. He
found a significant change in filled pauses per T-unit
during the study process.

These two types of features derived from struc-
tural events were combined in other previous stud-
ies. For example, Mizera (2006) used fluency fac-
tors related to speed, voiced smoothness (frequency
of repetitions or self-corrections), pauses, syntactic
complexity (mean length of T-units), and accuracy,
to measure speaking proficiency on 20 non-native
English speakers. In this experiment, disfluency-
related factors, such as the total number of voiced
disfluencies, correlated strongly with the fluency
score (r = −0.45); however, the syntactic com-
plexity factor only showed a moderate correlation
(r = 0.310).

There have been previous efforts in using NLP

1A T-unit is defined as essentially a main clause plus any
other clauses which are dependent upon it (Hunt, 1970).

technology to automatically calculate syntactic com-
plexity metrics on learners’ writing data. For exam-
ple, Lu (2009) and Sagae et al. (2005) used parsing
to get structural information on written texts; how-
ever, such efforts have not been undertaken in as-
sessing speech data.

Chen et al. (2010) annotated structural events
(such as clause structure and disfluencies) on En-
glish language learners’ speech transcriptions and
extracted features based on the structural event pro-
file. They found that the features derived from struc-
tural event profile show promising correlation to hu-
man holistic scores. Berstein et al. (2010) also com-
puted the features related to sentence lengths and
the counts of syntactic entities. They found the ex-
tracted features were highly correlated to holistic
scores measuring test-takers’ language proficiency
in both English and Spanish.

In the speech research domain, a large amount
of research has been conducted to detect struc-
tural events in speech transcriptions and recognized
words using lexical and prosodic cues. Using a lan-
guage model (LM) trained on words combined with
the events of interest is a popular technique for us-
ing textual information for structural event detec-
tion. For example, Heeman and Allen (1999) devel-
oped a LM including part of speech (POS) tags, dis-
course markers (e.g., right, anyway), speech repairs,
and intonational phrases. In this way, structural in-
formation (e.g., speech repairs), could be predicted
using a traditional speech recognition approach.

Prosodic information has been widely used to fur-
ther improve textual models. For example, a sim-
ple prosodic feature, pause duration between words,
was used in Gotoh and Renals (2000) to detect sen-
tence boundaries. It was found that the pause dura-
tion model alone was better than using an LM alone,
and the combination of the two models further im-
proved the performance.

More advanced prosody models were used in
other research on sentence boundary and speech re-
pair detections (Shriberg et al., 2000; Shriberg and
Stolcke, 2004). A general framework was built com-
bining textual and prosodic cues to detect various
kinds of structural events in speech, including sen-
tence boundaries, disfluencies, topic boundaries, di-
alog acts, emotion, etc. Shriberg and Stolcke (2004)
extracted prosodic features such as pause, phone du-
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ration, rhyme duration, and F0 features. Using all
of these features, a decision tree was built to de-
tect possible structural events. An LM augmented
with structural event tokens was also used to de-
tect structural events based on textual cues. Fi-
nally, a Hidden Markov Model (HMM) was used
to combine estimations from the textual model (an
augmented LM with structural events) and prosodic
model (decision-tree based on prosodic features).

Research on structural event detection has been
strongly affected by the DARPA EARS pro-
gram (EARS, 2002). As in Shriberg et al. (2000), the
structural event detection (e.g., sentence units (SUs)
and speech repairs) investigated in EARS was a clas-
sification task utilizing both prosodic and textual
knowledge sources. New approaches for combin-
ing the two knowledge sources, including maximum
entropy (MaxEnt) and conditional random fields
(CRFs), were studied to address the weaknesses of
the generative HMM approach (Liu et al., 2004). Liu
et al. (2005) concluded that “adding textual infor-
mation, building a more robust prosodic model, us-
ing conditional modeling approaches (Maxent and
CRF), and system combination all yield perfor-
mance gains.”

3 Non-native Structural Event Corpus

Non-native speech data were collected from the
TOEFL Practice Test Online (TPO) (ETS, 2006).
In each TPO test, test-takers were required to re-
spond to six speaking test items, in which they were
required to provide information or opinions on fa-
miliar topics, based on their personal experience or
background knowledge. For example, the test-takers
were asked to describe their opinions about living on
or off campus.

A total of 1066 responses were collected from ex-
aminees. Then, a group of experienced human raters
scored these items based on the scoring rubrics de-
signed for scoring the TPO test. For each item, two
human raters independently assigned 4-point holis-
tic scores for test-takers’ English proficiency levels.

The speaking content was transcribed by a pro-
fessional transcribing agency. On the transcrip-
tions, structural event annotations were added, in-
cluding (1) locations of clause boundaries, (2) types
of clauses (e.g., noun clauses, adjective clauses, ad-

verb clauses, etc.), and (3) disfluencies.
Disfluencies can further be sub-classified into sev-

eral groups: silent pauses, filled pauses (e.g., uh and
um), false starts, repetitions, and repairs. The repeti-
tions and repairs were denoted as “edit disfluency”,
which were comprised of a reparandum, an optional
editing term, and a correction. The reparandum is
the part of an utterance that a speaker wants to re-
peat or change, while the correction contains the
speaker’s correction. The editing term can be a
filled pause (e.g., um) or an explicit expression (e.g.,
sorry). The interruption point (IP), occurring at the
end of the reparandum, is where the fluent speech is
interrupted to prepare for the correction.

For the research reported in this paper, we focus
on two structural events: the locations of clause-
ending boundaries (CBs) and interruption points
(IPs) of edit disfluencies. Note that if several clauses
(in different layers of a clause hierarchy) end at the
same word boundary, these clause boundaries were
collapsed into one CB event.

Two persons annotated the corpus separately and
their annotation quality was monitored by using sev-
eral Kappa computations. For CBs, κ ranges from
0.85 to 0.90; for IPs, κ ranges from 0.63 to 0.83.
Generally, a κ greater than 0.8 indicates a good
between-rater agreement and κ in the range of 0.6
to 0.8 indicates acceptable agreement (Landis and
Koch, 1977). Therefore, we believe that our human
annotations are sufficiently reliable to be used in the
following experiments.

4 Methods of Structural Event Detection

4.1 Features for structural event detection

In previous research (Gotoh and Renals, 2000;
Shriberg et al., 2000; Liu, 2004), prosodic cues
were found to be helpful, however, such findings
on native speech data may not work well with non-
native speech data. Anderson-Hsieh and Venkata-
giri (1994) compared the pause frequencies of three
groups of speakers (native, high-scoring, and low-
scoring non-native speakers). They found that pause
frequency was higher for groups of speakers with
lower speaking skills. For native speakers, a long
pause after a word-ending boundary is an impor-
tant cue for signaling the existence of a sentence or
clause boundary. However, the fact that there are
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more frequent pauses in non-native speech obscures
this relationship.

On our non-native speech corpus, we conducted
a pilot study on a widely-used prosodic feature, the
pause duration2 after a word, for its predictive abil-
ity to detect clause boundaries. If the duration of the
pause after a word boundary is longer than 0.15 sec-
ond, we call it a long pause. We measured the likeli-
hood of being a CB event on the words followed by a
long pause. For each score level, the likelihoods are:
15% for a score of 1, 22% for a score of 2, 28% for
a score of 3, and 35% for a score of 4. Clearly, for
low-proficiency speakers (i.e., speakers with a score
of 1), long pauses in their utterances are not tightly
linked to CBs. Therefore, more research is needed
to utilize prosodic cues on non-native speech; in this
paper, we focus on lexical features.

4.2 Statistical models

Based on lexical features, the structural event detec-
tion task can be generalized as follows:

Ê = argmax
E

P (E|W )

Given that E denotes the between-word event se-
quence and W denotes the corresponding lexical
cues, the goal is to find the event sequence that has
the greatest probability, given the observed features.

Recently, conditional modeling approaches were
successfully used in sentence units (SUs) and speech
repairs detection (Liu, 2004). Hence, we use the
Maximum Entropy (MaxEnt) (Berger et al., 1996)
and Conditional Random Fields (CRFs) (Lafferty et
al., 2001) approaches to build statistical models for
structural event detection.

5 Structural Event Detection Experiment

5.1 Setup

In our experiment, the whole corpus described in
Section 3 was split into a training set (train), a devel-
opment test set (dev), and testing set (test), without
speaker overlap between any pair of sets. Table 1
summarizes the numbers of items and words, as well
as structural events of each dataset.

2Pause durations were obtained by running forced alignment
using speech and transcriptions on a tri-phone HMM speech
recognizer

train dev test
# item 664 101 301
# word 71523 10509 33754
# CB 6121 918 2852
# IP 1767 267 1112

Table 1: The number of items, words, and structural
events of the three sets in the TPO corpus

On average, each item contains about 108.6
words, 9.3 CBs, and 3.0 IPs. 9% of the word bound-
aries are associated with a CB event and 3% of the
word boundaries are associated with an IP event.
Clearly, these CB and IP events are sparse and such
a skewed distribution of structural events increases
the difficulty of structural event detection.

5.2 Models

The following two conditional models were built to
detect CB and IP events:

• MaxEnt: Given wi as the word token at po-
sition i, the word n-gram features include:
〈wi〉, 〈wi−1, wi〉, 〈wi, wi+1〉, 〈wi−2, wi−1, wi〉,
〈wi, wi+1, wi+2〉, and 〈wi−1, wi, wi+1〉. Given
ti as the POS tag3 at position i, the POS
n-gram features include: 〈ti〉, 〈ti−1, ti〉,
〈ti, ti+1〉, 〈ti−2, ti−1, ti〉, 〈ti, ti+1, ti+2〉, and
〈ti−1, ti, ti+1〉.

For IP detection, in addition to the n-gram fea-
tures described above, another four features
that capture syntactic pattern of disfluencies are
utilized:

– filled pause adjacency: This feature has
a binary value showing whether a filled
pause such as uh or um was adjacent to
the current word (wi).

– word repetition: This feature has a binary
value showing whether the current word
(wi) was repeated in the following 5 words
or not.

3POS tags were obtained by tagging words using a MaxEnt
POS tagger, which was implemented in the OpenNLP toolkit
and trained on the Switchboard (SWBD) corpus. This POS tag-
ger was trained on about 528K word/tag pairs and achieved an
tagging accuracy of 96.3% on a test set of 379K words.
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– similarity: This feature has a continuous
value which measures the similarity be-
tween the reparandum and correction. As-
suming that wi was the end of the reparan-
dum, the start point and the end point of
the reparandum and correction were es-
timated, and the string edit distance be-
tween the reparandum and correction was
calculated. The start point and the end
point of the reparandum and correction
were estimated as follows; if wi appeared
in the following 5 words, the second oc-
currence was defined as the end of the cor-
rection. Otherwise, wi+5 was defined as
the end of correction. Secondly, N , the
length of the correction was calculated,
and wi−N+1 was defined as the start point
of the reparandum. During the calculation
of the string edit distance, a word frag-
ment was considered to be the same as
a word whose initial character sequences
matched it.

– length of correction: This feature counts
the number of words in the correction.

The first two features are similar to the features
used in (Liu, 2004) while the last two features
provide important keys in distinguishing edit
disfluencies from fluent speech. Since the cor-
rection is composed of word sequences that are
similar to the reparandum, these two features
are higher than zero when the target word is a
part of the edit disfluency. In addition, these
two numeric features were discretized by using
an equal-distance binning approach.

Using n-gram features for CB detection and all
these lexical features for IP detection, we used
the Maxent toolkit designed by Zhang (2005) to
build MaxEnt models. The L-BFGS parameter
estimation method is used, with the Gaussian-
prior smoothing technique to avoid over-fitting.
The Gaussian prior is estimated on the dev set.

• CRF: All features which were described in
building MaxEnt models were used in the CRF
model. We used the Java-based NLP package
Mallet (McCallum, 2005) to build CRF mod-
els. Similar to MaxEnt models, Gaussian-prior

smoothing was used with the priors estimated
on the dev set.

These models were trained using the train set. Be-
sides Gaussian priors, other parameters in the model
training (i.e., the training iteration number as well as
the cutting-point for event decisions) were estimated
using the dev set. Finally, the trained models were
evaluated on the test set.

5.3 Evaluation of event detection
Since structural event detection was treated as a clas-
sification task in this paper, four standard evaluation
metrics were used:

accuracy =
TP + TN

TP + FP + TN + FN

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 = 2× recall × precision
recall + precision

where, TP and FP denote the number of true pos-
itives and false positives, and TN and FN denote
the number of true negatives and false negatives. A
structural event (a CB or IP boundary) is treated as a
positive class. In our experiment, since we treated
precision and recall as equally important, the F1
measurement was used.

For each model, if the estimated probability,
P (Ei|W ), is larger than a threshold, the correspond-
ing word boundary will be estimated to be a positive
class. The threshold was chosen when a maximal
F1 score was achieved on the dev set.

A model that always predicts the majority class
(a no-event in this study) was treated as a baseline
model. For CB detection, this type of baseline model
resulted in an accuracy of 91.6%; for IP detection,
this type of baseline model resulted in an accuracy
of 96.7%.

5.4 Results of structural event detection
Table 2 summarizes the performance of the two
models on the CB and IP detection tasks.

For CB detection, two conditional models are su-
perior to the baseline CB detection (with an accuracy
of 91.6%); they achieved relatively high F1 scores
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Acc. Pre. Rec. F1

CB
MaxEnt 94.5 66.1 71.8 0.689
CRF 96.1 82.3 68.6 0.749

IP
MaxEnt 98.1 61.8 55.2 0.583
CRF 98.4 76.9 48.0 0.591

Table 2: Experimental results of the CB and IP detection
measurement using accuracy (Acc.), precision (Pre.), re-
call (Rec.) and F1 measurement (F1) on the TPO data

ranging from 0.689 to 0.749. Between the two mod-
els, the CRF model achieved the higher F1 score
at 0.749, The lower F-score of the MaxEnt model
may be caused by the fact that the MaxEnt model
does not use event history information in its decod-
ing process.

However, these two models achieved lower per-
formance on the task of detecting IPs for editing dis-
fluencies. F-scores became about 0.58 to 0.59 for
IP detections. The degraded performance may be
caused by the extremely low IP distribution (only
3%) in our data. Between the two modeling ap-
proaches, consistent with the result shown for CB
detection, the CRF model achieved a higher F1
score (0.591).

6 Using Detected Structural Events for
Speech Assessment

6.1 Features assessing proficiency

Many previous SLA studies used the length of pro-
duction units and frequency of disfluencies as met-
rics to measure language development (Iwashita,
2006; Lennon, 1990; Mizera, 2006). Our automated
structural event detection provides the locations of
CBs and IPs, which can be used to compute these
features for use in speech assessment.

Using Nw to represent the total number of words
in the spoken response (without pruning the reparan-
dums and edit terms in the edit disfluencies), NC

as the total number of CBs, and NIP as the total
number of IPs detected on transcriptions of speech
streams, the following features (i.e, mean length of
clause (MLC), interruption points per clause (IPC),
and interruption points per word (IPW)) were de-

rived:

MLC = Nw/NC

IPC = NIP /NC

IPW = NIP /Nw

The IPW can be treated as the IPC normalized
by the MLC. The reason for this normalization is
that disfluency behavior is influenced by various fac-
tors, such as speakers’ proficiency levels as well as
the difficulty of utterances’ structure. For example,
Roll et al. (2007) found that the complexity of ex-
pression, computed based on the language’s parsing-
tree structure, influenced the frequency of disflu-
encies in their experiment on Swedish responses.
Therefore, the fact that IPW is the IPC normalized
by MLC (a feature related to complexity of utter-
ances’ structure) helps to reduce the impact of utter-
ances’ structure and to highlight contributions from
the speaker’s proficiency.

6.2 Results of measuring the derived features
On the test set, we produced CB and IP event se-
quences estimated by the MaxEnt and CRF models,
respectively. These machine-generated events were
evaluated by comparison with human annotations,
which were denoted as REF.

The proposed features described in Section 6.1
were computed on the word/event sequence of each
item. In addition, given the fact that each item only
covers approximately one-minute of speech and the
content is quite limited, we also extracted features
on the test-taker level by combining the detected
events of all of the items spoken by each test-taker.
Then, according to the score handling protocol used
in TPO, the human-holistic scores from the first hu-
man rater were used as item scores to compute Pear-
son correlation coefficients (rs) with the features.
For the test-taker level evaluation, we used the aver-
age score for each test-taker from all of his/her item
scores.

Table 3 reports on the evaluation results of the
features derived from the structural event estima-
tions. Compared to rs computed on the speaker
level using multiple (as many as 6) items, rs com-
puted on the item level are generally lower. This
is because words and events are limited in this one-
minute long response. Among the three features, the
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Model rMLC rIPC rIPW

Per item
REF 0.003 −0.369 −0.402
MaxEnt −0.012 −0.329 −0.343
CRF −0.042 −0.328 −0.335

Per speaker
REF 0.066 −0.453 −0.516
MaxEnt 0.055 −0.396 −0.417
CRF 0.043 −0.355 −0.366

Table 3: Correlation coefficients (rs) between the fea-
tures derived from structural events with human scores
on the item and speaker levels

MLC shows the lowest r to human holistic scores. In
contrast, the two features derived from interruption
points show promising rs to human holistic scores.
Between them, the IPW always shows a higher r
than the IPC. Compared to the features extracted on
human annotations, the features derived from struc-
tural events automatically estimated by the two NLP
models show a lower but sufficiently high r. The
features derived from the MaxEnt model’s estima-
tions on the test-taker level show a greater r than the
features derived from the CRF model estimations.

7 Discussion

Three features measuring syntactic complexity and
disfluency profile of speaking, MLC, IPC, and IPW,
were extracted on the structural event sequences es-
timated by the developed models. Compared to the
features extracted from the human-annotated struc-
tural events, the features derived from machine-
generated event sequences show promisingly close
correlations.

Applying automated structural event detection to
spontaneous speech brings many benefits for auto-
matic speech assessment. First, obtaining informa-
tion beyond the word level, such as the structure of
clauses and disfluencies, can expand and improve
the construct4 coverage of speech features. Second,
knowing the structure of utterances helps to facili-
tate the application of more NLP processing meth-
ods (e.g., collocation detection that requires infor-
mation about sentence boundaries), to speech con-

4A construct is the set of knowledge, skills, and abilities
measured by a test.

tent. In this study, using only simple word and
POS based n-gram features, CBs can be detected
relatively well (with an F1 score of approximately
0.70). More lexical features reflecting repair proper-
ties were found to help improve IP detection perfor-
mance. In addition, IP-based features derived from
machine-generated event sequences show promis-
ing correlation with human holistic scores. Results
in detection of clause boundaries and interruption
points support the approach of utilizing automated
structural event detection on speech assessment.

We plan to continue our research in the following
three directions. First, we will investigate integrat-
ing prosodic cues to further improve the structural
event detection performance on non-native speech.
Second, we will investigate estimating structural
events directly on speech recognition results. Third,
other aspects of syntactic complexity, such as the
embedding of clauses, will be studied to provide a
broader set of features for speech assessment.
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