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Abstract 

In this paper, we describe the implementation 
of an unsupervised learning method for 
Chinese word sense induction in 
CIPS-SIGHAN-2010 bakeoff. We present 
three individual clustering algorithms and the 
ensemble of them, and discuss in particular 
different approaches to represent text and 
select features. Our main system based on 
cluster ensemble achieves 79.33% in F-score, 
the best result of this WSI task. Our 
experiments also demonstrate the versatility 
and effectiveness of the proposed model on 
data sparseness problems.  

 

1 Introduction 

Word Sense Induction (WSI) is a particular task 
of computational linguistics which consists in 
automatically discovering the correct sense for 
each instance of a given ambiguous word  
(Pinto , 2007). This problem is closely related to 
Word Sense Disambiguation (WSD), however, 
in WSD the aim is to tag each ambiguous word 
in a text with one of the senses known as prior, 
whereas in WSI the aim is to induce the different 
senses of that word. 

The object of the sense induction task of 
CIPS-SIGHAN-2010 was to cluster 5,000 
instances of 100 different words into senses or 
classes. The task data consisted of the 
combination of the test and training data (minus 
the sense tags) from the Chinese lexical sample 
task. Each instance is a context of several 
sentences which contains an occurrence of a 
given word that serves as the target of sense 
induction.  

The accuracy of the corpus-based algorithms 
for WSD is usually proportional to the amount of 
hand-tagged data available, but the construction 
of that kind of training data is often difficult for 

real applications. WSI overcomes this drawback 
by using clustering algorithms which do not need 
training data in order to determine the possible 
sense for a given ambiguous word.  

This paper describes an ensemble-based 
unsupervised system for induction and 
classification. Given a set of data to be classified, 
the system clusters the data by individual clusters, 
then operates cluster ensemble to ensure the 
result to be robust and accurate accordingly.  

The paper is organized as follows. Section 2 
gives an description of the general framework of 
our system. Sections 3 and 4 present in more 
detail the implementation of feature set and 
cluster algorithms used for the task, respectively. 
Section 5 presents the results obtained, and 
Section 6 draws conclusions and some 
interesting future work. 

 

2 Methodology in Sense Induction Task 

Sense induction is typically treated as an 
unsupervised clustering problem. The input to 
the clustering algorithm are instances of the 
ambiguous word with their accompanying 
contexts (represented by co-occurrence vectors) 
and the output is a grouping of these instances 
into classes corresponding to the induced senses. 
In other words, contexts that are grouped 
together in the same class represent a specific 
word sense. 

In this task, an instance to be clustered is 
represented as a bag of tokens or characters that 
co–occur with the target word. To exploit the 
diversity of features, besides the co–occurrence 
matrix, we invoke the n-gram such as bi-grams 
that occur in the contexts. For assigning a weight 
for each term in each instance, a number of 
alternatives to tf-idf and entropy have been 
investigated.  

This representation raises one severe 
problem: the high dimensionality of the feature 
space and the inherent data sparseness. 



Obviously, a single document has a sparse vector 
over the set of all terms. The performance of 
clustering algorithms will decline dramatically 
due to the problems of high dimensionality and 
data sparseness. Therefore it is highly desirable 
to reduce the feature space dimensionality. We 
used two techniques to deal with this problem: 
feature selection and feature combination.  

Feature selection is a process that chooses a 
subset from the original feature set according to 
some criterion. The selected feature retains 
original physical meaning and provides a better 
understanding for the data and learning process. 
Depending on whether the class label 
information is required, feature selection can be 
either unsupervised or supervised. For WSI 
should be an unsupervised fashion, the 
correlation of each feature with the class label is 
computed by distance, information dependence, 
or consistency measures.  

Feature combination is a process that 
combines multiple complementary features based 
on different aspects extracted at the selection 
step, and forms a new set of features. 

The methods mentioned above are not 
directly targeted to clustering instances; in this 
paper we introduce three cluster algorithms: (a) 
EM algorithms (Dempster et al., 1977; 
McLachlan and Krishnan, 1997), (b) K-means 
(MacQueen, 1967), and (c) LAC (Locally 
Adaptive Clustering) (Domeniconi et al., 2004), 
and one cluster ensemble method to incorporate 
three results together to represent the target 
patterns and conduct sense clustering. 

We conduct multiple experiments to assess 
different methods for feature selection and 
feature combination on real unsupervised WSI 
problems, and make analysis through three facets: 
(a) to what extent feature selection can improve 
the clustering quality, (b) how much width of the 
smallest window that contains all the 
co–occurrence context can be reduced without 
losing useful information in text clustering, and 
(c) what index weighting methods should be 
applied to sense clustering. Besides the feature 
exploitation, we studied in more detail the 
performance of cluster ensemble method. 

 

3 Feature Extraction  

3.1 Preprocessing 

Each training or test instance for WSI task 
contains up to a few sentences as the surrounding 
context of the target word w, and the number of 

the sense of w is provided. We assume that the 
surrounding context of a target w is informative 
to determine the sense of it. Therefore a stream 
of induction methods can be designed by 
exploiting the context features for WSI.  

In our experiment, we consider both tokens 
(after word segmentation) and characters 
(without word segmentation) in the surrounding 
context of target word w as discriminative 
features, and these tokens or characters can be in 
different sentences from instances of w. Tokens 
in the list of stop words and tokens with only one 
character (such as punctuation symbols) are 
removed from the feature sets. All remaining 
terms are gathered to constitute the feature space 
of w. 

Since the long dependency property, the word 
sense could be relying on the context far away 
from it. From this point, it seems that more 
features will bring more accurate induction, and 
all linguistic cues should be incorporated into the 
model. However, more features are involved, 
more serious sparseness happens. Therefore, it is 
important to find a sound trade-off between the 
scale and the representativeness of features. We 
use the sample data provided by the 
CIPS-SIGHAN as a development data to find a 
genetic parameter to confine the context scale. 
Let ω be the width of the smallest window in an 
instance d that contains terms near the target 
word, measured in the number of words in the 
window. In cases where the terms in the window 
do not contain all of the informative terms, we 
can set ω to be some enormous number (ω < the 
length of sentence). Such proximity-weighted 
scoring functions are a departure from pure 
cosine similarity and closer to the “soft 
conjunctive” semantics.  

Token or character is the most straightforward 
basic term to be used to represent an instance. 
For WSI, in many cases a term is a meaningful 
unit with little ambiguity even without 
considering context. In this case the bag-of-terms 
representation is in fact a bag-of-words, therefore 
N-gram model can be used to exploit such 
meaningful units. An n-gram is a sequence of n 
consecutive characters (or tokens) in an instance. 
The advantages of n-grams are: they are 
language independent, robust against errors in 
instance, and they capture information about 
phrases. We performed experiments to show that 
for WSI, n-gram features perform significantly 
better than the flat features. 

There exists many approaches to weight 
features in text computing (Aas and Eikvil, 1999). 



A simple approach is TF (term frequency) using 
the frequency of the word in the document. The 
schemes take into account the frequency of the 
word throughout all documents in the collection. 
A well known variant of TF measure is TF-IDF 
weighting which assigns the weight to word i in 
document k in proportion to the number of 
occurrences of the word in the document, and in 
inverse proportion to the number of documents 
in the collection for which the word occurs at 
least once. 
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Entropy weighting is based on information 
theoretic ideas and is the most sophisticated 
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 Re-parameterization is the process of 
constructing new features as combinations or 
transformations of the original features. We 
investigated Latent Semantic Indexing (LSI) 
method in our research and produce a 
term-document matrix for each target word. LSI 
is based on the assumption that there is some 
underlying or latent structure in the pattern of 
word usage across documents, and that statistical 
techniques can be used to estimate this structure. 
However, it is against the primitive goal of the 
LSI weighting that LSI performs slightly poorer 
compared with the TF, TF-IDF and entropy. The 
most likely reason may is that the feature space 
we construct is far from high-dimension, while 
feature the LSI omitted may be of help for 
specific sense induction.  

3.2 Feature Selection 

A simple features election method used here is 
frequency thresholding. Instance frequency is the 
number of instance to be clustered in which a 
term occurs. We compute the instance frequency 
for each unique term in the training corpus and 
remove from the feature space those terms whose 
instance frequency was less than some 
predetermined threshold (in our experiment, the 
threshold is 5). The basic assumption is that rare 
terms are either non-informative for category 
prediction, or not influential in global 

performance. The assumption of instance 
frequency threshold is more straightforward that 
of LSI, and in either case, removal of rare terms 
reduces the dimensionality of the feature space. 
Improvement in cluster accuracy is also possible 
if rare terms happen to be noise terms. 

Frequency threshold is the simplest technique 
for feature space reduction. It easily scales to 
sparse data, with a computational complexity 
approximately linear in the number of training 
documents. However, it is usually considered an 
ad hoc approach to improve efficiency, not a 
principled criterion for selecting predictive 
features. Also, frequency threshold is typically 
not used for aggressive term removal because of 
a widely received assumption in information 
retrieval. That is, low instance frequency terms 
are assumed to be relatively informative and 
therefore should not be removed aggressively. 
We will re-examine this assumption with respect 
to WSI tasks in experiments. 

Information gain (IG) is another feature 
felection can be easily applied to clustering and 
frequently employed as a term-goodness 
criterion in the field of machine learning. It 
measures the number of bits of information 
obtained for cluster prediction by knowing the 
presence or absence of a term in an instance.  

Since WSI should be conducted in an 
unsupervised fashion, that is, the labels are not 
provided, the IG method can not be directly used 
for WSI task. But IG can be used to find which 
kind of features we consider in Section 3.1 are 
most informative feature among all the feature 
set. We take the training samples as the 
development data to seek for the cues of most 
informative feature. For each unique term we 
compute the information gain and selecte from 
the feature space those terms whose information 
gain is more than some predetermined threshold. 
The computation includes the estimation of the 
conditional probabilities of a cluster given a term 
and the entropy computations in the definition.  
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where t is the token under consideration, ci is 
the corresponding cluster.This definition is more 
general than the one employed in binary 
classification models. We use the more general 
form because WSI task have a feature sparse 
problem, and we need to measure the goodness 



of a feature selection method globally with 
respect to all clusters on average. 

3.3 Feature combination 

Combining all features selected by different 
feature set can improve the performance of a 
WSI system. In the selection step, we find the 
feature that best distinguishes the sense classes, 
and iteratively search additional features which 
in combination with other chosen features 
improve word sense class discrimination. This 
process stops once the maximal evaluation 
criterion is achieved. 

We are trying to disply an empirical 
comparison of representative feature 
combination methods. We hold that particular 
cluster support specific datasets; a test with such 
combination of cluster algorithm and feature set 
may wrongly show a high accuracy rate unless a 
variety of clusterers are chosen and many 
statistically different feature sets are used. Also, 
as different feature selection methods have a 
different bias in selecting features, similar to that 
of different clusterers, it is not fair to use certain 
combinations of methods and clusterers, and try 
to generalize from the results that some feature 
selection methods are better than others without 
considering the clusterer. 

This problem is challenging because the 
instances belonging to the same sense class 
usually have high intraclass variability. To 
overcome the problem of variability, one strategy 
is to design feature combination method which 
are highly invariant to the variations present 
within the sense classes. Invariance is an 
improvement, but it is clear that none of the 
feature combination method will have the same 
discriminative power for all clusterers. 

For example, features based on global window 
might perform well when instances are shot, 
whereas a feature weighting method for this task 
should be invariant to the all the WSI corpus. 
Therefore it is widely accepted that, instead of 
using a single feature type for all target words it 
is better to adaptively combine a set of diverse 
and complementary features. In our experiment, 
we use several combination of features in 
multiple views, that is, uni-gram/bi-gram, 
global/window, and tfidf/entropy – in order to 
discriminate each combination best from all 
other clusters.  

4 Cluster  

There are two main issues in designing cluster 

ensembles: (a) the design of the individual 
“clusterers” so that they form potentially an 
accurate ensemble, and (b) the way the outputs 
of the clusterers are combined to obtain the final 
partition, called the consensus function. In some 
ensemble design methods the two issues are 
merged into a single design procedure, e.g., 
when one clusterer is added at a time and the 
overall partition is updated accordingly (called 
the direct or greedy approach).  

In this task we consider the two tasks 
separately, and investigate three powerful cluster 
methods and corresponding consensus functions. 

4.1 EM algorithm 

Expectation-maximization algorithm, or EM 
algorithm (Dempster et al., 1977; McLachlan and 
Krishnan, 1997) is an elegant and powerful 
method for finding maximum likelihood 
solutions for models with latent variables.  

Given a joint distribution  (X, Z | )p θ  over 
observed variables X and latent variables Z, 
governed by parameters θ , the goal is to 
maximize the likelihood function (X | )p θ  
with respect toθ . 

1. Choose an initial setting for the 

parameters
oldθ ; 

2. E step Evaluate ; (Z | X, )oldp θ
3. M step Evaluate newθ  given by 
 ; = argmax ( , )new old

θ
θ ϑ θ θ

where ( , ) (Z|X, ) ln (X,Z| )old old

z

p pϑ θ θ θ θ=∑  

4. Check for convergence of either the log 
likelihood or the parameter values. If the 
convergence criterion is not satisfied, then let 

old newθ θ←  
and return to step 2. 

4.2  K-means  

K-means clustering (MacQueen, 1967) is a 
method commonly used to automatically 
partition a data set into k groups. It proceeds by 
selecting k initial cluster centers and then 
iteratively refining them as follows:  
1. Each instance d is assigned to its closest 
cluster center. 

i 

2. Each cluster center C is updated to be the 
mean of its constituent instances. 

j 

The algorithm converges when there is no 
further change in assignment of instances to 
clusters. In this work, we initialize the clusters 



using instances chosen at random from the data 
set. The data sets we used are composed of 
numeric feature, for numeric features, we use a 
Euclidean distance metric.  

4.3  LAC 

Domeniconi et al.(2004) proposed an Locally 
Adaptive Clustering algorithm (LAC), which 
discovers clusters in subspaces spanned by 
different combinations of dimensions via local 
weightings of features. Dimensions along which 
data are loosely correlated receive a small weight, 
which has the effect of elongating distances 
along that dimension. Features along which data 
are strongly correlated receive a large weight, 
which has the effect of constricting distances 
along that dimension. Thus the learned weights 
perform a directional local reshaping of distances 
which allows a better separation of clusters, and 
therefore the discovery of different patterns in 
different subspaces of the original input space.  

The clustering result of LAC depends on 
two input parameters. The first one is common to 
all clustering algorithms: the number of clusters 
k to be discovered in the data. The second one 
(called h) controls the strength of the incentive to 
cluster on more features. The setting of h is 
particularly difficult, since no domain knowledge 
for its tuning is likely to be available. Thus, it 
would be convenient if the clustering process 
automatically determined the relevant subspaces.  

 

4.4 Cluster Ensemble 

Cluster ensembles offer a solution to challenges 
inherent to clustering arising from its ill-posed 
nature. Cluster ensembles can provide robust and 
stable solutions by leveraging the consensus 
across multiple clustering results, while 
averaging out emergent spurious structures that 
arise due to the various biases to which each 
participating algorithm is tuned. 

Kuncheva et al. (2006) has shown Cluster 
ensembles to be a robust and accurate alternative 
to single clustering runs. In the work of 
Kuncheva et al. (2006), 24 methods for 
designing cluster ensembles are compared using 
24 data sets, both artificial and real. Both 
diversity within the ensemble and accuracy of 
the individual clusterers are important factors, 
although not straightforwardly related to the 
ensemble accuracy. 

The consensus function aggregates the outputs 
of the Individual clusterers into a single partition. 
Many consensus functions use the consensus 

matrix obtained from the adjacency matrices of 
the individual clusterers. Let N be the number of 
objects in the data set. The adjacency matrix for 
clusterer  is an N by N matrix with entry k
( , ) 1i j =  if objects i  and j  are placed in the 
same cluster by clusterer , and ( ,k ) 0i j = , 
otherwise. The overall consensus matrix, M, is 
the average of the adjacency matrices of the 
clusterers. Its entry gives the proportion of 
clusterers which put and

( , )i j
i j  in the same cluster. 

Here the overall consensus matrix, M, can be 
interpreted as similarity between the objects or 
the “data”. It appears that the clear winner in the 
consensus function “competition” is using the 
consensus matrix as data. Therefore, the 
consensus functions used in the WSI task invoke 
the approach whereby the consensus matrix M is 
used as data (features). Each object is 
represented by N features, i.e., the j -the feature 
for object  is the ( ,  entry of M. i )i j

Then we use Group-average agglomerative 
clustering (GAAC) to be the consensus functions 
clustering the M matrix. 

5 Analysis 

First, we conducte an ideal case experiment on 
the training samples provided by CIPS-SIGHAN 
2010, to see whether good terms can help sense 
clustering. Specifically, we applied supervised 
feature selection methods to choose the best 
feature combinations driven by performance 
improving on the training features. Then, we 
executed the word sense induction task using 
features under the prefered feature combinations 
and compare the various clustering results output 
by three individual cluster. 

We then designe cluster ensemble method 
with results on three clusters, distributed as M 
data consensus matrix.  

5.1 Soundex for Feature 

We apply feature selection and feature 
combination to instances in the preprocessing of 
K-means, EM and LAC. The effectiveness of a 
combination method is evaluated using the 
performance of the cluster algorithm on the 
preprocessed WSI. We use the standard 
definition of recall and precision as F-score 
(Zhao and Karypis, 2005) to evaluate the 
clustering result. 

As described in Section 3, selection methods 
are included in this study, each of which uses a 
term-goodness criterion threshold to achieve a 



desired degree from the full feature set of WSI 
corpus. 

Table 2 shows The F-score figures for the 
different combinations of knowledge sources and 
learning algorithms for the training data set. The 
feature columns correspond to: 

(i) tfidf: tf-idf weighting 
(ii) entro: Entropy weighting 
(iii) bi: bi-gram representation 
(iv) uni: uni-gram representation 

(v) global: using all the terms in the 
instance 

(vi) winXX: using only terms in the 
surrounding context, and the width of 
the window is the figure followed by. 

As shown in Table 2, the best averaged 
F-score for WSI (without combination) is 
obtained by global_entro by maintaining a very 
consistent result for three cluster algorithm. That 
is, the feature weighting method will dominate  

 
Feature k-means LAC EM average 
combine_uni_bi_entro_8:2 0.817375775 0.819315654 0.811188742 0.81596 
combine_uni_bi_entro_9:1 0.812858111 0.817265352 0.81510355 0.815075 
combine_uni_bi_entro_7:3 0.805319576 0.817909374 0.819887132 0.814372 
combine_uni_bi_entro_1:1 0.810324177 0.81397143 0.812962625 0.812419 
combine_uni_bi_entro_6:4 0.806647971 0.815069965 0.810440791 0.811945 
combine_uni_bi_entro_1:9 0.810576944 0.811287122 0.813785918 0.811883 
combine_uni_bi_entro_4:6 0.810475113 0.810512846 0.811584054 0.810857 
combine_uni_bi_entro_3:7 0.809265111 0.811142052 0.811340668 0.810582 
combine_uni_bi_entro_2:8 0.811090379 0.804433939 0.813767918 0.809764 
uni_global_entro 0.765063808 0.75954835 0.746212504 0.756942 
uni_global_tfidf 0.765011785 0.757537564 0.745006996 0.755852 
uni_win30_tfidf 0.764949578 0.757424304 0.744497086 0.755624 
uni_win40_tfidf 0.764772672 0.755702292 0.744319609 0.754932 
uni_win30_entro 0.764286757 0.755514592 0.742825875 0.754209 
uni_win40_tfidf 0.763994795 0.75954835 0.742747114 0.75543 
bi_global_entro 0.740026161 0.731310077 0.71651859 0.729285 
bi_global_tfidf 0.739555095 0.731264758 0.716031966 0.728951 
bi_win30_entro 0.737209909 0.729711844 0.714498518 0.72714 
bi_win40_entro 0.715230191 0.713987571 0.699644178 0.709621 
bi_win40_tfidf 0.714031488 0.710282928 0.697201196 0.707172 
bi_win30_ tfidf 0.740026161 0.731310077 0.71651859 0.729285 

 
Table 1: Feature selection for our system. 

 
                  

the F-score. On the other hand, we should 
combine uni_global_entro and bi_global_entro to 
improve the cluster performance: 

(vii) combine: combining all two feature 
(uni and bi) with the at the rate of  
the ratio followed by. 

From these figures, we found the following 
points. First, feature selection can improve the 
clustering performance when a certain terms are 
combined. For example, any feature combination 
methods can achieve about 5% improvement. 
Second, as can be seen from Table 1, the best 
performances yielded at the combination ratio of 
8:2. As can be seen, when more bi-gram terms 
are added, the performances of combination 
methods drop obviously. In order to find out the 
reason, we compared the terms selected at 

different ratio. After analysis, we found that 
Chinese word senses have their own 
characteristics, unigram language model is 
suitable for WSI in Chinese; also, in WSI task,  
informative term may be in the entire instance 
but not appear closest to the target word, the 
language model and the width of window is 
much more important than the feature weighting 
for feature selection. Since entropy weighting 
perform better than tf-idf weighting, tf-idf 
weighting can be removed with an improvement 
in clustering performance on the training dataset. 
Hence, it is obvious that combination methods 
are much better than single feature set when 
processing WSI, and we chose 
combine_uni_bi_entro_8:2, i.e., the top 80% 



uni-gram features and top 20% features as the 
final clustering features. 

5.2 The cluster ensembles 

As described in Section 5.1, we use two language 
models (uni-gram and bi-gram), 4 types of the 
context window (20, 30, 40 and global) and 2 
feature weighting methods (tf-idf and entropy), 
also, 10 combined feature set and 3 cluster 
algorithm is introduced; in the other word, we 
have at least 78 result, that is 78 consensus 
matrix interpreted as “data” to be aggregated. 
Thus we can evaluate the statistical significance 
of the difference among any ensemble methods 
on any cluster result set.  

To compare all ensemble methods, we group 
the result sets (out of 78) into different feature 
representation scheme. Significant difference for 
a given feature representation methods, the 
ensemble result is observed to check weather 
cluster ensembles can be more accurate than 
single feature set and to find out which method 
appears to be the best choice for the WSI task. 

Table 2 shows the ensembles examined in our 
experiment. The feature columns correspond to 
different group of result set, for example, bi_tfidf 
indicates bi-gram model and tf-idf feature 
weighting methods are selected, all the 3 cluster 
results on win20, win30, win 40 and global 
feature sets (12 consensus matrix) are aggregated; 
complex_entro indicates that all the feature 
representation methods selecting entropy 
weighting are chosen. 

Results show that the best performance is the 
group in which all the outputs of all the 
clusterers are combined (the top row in Table 2). 

 
Feature F1-score Scale 

complex 0.827566232 78 
complex_entro 0.823006644 24 
complex_nocomb 0.822970703 48 
complex_global 0.821960768 12 
uni_complex 0.821931155 24 
uni_ entro 0.821931155 15 
uni_global 0.821817211 6 
complex_combine 0.819456935 30 
uni_ tfidf 0.811631894 12 
complex_tfidf 0.806807226 24 
complex_entro 0.806063712 24 
bi_complex 0.801211134 24 
bi_entro 0.794939656 12 
bi_global 0.788673134 6 
bi_tfidf 0.788170215 12 

Table 2: Ensemble designs sorted by the total 
index of performance 

5.3 CIPS-SIGHAN WSI Performance 

The goal of this task is to promote the exchange 
of ideas among participants and improve the 
performance of Chinese WSI systems. The input 
consists of 100 target words, each target word 
having a set of contexts where the word appears. 
The goal is to automatically induce the senses 
each word has, and cluster the contexts 
accordingly. The evaluation measures provided 
is F-Score measure. In order to improve the 
overall performance, we used two techniques: 
feature combination and Cluster Ensemble. 

We chose combinomg global size of window, 
entropy weighting, uni-garm and bi-gram at the 
ratio of 8:2 as the final feature extraction method. 
Three powerful cluster algorithms, EM, K-means 
and LAC recieve these features as input, and in 
our main system all the outputs of all the 
clusterers are combined to process cluster 
ensemble. In Table 3 we show four results 
obtained by three individual clusters and one 
ensemble of them. 

Our main system has outperformed the other 
systems achieving 79.33%. Performance for 
LAC is 78.95%, 0.4% lower the best system. For 
EM our F-sore is 78.55%, which is around 0.8% 
lower than the best system, the similar result ia 
also observed for K-means. The results of our 
system are ranked in the top 4 place and 
obviously better the other systems. 

 
Name F1-score Rank 
BUPT_mainsys 0.7933 1 
BUPT_LAC 0.7895 2 
BUPT_EM  0.7855 3 
BUPT_kmeans 0.7849 4 
Table 3: Evaluation (F-score performance) 

6 Conclusions  

In this paper, we described the implementation of 
our systems that participated in word sense 
induction task at CIPS-SIGHAN-2010 bakeoff. 
Our ensemble model achieved 79.33% in F-score, 
78.95% for LAC, 78.55% for EM and 78.49% 
for K-means. The result proved that our system 
had the ability to fully exploit the informative 
feature in senses and the ensemble clusters 
enhance this advantage. 

One direction of future work is to exploit more 
semantic cues for word sense distribution. 
Furthermore, in order to represent the short 
context of the target word, we should investigate 
more powerful model and external knowledge to 
expand its linguistic environments. 
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