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Abstract

We propose a statistical test for measuring
grammatical productivity. We show that
very young children’s knowledge is consistent
with a systematic grammar that independently
combines linguistic units. To a testable extent,
the usage-based approach to language and lan-
guage learning, which emphasizes the role of
lexically specific memorization, is inconsis-
tent with the child language data. We also dis-
cuss the connection of this research with de-
velopments in computational and theoretical
linguistics.

1 Introduction

Eistein was a famously late talker. The great physi-
cist’s first words, at the ripe age of three, were to pro-
claim “The soup is too hot.” Apparently he hadn’t
had anything interesting to say.

The moral of the story is that one’s linguistic be-
havior may not be sufficiently revealing of one’s lin-
guistic knowledge. The problem is especially acute
in the study of child language since children’s lin-
guistic production is often the only, and certainly
the most accessible, data on hand. Much of the tra-
ditional research in language acquisition recognizes
this challenge (Shipley et al. 1969, Slobin 1971,
Bowerman 1973, Brown 1973) and has in general
advocated the position that child language be inter-
preted in terms of adult-like grammatical devices.

This tradition has been challenged by the usage-
based approach to language (Tomasello 1992,
2000a) which, while reviving some earlier theories
of child grammar (Braine 1964), also reflects a cur-
rent trend in linguistic theorizing that emphasizes

the storage of specific linguistic forms and con-
structions at the expense of general combinatorial
linguistic principles and overarching points of lan-
guage variation (Goldberg 2003, Sag 2010, etc.).
Child language, especially in the early stages, is
claimed to consist of specific usage-based schemas,
rather than productive linguistic system as pre-
viously conceived. The main evidence for this
approach comes from the lack of combinatorial
diversity–the hallmark of a productive grammar–
in child language data (Tomasello 2000a). For
instance, verbs in young children’s language tend
to appear in very few frames rather than across
many; this “uneveness” has been attributed to the
verb-specific predicate structures rather than gen-
eral/categorical rules. Similar observations have
been made in the acquisition of inflectional mor-
phology, where many stems are used only in rel-
atively few morphosyntactic contexts (e.g., person,
number). Another concrete example comes from
the syntactic use of the determiners “a” and “the”,
which can be interchangeably used with singular
nouns.1 An overlap metric has been defined as the
ratio of nouns appearing with both “a” and “the”
out of those appearing with either. Pine & Lieven
(1997) find that overlap values are generally low in
child language, in fact considerably below chance
level. This finding is taken to support the view that
the child’s determiner use is bound with specific
nouns rather than reflecting a productive grammar
defined over the abstract categories of determiners
and nouns (Valian 1986).

1Although “a” is typically described as combining with
countable nouns, instances such as “a water”, “a sun” and “a
floor” are frequently attested in both child and adult speech from
CHILDES.
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The computational linguistics literature has seen
the influence of usage-based approach: computa-
tional models have been proposed to proceed from
an initial stage of lexicalized constructions toward
a more general grammatical system (Felman 2004,
Steels 2004, cf. Wintner 2009). However, as far as
we can tell, the evidence for an unproductive stage
of grammar as discussed above was established on
the basis of intuition rather than rigorous assess-
ments. We are not aware of a statistical test against
which the predictions of usage-based learning can
be verified. Nor are we of any demonstration that
the child language data described above is inconsis-
tent with the expectation of a fully productive gram-
mar, the position rejected in usage-based learning.
It is also worth noting that while the proponents of
the grammar based approach have often produced
tests for the quality of the grammar–e.g., the errors
in child language are statistically significantly low–
they have likewise failed to provide tests for the exis-
tence of the grammar. As has been pointed out in the
usage-based learning literature, low error rates could
be the result of rote memorization of adult linguistic
forms.

In this paper, we provide statistical analysis of
grammar to fill these gaps. The test is designed
to show whether a corpus of linguistic expressions
can be accounted for as the output of a produc-
tive grammar that freely combines linguistic units.
We demonstrate through case studies based on
CHILDES (MacWhinney 2000) that children’s lan-
guage shows the opposite of the usage-based view,
and it is the productivity hypothesis that is con-
firmed. We also aim to show that the child data
is inconsistent with the memory-and-retrieval ap-
proach in usage-based learning (Tomasello 2000b).
Furthermore, through empirical data and numerical
simulations, we show that our statistical test (cor-
rectly) over-predicts productivity for linguistic com-
binations that are subject to lexical exceptions (e.g.,
irregular tense inflection). We conclude by drawing
connections between this work and developments in
computational and theoretical linguistics.
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Figure 1: The power law frequency distribution of Tree-
bank rules.

2 Quantifying Productivity

2.1 Zipfian Combinatorics
Zipf’s law has long been known to be an om-
nipresent feature of natural language (Zipf 1949,
Mendelbrot 1954). Specifically, the probability pr

of the word nr with the rank r among N word types
in a corpus can be expressed as follows:

pr =
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i

(1)
Empirical tests show that Zipf’s law provides an ex-
cellent fit of word frequency distributions across lan-
guages and genres (Baroni 2008).

It has been noted that the linguistic combinations
such as n-grams show Zipf-like power law distribu-
tions as well (Teahna 1997, Ha et al. 2002), which
contributes to the familiar sparse data problem in
computational linguistics. These observations gen-
eralize the combination of morphemes (Chan 2008)
and grammatical rules. Figure 1 plots the ranks and
frequencies syntactic rules (on log-log scale) from
the Penn Treebank (Marcus et al. 1993); certain
rules headed by specific functional words have been
merged.

Claims of usage-based learning build on the
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premise that linguistic productivity entails diver-
sity of usage: the “unevenness” in usage distribu-
tion such as the low overlap in D(eterminer)-N(oun)
combinations is taken to be evidence against a sys-
tematic grammar. Paradoxically, however, Valian et
al. (2008) find that the D-N overlap values in moth-
ers’ speech to children do not differ significantly
from those in children’s speech. In fact, when ap-
plied to the Brown corpus, we find that “a/the” over-
lap for singular nouns is only 25.2%: almost three
quarters that could have appeared with both deter-
miners only appeared with one exclusively. The
overlap value of 25.2% is actually lower than those
of some children reported in Pine & Lieven (1997):
the language of the Brown corpus, which draws
from various genres of professional print materials,
must be regarded as less productive and more usage-
based than that of a toddler—which seems absurd.

Consider the alternative to the usage based view,
a fully productive rule that combines a determiner
and a singular noun, or “DP→ D N”, where “D→
a|the” and “N→ cat|book|desk|...”. Other rules
can be similarly formulated: e.g., “VP→ V DP”,
“Vinflection → Vstem + Person + Number + Tense”.
Suppose a linguistic sample contains S determiner-
noun pairs, which consist of D and N unique deter-
miners and nouns. (In the present case D = 2 for
“a” and “the”.) The full productivity of the DP rule,
by definition, means that the two categories combine
independently. Two observations, one obvious and
the other novel, can be made in the study of D-N
usage diversity. First, nouns will follow zipf’s law.
For instance, the singular nouns that appear in the
form of “DP→ D N” in the Brown corpus show a
log-log slope of -0.97. In the CHILDES speech tran-
scripts of six children (see section 3.1 for details for
data analysis), the average value of log-log slope is
-0.98. Thus, relatively few nouns occur often but
many will occur only once—which of course cannot
overlap with more than one determiners.

Second, while the combination of D and N in the
DP rule is syntactically interchangeable, N ’s may
favor one of the two determiners, a consequence of
pragmatics and indeed non-linguistic factors. For in-
stance, we say “the bathroom” more often than “a
bathroom” but “a bath” more often than “the bath”,
even though all four DPs are perfectly grammatical.
As noted earlier, about 75% of distinct nouns in the

Brown corpus occur with exclusively “the” or “a”
but not both. Even the remaining 25% which do oc-
cur with both tend to have favorites: only a further
25% (i.e. 12.5% of all nouns) are used with “a” and
“the” equally frequently, and the remaining 75% are
unbalanced. Overall, for nouns that appear with both
determiners as least once (i.e. 25% of all nouns), the
frequency ratio between the more over the less fa-
vored determiner is 2.86:1. These general patterns
hold for child and adult speech data as well. In the
six children’s transcripts (section 3), the average per-
centage of balanced nouns among those that appear
with both “the” and “a” is 22.8%, and the more fa-
vored vs. less favored determiner has an average
frequency ratio of 2.54:1. As a result, even when
a noun appears multiple times in a sample, there is
still a significant chance that it has been paired with
a single determiner in all instances.

We now formalize the overlap measure under the
assumption of a rule and Zipfian frequencies of
grammatical combinations.

2.2 Theoretical analysis
Consider a sample (N, D, S), which consists of
N unique nouns, D unique determiners, and S
determiner-noun pairs. The nouns that have ap-
peared with more than one (i.e. two, in the case
of “a” and “the”) determiners will have an overlap
value of 1; otherwise, they have the overlap value of
0. The overlap value for the entire sample will be
the number of 1’s divided by N .

Our analysis calculates the expected value of the
overlap value for the sample (N, D, S) under the
productive rule “DP→D N”; let it be O(N, D, S).
This requires the calculation of the expected over-
lap value for each of the N nouns over all possible
compositions of the sample. Consider the noun nr

with the rank r out of N . Following equation (1), it
has the probability pr = 1/(rHN ) of being drawn at
any single trial in S. Let the expected overlap value
of nr be O(r, N, D, S). The overlap for the sample
can be stated as:

O(D,N, S) =
1

N

N∑
r=1

O(r, N, D, S) (2)

Consider now the calculation O(r, N, D, S).
Since nr has the overlap value of 1 if and only if
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it has been used with more than one determiner in
the sample, we have:

O(r, N, D, S) = 1− Pr{nr not sampled during S trials}

−
D∑

i=1

Pr{nr sampled ith exclusively}

= 1− (1− pr)
S

−
D∑

i=1

[
(dipr + 1− pr)

S − (1− pr)
S
]
(3)

The last term above requires a brief comment.
Under the hypothesis that the language learner has
a productive rule “DP→D N”, the combination of
determiner and noun is independent. Therefore, the
probability of noun nr combining with the ith deter-
miner is the product of their probabilities, or dipr.
The multinomial expression

(p1 + p2 + ... + pr−1 + dipr + pr+1 + ... + pN )S (4)

gives the probabilities of all the compositions of
the sample, with nr combining with the ith deter-
miner 0, 1, 2, ... S times, which is simply (dipr +
1− pr)

S since (p1 + p2 + pr−1 + pr + pr+1 + ... +
pN ) = 1. However, this value includes the proba-
bility of nr combining with the ith determiner zero
times—again (1− pr)

S—which must be subtracted.
Thus, the probability with which nr combines with
the ith determiner exclusively in the sample S is
[(dipr + 1 − pr)

S − (1 − pr)
S ]. Summing these

values over all determiners and collecting terms, we
have:

O(r, N, D, S) = 1+(D−1)(1−pr)
S−

D∑
i=1

[
(dipr+1−pr)

S
]

(5)
The formulations in (2)—(5) allow us to calculate

the expected value of overlap using only the sample
size S, the number of unique noun N and the num-
ber of unique determiners D.2 We now turn to the

2For the present case involving only two determiners “the”
and “a”, d1 = 2/3 and d2 = 1/3. As noted in section 2.1, the
empirical probabilities of the more vs. less frequent determiners
deviate somewhat from the strict Zipfian ratio of 2:1, numerical
results show that the 2:1 ratio is a very accurate surrogate for
a wide range of actual rations in the calculation of (2)—(5).
This is because most of average overlap value comes from the
relatively few and high frequent nouns.

empirical evaluations of the overlap test (2).

3 Testing Grammar Productivity

3.1 Testing grammar in child language
To study the determiner system in child language,
we consider the data from six children Adam, Eve,
Sarah, Naomi, Nina, and Peter. These are the all and
only children in the CHILDES database with sub-
stantial longitudinal data that starts at the very begin-
ning of syntactic development (i.e, one or two word
stage) so that the usage-based stage, if exists, could
be observed. For comparison, we also consider the
overlap measure of the Brown corpus (Kucera &
Francis 1967), for which the writers’ productivity is
not in doubt.

We applied a variant of the Brill tagger (1995)
(http://gposttl.sourceforge.net/) to prepare the child
data before extracting adjacent pairs of determiners
followed by singular nouns. While no tagger works
perfectly, the determiners “a” and “the” are not am-
biguous which reliably contribute the tagging of the
following word. The Brown Corpus is already man-
ually tagged and the D-N pairs are extracted directly.
In an additional test, we pooled together the first
100, 300, and 500 D-N pairs from the six children
and created three hypothetical children in the very
earliest, and presumably least productive, stage of
learning.

For each child, the theoretical expectation of over-
lap is calculated based on equations in (2)—(5),
that is, only with the sample size S and the num-
ber of unique nouns N in determiner-noun pairs
while D = 2. These expectations are then com-
pared against the empirical overlap values computed
from the determiner-noun samples extracted with
the methods above; i.e., the percentage of nouns ap-
pearing with both “a” and “the”. The results are
summarized in Table 1.

The theoretical expectations and the empirical
measures of overlap agree extremely well (column
5 and 6 in Table 1). Neither paired t- nor paired
Wilcoxon test reveal significant difference between
the two sets of values. A linear regression produces
empirical = 1.08 × theoretical, R2 = 0.9716: a
perfect fit between theory and data would have the
slope of 1.0. Thus we may conclude that the deter-
miner usage data from child language is consistent

33



Subject
Sample
Size (S)

a or the Noun
types (N )

Overlap%
(expected)

Overlap%
(empirical)

S
N

Naomi (1;1-5;1) 884 349 21.8 19.8 2.53
Eve (1;6-2;3) 831 283 25.4 21.6 2.94

Sarah (2;3-5;1) 2453 640 28.8 29.2 3.83
Adam (2;3-4;10) 3729 780 33.7 32.3 4.78
Peter (1;4-2;10) 2873 480 42.2 40.4 5.99
Nina (1;11-3;11) 4542 660 45.1 46.7 6.88

First 100 600 243 22.4 21.8 2.47
First 300 1800 483 29.1 29.1 3.73
First 500 3000 640 33.9 34.2 4.68

Brown corpus 20650 4664 26.5 25.2 4.43

Table 1: Empirical and expected determiner-noun overlaps in child speech and the Brown corpus (last row).

with the productive rule “DP→ D N”.

The results in Table 1 also reveal considerable in-
dividual variation in the overlap values, and it is in-
structive to understand why. As the Brown corpus
result shows (Table 1 last row), sample size S, the
number of nouns N , or the language user’s age alone
is not predictive of the overlap value. The variation
can be roughly analyzed as follows. Given N unique
nouns in a sample of S, greater overlap value can be
obtained if more nouns occur more than once. Zipf’s
law (1) allows us to express this cutoff line in terms
with ranks, as the probability of the noun nr with
rank r has the probability of 1/(rHN ). The deriva-
tion below uses the fact that the HN =

∑N
i=1 1/i

can be approximated by ln N .

S
1

rHN
= 1

r =
S

HN
≈ S

ln N
(6)

That is, only nouns whose ranks are lower than
S/(ln N) can be expected to be non-zero overlaps.
The total overlap is thus a monotonically increas-
ing function of S/(N ln N) which, given the slow
growth of ln N , is approximately S/N , a term that
must be positively correlated with overlap measures.
This result is strongly confirmed: S/N is a near
perfect predictor for the empirical values of over-
lap (last two columns of Table 1): r = 0.986,
p < 0.00001.

3.2 Testing usage-based learning

We turn to the question whether children’s deter-
miner usage data can be accounted for equally well
by the usage based approach. In the limiting case,
the usage-based child learner could store the input
data in its entirety and simply retrieve these memo-
rized determiner-noun pairs in production.

Our effort is hampered by the lack of concrete pre-
dictions about child language from the usage-based
literature. Explicit models in usage-based learning
and similar approaches (e.g., Chang et al. 2005,
Freudenthal et al. 2007, etc.) generally involve
programming efforts for which no analytical results
such as (2)–(5) are possible. Nevertheless, a plau-
sible approach can be construed based on a central
tenet of usage-based learning, that the child does not
form grammatical generalizations but rather mem-
orizes and retrieves specific and item-based combi-
nations. For instance, Tomasello (2000b) suggests
“(w)hen young children have something they want
to say, they sometimes have a set expression read-
ily available and so they simply retrieve that expres-
sion from their stored linguistic experience.” Fol-
lowing this line of reasoning, we consider a learning
model that memorizes jointly formed, as opposed to
productively composed, determiner-noun pairs from
the input. These pairs will then be sampled; for
each sample, the overlap values can be calculated
and compared against the empirical values in Table
1.

We consider two variants of the memory model.
The first can be called a global memory learner in
which the learner memorizes all past linguistic ex-
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Child sample % (global) % (local) % (emp.)
Eve 831 16.0 17.8 21.6

Naomi 884 16.6 18.9 19.8
Sarah 2453 24.5 27.0 29.2
Peter 2873 25.6 28.8 40.4
Adam 3729 27.5 28.5 32.3
Nina 4542 28.6 41.1 46.7

First 100 600 13.7 17.2 21.8
First 300 1800 22.1 25.6 29.1
First 500 3000 25.9 30.2 34.2

Table 2: The comparison of determiner-noun overlap be-
tween two variants of usage-based learning and empirical
results.

perience. To implement this, we extracted all D-N
pairs from about 1.1 million child directed English
utterances in CHILDES. The second model is a local
memory learner, which is construed to capture the
linguistic experience of a particular child. The lo-
cal memory learner only memorizes the determiner-
noun pairs from the adult utterances in that partic-
ular child’s CHILDES transcripts. In both models,
the memory consists of a list of jointly memorized
D-N pairs, which are augmented with their frequen-
cies in the input.

For each child with a sample size of S (see Table
1, column 2), and for each variant of the memory
model, we use Monte Carlo simulation to randomly
draw S pairs from the memorized lists. The proba-
bility with which a pair is drawn is proportional to its
frequency. We then calculate the D-N overlap value,
i.e, the the percentage of nouns that appear with both
“a” and “the”, for each sample. The results are aver-
aged over 1000 draws and presented in Table 2.

Both sets of overlap values from the two variants
of usage-based learning (column 3 and 4) differ sig-
nificantly from the empirical measures (column 5):
p < 0.005 for both paired t-test and paired Wilcoxon
test. This suggests that children’s use of determiners
does not follow the predictions of the usage-based
learning approach. This conclusion is tentative, of
course, as we reiterate the need for the usage-based
approach to provide testable quantitative predictions
about child language. At the minimum, child lan-
guage does not appear to stem from frequency sensi-
tive retrieval of jointly stored determiner-noun con-
structions (Tomasello 2000b).

Similar considerations apply to other linguistic
examples. For instance, it is often noted (Lieven,
Pine & Baldwin 1997) that child language is dom-
inated by a small number of high frequency frozen
frames (e.g, “give me (a) X”).3 True, but that appears
no more than the reflection of the power law dis-
tribution of linguistic units. In the Harvard corpus
of child English (Brown 1973), the frequencies of
“give me”, “give him” and “give her” are 93:15:12,
or 7.75:1.23:1, and the frequencies of “me”, “him”
and “her” are 2870:466:364, or the virtually identi-
cal 7.88:1.28:1.

3.3 Testing for Unproductivity

Any statistical test worth its salt should be able to
distinguish occurrences from non-occurrences of the
pattern which it is designed to detect. If the produc-
tivity test predicts higher overlap values than em-
pirically attested–assuming that these classes and
their combinations follow Zipfian distribution–then
there would be reason to suspect that the linguistic
types in question do not combine completely inde-
pendently, and that some kind of lexically specific
processes are at work.

We test the utility of the productivity test on in-
flectional morphology. In English, the -ing suffix
can attach to all verb stems, only some of which
can take the -ed suffix–the rest are irregulars. Chan
(2008) shows that in morphological systems across
languages, stems, affixes, and their combinations
tend to show Zipf-like distributions. Therefore, if
we apply the productivity test to -ing and -ed in-
flected forms (i.e, assuming that -ing and -ed were
fully interchangeable), then the predicted overlap
value should be higher than the empirical value. Ta-
ble 3 gives the results based on the verbal morphol-
ogy data from the Brown corpus and the six chil-
dren studied in section 3.1. Clearly there are very
significant discrepancies between the empirical and
predicted overlap values.

It can be reasonably objected that English irreg-
ular paste tense forms are highly frequent, which
may contribute to the large discrepancies observed
in Table 3. To address this concern, we created an
artificial morphological system in which 100 stems

3Thanks to an anonymous reviewer for bringing up this ex-
ample.
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Subject sample # stems % emp. % pred.
Adam 6774 263 31.3 75.6
Eve 1028 120 20.0 61.7

Sarah 3442 230 28.7 76.8
Naomi 1797 192 32.3 61.9
Peter 2112 139 25.9 78.8
Nina 2830 191 34.0 77.2

Brown 62807 3044 45.5 75.6

Table 3: Empirical vs. predicted overlap values for -ing
and -ed inflections.
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Figure 2: Overlap test applied to linguistic combinations
with lexical exceptions.

may take two affixes A and B: A can attach to all
stems but B can only attach to 90 while the other
10, randomly chosen from the 100, are exceptions.
Again, we assume that frequencies of the stems and
their combinations with affixes follow Zipfian distri-
bution. We random combine stems with affixes 1000
times obtaining a sample size of 1000, and count the
percentage of stems that are combined with both A
and B. We then compare this value against the calcu-
lation from (2) which assumes A and B are fully in-
terchangeable (where in this case they are not). The
histogram of the difference between the theoretical
and empirical values from 100 such simulations are
given in Figure 3. The overlap test correctly over-
predicts (p < 10−15).

4 Discussion

For the study of child language acquisition, our re-
sults show that the usage-based approach to lan-
guage learning is not supported by the child data
once the statistical properties of linguistic units and
their combinations are taken into account. A gram-
mar based approach is supported (section 3.1) These
results do not resolve the innateness debate in lan-
guage acquisition: they only point to the very early
availability of an abstract and productive grammar.

The simulation results on the inadequacy of the
memory-and-retrieval approach to child language
(section 3.2) show the limitations of lexically spe-
cific approach to language learning. These results
are congruent with the work in statistical parsing that
also demonstrates the diminishing returns of lexical-
ization (Gildea 2001, Klein & Manning 2003, Bikel
2004). They are also consistent with previous statis-
tical studies (Buttery & Korhonen 2005) that child
directed language data appear to be even more lim-
ited in syntactic usage diversity. The “uneveness” in
verb islands (Tomasello 1992) is to be expected es-
pecially when the language sample is small as in the
case of most child language acquisition studies. It
thus seems necessary for the child learner to derive
syntactic rules with overarching generality in a rel-
atively short period of time (and with a few million
utterances).

Finally, we envision the overlap test to be one
of many tests for the statistical properties of gram-
mar. Similar tests may be constructed to include a
wider linguistic context (e.g., three or more words
instead of two, but the sparse data problem becomes
far more severe). The ability to detect lexicalized
processes (section 3.3) may prove useful in the au-
tomatic induction of grammars. Such tests would be
a welcome addition to the quantitative analysis tools
in the behavioral study of language, which tend to
establish mismatches between observations and null
hypotheses; the favored hypotheses are those that
cannot be rejected (though cannot be confirmed ei-
ther). The present work shows that it is possible to
test for statistical matches between observations and
well formulated hypotheses.
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