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Abstract

Word Sense Induction (WSI) is an unsu-
pervised approach for learning the multiple
senses of a word. Graph-based approaches to
WSI frequently represent word co-occurrence
as a graph and use the statistical properties
of the graph to identify the senses. We rein-
terpret graph-based WSI as community detec-
tion, a well studied problem in network sci-
ence. The relations in the co-occurrence graph
give rise to word communities, which distin-
guish senses. Our results show competitive
performance on the SemEval-2010 WSI Task.

1 Introduction

Many words have several distinct meanings. For ex-
ample, “law” may refer to legislation, a rule, or po-
lice depending on the context. Word Sense Induc-
tion (WSI) discovers the different senses of a word,
such as “law,” by examining its contextual uses. By
deriving the senses of a word directly from a corpus,
WSI is able to identify specialized, topical meanings
in domains such as medicine or law, which prede-
fined sense inventories may not include.

aWe consider graph-based approaches to WSI,
which typically construct a graph from word occur-
rences or collocations. The core problem is how to
identify sense-specific information within the graph
in order to perform sense induction. Current ap-
proaches have used clustering (Dorow and Wid-
dows, 2003; Klapaftis and Manandhar, 2008) or
statistical graph models (Klapaftis and Manandhar,
2010) to identify sense-specific subgraphs.

We reinterpret the challenge of identifying sense-
specific information in a co-occurrence graph as one
of community detection, where a community is de-

fined as a group of connected nodes that are more
connected to each other than to the rest of the graph
(Fortunato, 2010). Within the co-occurrence graph,
we hypothesize that communities identify sense-
specific contexts for each of the terms. Community
detection identifies groups of contextual cues that
constrain each of the words in a community to a sin-
gle sense.

To test our hypothesis, we require a community
detection algorithm with two key properties: (1) a
word may belong to multiple, overlapping commu-
nities, which is necessary for discovering multiple
senses, and (2) the community detection may be hi-
erarchically tuned, which corresponds to sense gran-
ularity. Therefore, we adapt a recent, state of the art
approach, Link Clustering (Ahn et al., 2010). Our
initial study suggests that community detection of-
fers competitive performance and sense quality.

2 Word Sense Induction

A co-occurrence graph is fundamental to our ap-
proach; terms are represented as nodes and an
edge between two nodes indicates the terms’ co-
occurrence, with a weight proportional to frequency.
While prior work has focused on clustering the
nodes to induce senses, using Link Clustering (Ahn
et al., 2010), we cluster theedges, which is equiv-
alent to grouping the word collocations to iden-
tify sense-specific contexts. We summarize our ap-
proach as four steps: (1) selecting the contextual
cues, (2) building a co-occurrence graph, (3) per-
forming community detection on the graph, and (4)
sense labeling new contexts using the discovered
communities.

Context Refinement Representing the co-
occurrence graph for all terms in a context is
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prohibitively expensive. Moreover, often only a
subset of the terms in a context constrain the sense
of an ambiguous word. Therefore, we refine a
word’s context to include only a subset of the terms
present. Following previous work (Véronis, 2004),
we select only nouns in the context.

Early experiments indicated that including infre-
quent terms in the co-occurrence graph yielded poor
performance, which we attribute to having too few
connecting edges to identify meaningful community
structure. Therefore, we include only those nouns
occurring in the most frequent 5000 tokens, which
are likely to be representative the largest communi-
ties in which a term takes part. Last, we include all
the nouns and verbs used in the SemEval 2010 WSI
Task (Manandhar et al., 2010), which are used in
our evaluation. The selected context terms are then
stemmed using the Porter stemmer.

Building the Co-occurrence Graph The graph is
iteratively constructed by adding edges between the
terms from a context. For each pair-wise combi-
nation of terms, an edge is added and its weight
is increased by 1. This step effectively embeds a
clique if it did not exist before, connecting all of
the context’s words within the graph. Once all con-
texts have been seen, the graph is then pruned to re-
move all edges with weight below a thresholdτ =
25. This step removes edges form infrequent collo-
cations, which may not contribute sufficient graph
structure for community detection, and as a practi-
cal consideration, greatly speeds up the community
detection process. However, we note that parameter
was largely unoptimized and future work may see a
benefit from accounting for edge weight.

Community Detection Within the co-occurrence
graph, communities may have partial overlap. For
example, Figure 1 illustrates a part of the local graph
for “mouse.” Two clear senses emerge from the
neighbors: one for the input device and another for
the animal. However, the terms that correspond
to one sense also co-occur with terms correspond-
ing to the other sense, e.g., “information,” which
hinders finding communities directly from discon-
nected components in the local neighborhood. Find-
ing sense-specific communities requires recognizing
that the co-occurring terms may be shared by mul-
tiple communities. Therefore, to identify communi-
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Figure 1: A portion of the local co-occurrence graph
for “mouse” from the SemEval-2010 Task 14 corpus

ties we selected the approach of Ahn et al. (2010),
summarized next, which performs well for overlap-
ping community structure.

First, the edges are clustered using an unweighted
similarity function based on the neighbors of two
edges,ei,j andei,k: sim(ei,j , ei,k) =

nj∩nk

nj∪nk
, where

ni denotes the nodei and its neighbors. This simi-
larity reflects the percentage of terms that co-occur
in common with the term for nodesj andk, inde-
pendent of the terms that co-occur with the shared
term for i. For example, in Figure 1, the similarity
for the edges connecting “mouse” with “user” and
“software,” 2

5 , measures the overlap in the neighbors
of “user” and “software” independent of the neigh-
bors for “mouse,” such as “cell” and “size.”

Using this similarity function, the edges are ag-
glomeratively clustered into a dendrogram. We use
the single-link criteria which iteratively merges the
two clusters connected by the edge pair with the
highest similarity. The dendrogram may then be cut
at different levels to reveal different cluster granu-
larities; cuts near the bottom of the dendrogram cre-
ate a larger number of small groups of collocations,
whereas cuts near the top create fewer, larger groups
of collocations. To select the specific partitioning
of the dendrogram into clusters, we select the solu-
tion that maximizes the partition density, which Ahn
et al. (2010) define asD = 2

M

∑
c mc

mc−(nc−1)
(nc−2)(nc−1) ,

whereM is the number of edges in the graph,c de-
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notes a specific cluster, andnc andmc are the num-
ber of nodes and edges in clusterc, respectively.

The final set of communities is derived from these
partitions: a node is a member of each community in
which one of its edges occurs. Last, we remove all
communities of size 3 and below, which we interpret
as having too few semantic constraints to reliably
disambiguate each of its terms.

Sense Induction from Communities Each term
in a community is treated as having a specific sense,
with one sense per community. To label a contextual
usage, we identify the community that best maps to
the context. For a given context, made of the set of
wordsW , we score each communityi, consisting of
wordsC, using the Jaccard index weighted by com-
munity size: score(Ci,W ) = |Ci| · |Ci∩W |

|Ci∪W | . This
similarity function favors mapping contexts to larger
communities, which we interpret as having more se-
mantic constraints. The final sense labeling consists
of the scores for all overlapping communities.

3 Evaluation

We use the SemEval-2 Task 14 evaluation (Manand-
har et al., 2010) to measure the quality of induced
senses. We summarize the evaluation as follows.
Systems are provided with an unlabeled training cor-
pus consisting of 879,807 multi-sentence contexts
for 100 polysemous words, comprised of 50 nouns
and 50 verbs. Systems induce sense representations
for target words from the training corpus and then
use those representations to label the senses of the
target words in unseen contexts from a test corpus.
We use the entire multi-sentence context for build-
ing the co-occurrence graph.

The induced sense labeling is scored using two
unsupervised and one supervised methods. The un-
supervised scores consists of two contrasting mea-
sures: the paired FScore (Artiles et al., 2009) and
the V-Measure (Rosenberg and Hirschberg, 2007).
Briefly, the V-Measure rates the homogeneity and
completeness of a clustering solution. Solutions that
have word clusters formed from one gold-standard
sense are homogeneous; completeness measures the
degree to which a gold-standard sense’s instances
are assigned to a single cluster. The paired FScore
reflects the overlap of the solution and the gold stan-
dard in cluster assignments for all pair-wise combi-

FScore V-Meas. S80/20 S60/40

SPD 61.1 (3) 3.6 (18) 57.64 (18) 57.64 (16)
SV 56.16 (9) 8.7 (6) 57.90 (18) 57.36 (17)
SF 63.4 (1) 0 (26) 56.18 (21) 56.20 (21)

BestF 63.3 (1) 0 (26) 58.69 (14) 58.24 (13)
BestV 26.7 (25) 16.2 (1) 58.34 (16) 57.27 (17)
BestS 49.8 (15) 15.7 (2) 62.44 (1) 61.96 (1)
MFS 63.4 0 58.67 58.95

Table 1: Performance results on the SemEval-2010
WSI Task, with rank shown in parentheses. Refer-
ence scores of the best submitted systems are shown
in the bottom.
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Figure 2: V-Measure and paired FScore results
for different partitionings of the dendrogram. The
dashed vertical line indicatesSPD

nation of instances. The supervised evaluation trans-
forms the induced sense clusters of a portion of the
corpus into a word sense classifier, which is then
tested on the remaining corpus. An 80/20 train-test
split, S80/20, and 60/40 split, S60/40, are both used.

Results As a first measure of the quality of the in-
duced senses, we evaluated both the solution that
maximized the partition density, referred to asSPD,
and an additional 5,000 solutions, evenly distributed
among the possible dendrogram partitionings. Fig-
ure 2 shows the score distribution for V-Measure and
paired FScore. Table 1 lists the scores and rank for
SPD and the solutions that optimize the V-Measure,
SV , and FScore,SF , among the 26 participating
Task-14 systems. For comparison, we include the
highest performing systems on each measure and the
Most Frequent Sense (MFS) baseline.
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Discussion Optimizing the partition density re-
sults in high performance only for the FScore; how-
ever, optimizing for the V-Measure yields competi-
tive performance on both measures. The behavior is
encouraging as most approaches submitted to Task
14 favor only one measure.

Figure 2 indicates a relationship between the V-
Measure and community memberships. Therefore,
usingSV , we calculated the Pearson correlation be-
tween a term’s scores and the number of community
memberships within a single solution. The corre-
lation with the paired FScore,r = -0.167, was not
statistically significant atp < .05, while correlation
with the V-Measure,r = 0.417 is significant with
p < 1.6e-5. This suggests that at a specific com-
munity granularity, additional communities enable
the WSI mapping process to make better sense dis-
tinctions between contexts. However, we note that
V-Measure begins to drop as the average commu-
nity membership increases in solutions afterSV , as
shown in Figure 2. We suspect that as the agglomer-
ative merge process continues, communities repre-
senting different senses become merged, leading to
a loss of purity.

The lower performance ofSPD and the impact of
community memberships raises the important ques-
tion of how to best select the communities. While
co-occurrence graphs have been shown to exhibit
small-world network patterns (Véronis, 2004), op-
timizing for the general criterion of partition density
that has performed well on such networks does not
result in communities that map well to sense-specific
contexts. We believe that this behavior is due to
impact of the sense inventory; selecting a commu-
nity solution purely based on the graph’s structure
may not capture the correct sense distinctions, ei-
ther having communities with too few members to
distinguish between senses or too many members,
which conflates senses. However, a promising fu-
ture direction is to examine whether the there exist
features of the graph structure that would allow for
recognizing the specific community solutions that
correspond directly to different sense granularities
without the need for an external evaluation metric.

4 Related Work

We highlight those related works with connections
to community detection. Véronis (2004) demon-

strated that word co-occurrence graphs follow a
small-world network pattern. In his scheme, word
senses are discovered by iteratively deleting the
more connected portions of the subgraph to reveal
the different senses’ network structure. Our work
capitalizes on this intuition of discovering sense-
related subgraphs, but leverages formalized methods
for community detection to identify them.

Dorow and Widdows (2003) identify sense-
related subgraphs in a similar method to commu-
nity detection for local region of the co-occurrence
graph. They use a random walk approach to identify
regions of the graph that are sense-specific. Though
not identical, we note that the random walk model
has been successfully applied to community detec-
tion (Rosvall et al., 2009). Furthermore, Dorow and
Widdows (2003) performs graph clustering on a per-
word basis; in contrast, the proposed approach iden-
tifies communities for the entire graph, effectively
performing an all-word WSI.

Klapaftis and Manandhar (2010) capture hierar-
chical relations between collocations using a Hi-
erarchical Random Graph model where nodes are
collocations and edges indicate their co-occurrence,
which improved performance over non-hierarchical
models. Our community detection approach also
captures the hierarchical structure of the collocation
graph, but uses a much simpler graphical representa-
tion that forn terms requiresO(n) nodes andO(n2)
edges, compared toO(n2) nodes andO(n3) edges
for the above approach, which allows it to build the
collocation graph from a larger set of terms.

5 Conclusion

We have proposed a new graph-based method for
WSI based on finding sense-specific word commu-
nities within a co-occurrence graph, which are then
identify distinguish senses in new contexts. An
initial analysis using the SemEval-2010 WSI task
demonstrates competitive performance. Future re-
search will address two potential avenues: (1) the
impact of word frequency on community size and
memberships and (2) identifying both graph proper-
ties and semantic relations within hierarchical com-
munities that distinguish between sense granulari-
ties. Software for the WSI model and for Link Clus-
tering is available as a part of the S-Space Package
(Jurgens and Stevens, 2010).
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