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Abstract

In this paper, we propose a novel self-
training strategy for parsing which is 
based on Treebank conversion (SSPTC). 
In SSPTC, we make full use of the 
strong points of Treebank conversion 
and self-training, and offset their 
weaknesses with each other. To provide 
good parse selection strategies which are 
needed in self-training, we score the 
automatically generated parse trees with 
parse trees in source Treebank as a 
reference. To maintain the constituency 
between source Treebank and conversion 
Treebank which is needed in Treebank 
conversion, we get the conversion trees 
with the help of self-training. In our 
experiments, SSPTC strategy is utilized 
to parse Tsinghua Chinese Treebank 
with the help of Penn Chinese Treebank. 
The results significantly outperform the 
baseline parser. 

1 Introduction 

Syntax parsing is one of the most fundamental 
tasks in natural language processing (NLP) and 
has attracted extensive attention during the past 
few decades. In statistical area, according to the 
type of data used in training stage, the parsing 
approaches can be classified into three 
categories: supervised, semi-supervised and 
unsupervised. In supervised parsing approach, a 
high-performance parser can be built when given 
sufficient labeled data (Charniak, 2000; Collins, 
2003; Henderson, 2004). The semi-supervised 
approach utilizes some labeled data to annotate 
unlabeled data, then uses the annotated data to 
improve original model, e.g., self-training 
(McClosky et al., 2006) and co-training (Hwa et 
al., 2003). In unsupervised parsing, the labeled 
data was not employed and all annotations and 

grammars are discovered automatically from 
unlabeled data. 

State-of-the-art supervised parsers (Charniak, 
2000; Collins, 2003; Henderson, 2004) require 
large amounts of manually annotated training 
data, such as the Penn Treebank (Marcus et al., 
1993), to achieve high performance. However, it 
is quite costly and time-consuming to create 
high quality labeled data. So it becomes a key 
bottleneck for supervised approach to acquire 
sufficient labeled training data. Self-training is 
an effective strategy to overcome this shortage. 
It tries to enlarge the training set with 
automatically annotated unlabeled data and 
trains a parser with the enlarged training set.  

During the last few decades, many Treebanks 
annotated with different grammar formalisms 
are released (Zhou, 2004; Xue et al., 2005). 
Although they are annotated with different 
schemes, they have some linguistic consistency 
in some extent. Intuitively, we can convert 
Treebank annotated with one grammar 
formalisms into another Treebank annotated 
with grammar formalism that we are interested 
in. For simplicity, we call the first source 
Treebank, and the second target Treebank. And 
we call this strategy as Treebank conversion. 

Although both self-training and Treebank 
conversion can overcome the limitation of 
labeled data shortage for supervised parsing in 
some extent, they all have drawbacks. For self-
training, the quality of automatically annotated 
unlabeled data will affect the performance of 
semi-supervised parsers highly. For example, 
McClosky et al. (2006) shows that when the 
parser-best list is used for self-training, the 
parsing performance isn’t improved, but after 
using reranker-best list, the retrained parser 
achieves an absolute 1.1% improvement. For 
Treebank conversion, different types among 
Treebanks make the converting procedure very 
complicated, and it is very hard to get a 



conversion Treebank constituent with target 
Treebank.

To overcome the limitations mentioned above, 
we propose a Treebank conversion based self-
training strategy for parsing, which tries to 
combine self-training and Treebank conversion 
together.

Remainder of this paper is organized as 
follows. In Section 2, we introduce some related 
work. Section 3 describes details of our SSPTC 
strategy. In Section 4, we propose a head finding 
method for Task21 in CLP2010. The 
experiments and analysis is given in Section 5. 
The last section draws conclusions and describes 
the future work. 

2 Related Work 

With the development of statistical parsing 
approaches, large scale corpus has become an 
indispensable resource. Because of the limited 
amount of existing labeled training data and the 
hardness of constructing corpus, many strategies 
have been proposed and experimented to 
overcome the contradiction. 

Self-training is one of the most successful 
strategies. McClosky et al. (2006) shows that 
self-training effectively improves the accuracy 
of English parsing. First, they trained a two-
stage reranking parser(Charniak and Johnson, 
2005) using Penn Treebank (PTB)(Marcus et al., 
1993) and parsed 1,750k unlabeled sentences 
from North American News Text corpus 
(NANC). Then they combined the labeled 
NANC sentences with PTB together as training 
set and retrained the first stage of the parser. The 
final result got a 1.1% improvement over the 
previous best parser for section 23 of the Penn 
Treebank. Huang and Harper (2009) combined 
self-training into a PCFG-LA based parser both 
for English and Chinese. Experimental result 
showed that self-training contributed 0.83% 
absolute improvement using only 210k 
unlabeled sentences with a single generative 
parser. For the Chinese parsing, self-training 
contributed 1.03% absolute improvement. 

Treebank Conversion is another potential 
strategy to reuse existing source Treebanks for 
the study of target grammar parsing. Wang et al. 
(1994) proposed a Treebank conversion 
algorithm for corpus sharing. They employed a 
parser with target grammar formalism to get N-

best parse list for each sentence in source 
Treebank, selected the best conversion tree from 
the list using their algorithm, then inserted the 
conversion trees into training set, and finally 
retrained the parser with the enlarged training set. 
Experimental result shows their algorithm is 
effective. Collins et al. (1999) performed 
statistical constituency parsing of Czech on a 
Treebank that was converted from the Prague 
Dependency Treebank under the guidance of 
conversion rules and heuristic rules, and the final 
performance was also improved. Xia and Palmer 
(2001) proposed three methods to convert 
dependency trees into phrase structure trees with 
some hand-written heuristic rules. For 
acquisition of better conversion rules, Xia et al. 
(2008) proposed a method to automatically 
extract conversion rules from a target Treebank. 
Niu et al. (2009) tried to exploit heterogeneous 
Treebanks for parsing. They proposed a 
grammar formalism conversion algorithm to 
convert dependency formalism Treebank into 
phrase structure formalism, and did phrase 
structure parsing with the conversion trees. Their 
experiments are done in Chinese parsing, and the 
final performance is improved indeed. 

In summary, from the existing work we are 
confident that the strategies of self-training and 
Treebank conversion are effective to improve 
the performance of parser. 

3 Our Strategy 

3.1 Parsing Algorithm 

Although self-training and Treebank Conversion 
are effective for training set enlarging, they all 
have drawbacks. Self-training needs some parse 
selection strategies to select higher quality 
parsers. Treebank Conversion needs us to 
maintain the consistency between conversed 
Treebank and target Treebank. On the other 
hand, self-training strategy provides us a good 
idea to get annotated trees consistent with target 
grammar formalism, and the parse trees in 
source side provide a reference for higher 
quality parsers selecting. So we can combine 
self-training and Treebank Conversion together, 
use self-training strategy to get converted 
candidates for sentences in source Treebank, and 
select higher quality parses according to trees in 
source Treebank. We call this strategy Treebank 



Conversion based Self-training, and show more 
details in Algorithm 1. 

In Algorithm 1, target Treebank tT  and source 
Treebank sT  are input first (line 1). Then tT  is 
split into two parts: training set trainT  and 
development set devT  (line 3). And we train an 

initial parser with trainT and devT  in line 4. From 
line 6 to line 12, we train parsers with SSPTC 
strategy Iter times iteratively. Let i

s tT be the 
automatically converted Treebank from source 
Treebank to target Treebank grammar formalism 
during the i-th iteration. From line 8 to line 11, 
we try to get a conversion tree with target 
grammar for each of the N sentences in source 
Treebank. We get N-best parse list kParseList  for 
sentence ks with 1iParser  (line 9), select the 
parse ˆ

kp  with the highest score from kParseList

(line 10), and insert it into i
s tT  (line 11). This 

procedure runs iteratively until all the trees in 
source Treebank have been converted, finally, 
we train a new parser iParser  with trainT , devT  and 

i
s tT (line 12). 

3.2 Parse selection 

In line 10 of Algorithm 1, we select the highest 
quality parse ˆ

kp  from kParseList according to 
function ( , )s s tScore p p , where sp denotes a tree 
in source Treebank and s tp denotes a 
conversion tree with target Treebank grammar 
formalism for sp . ( , )s s tScore p p  compares 

s tp  with sp  and computes a score for s tp

taken sp  as a reference. According to the idea 
proposed in Wang et al. (1994), we use the 
number of aligned constituents in the source and 
target trees to construct ( , )s s tScore p p . We 
propose two types of ( , )s s tScore p p as follows. 
(1) Unlabeled aligned constituents F1 score 
(UAF)
First, we define a constituent as tag[i,j], which 
represents a non-terminal node labeled with tag
and spanning words from positions i to j of the 
input sentence. A non-terminal node in s tp

aligns with a non-terminal node in sp  when they 
span the same words. If two nodes are aligned, 
we call them an aligned constituent and denote 
the aligned relationship as [ , ] [ , ]s ttag i j tag i j .
For example in Figure 1, there are three aligned 
constituents between the source Treebank tree 
and the conversion tree, and we can denote them 
as [0, 7] [0, 7]s tIP dj , [0, 2] [0, 2]s tNR sp and

[2, 6] [2, 6]s tNR np , respectively. 
When given sp and s tp , we can easily 

collect all the aligned constituents. So we define 
Unlabeled aligned constituents Precision (UAP) 
and Unlabeled aligned constituents Recall (UAR) 
as follows. 
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Algorithm 1 

1: Input: tT and sT
2: initialize 
3: { , ( )}train dev tT T Split T

4: 0 ( , )train devParser Train T T

5:  Iter iterations 
6: for i 1… Iter do

7:    i
s tT

8:    for k 1… N do
9:        1( , )k i kParseList Nbest Parser s

10:       ,
ˆ arg max ( , )

j kk s k jp ParseListp Score p p

11:       ˆi
s t kT p

12:   ( , , )i
i train dev s tParser Train T T T

13: return IterParser



Then Unlabeled aligned constituents F1 score 
(UAF) is defined as: 
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(2) Labeled aligned constituents F1 score 
(LAF)
In the last subsection, we define ( , )s s tScore p p
according to UAF. In fact, the tags of 
constituents bring us much information to score 
conversion trees. So we 
define ( , )s s tScore p p with Labeled aligned 
constituents F1 score (LAF) in this subsection. 

Because the annotation schemes are different, 
constituent tags in source Treebank may be 
much more different from target Treebank. The 
number of such tags may be drastically different 
and the mapping may not be one-to-one. To 
eliminate the contradiction, we assume that each 
tag in source Treebank can be converted into 
every tag in target Treebank with various 
probabilities. So there is a converting matrix 
representing the converting probabilities, and we 
can calculate the converting matrix through 
source Treebank and N-best conversion trees. 

Given the source Treebank and N-best 
conversion trees, first we align all the 
constituents, then collect all the aligned tags and 
compute the converting probability as the 
following equation.  

( )
( )

( )
s t

s t
s

Count tag tag
p tag tag

Count tag           (2) 
Finally, we modify UAF computed by 

equation (1) into LAF as below. 
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In equation (3),  is a tunable variable, which 

is used to weight the converting probability. 
Especially, LAF will be transferred into UAF 
when =0.

3.3 Corpus weighting technique 

In line 12 of Algorithm 1, we train a new parser 
with target Treebank and conversion trees. 
However, the errors in automatically conversion 
trees are unavoidable and they would limit the 
accuracy of the self-trained model. So we have 
to take some measures to weight the gold target 
Treebank and the automatically conversion trees. 
McClosky et al. (2006) and Niu et al. (2009) 
take the strategy that duplicates the gold 
Treebank data many times. However, this 
strategy isn’t suitable for PCFG-LA 
parser 1 (Matsuzaki et al., 2005; Petrov et al., 
2006), because PCFG-LA employs an EM 
algorithm in training stage, so duplicating gold 
Treebank would increase the training time 
tremendously. Instead, according to Huang and 
Harper (2009), we weight the posterior 
probabilities computed for the gold and 
automatically converted trees to balance their 
importance. 

Let ( | )count A t be the count of rule 
A  in a parse tree t . tT  and s tT  are the sets 
of target Treebank and automatically converted 
trees from source Treebank respectively. The 
posterior probability of rule A  (with 
weighting parameter ) can be expressed as: 

1 We will use BerkeleyParser as our baseline parser, 
which is a PCFG-LA based parser. 
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(a) parse tree in source Treebank

(b) conversion tree with target Treebank grammar

Figure 1: source tree and its conversion 
tree with target grammar formalism 
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4 Head Finding 

In Task21 of CLP2010, we are required to find 
heads for each constituent. Our method is to 
make head finding as a post procedure after 
parsing.

We treat head finding problem as a 
classification problem, which is to classify each 
context-free production into categories labelled 
with their heads. For example, there are three 
types of heads: -0, -0-2 and -2 for 
vp vp wP vp , so we try to classify this 
production into categories labelled with -0, -0-2 
and -2. First, we scan the train set and collect all 
the heads for each context-free production. Then 
we train a Maxent classifier to classify each 
context-free production into categories. We take 
the same feature templates for the classification 
as Chen et al. (2009) did, which is described in 
Table 1. 

The head finding procedure proceeds in a 
bottom-up fashion, so that we can make use of 
heads of productions in lower layers as features 
for classification of the higher layers. 

To evaluate the accuracy of our head finding 
method, we randomly select a development set, 
remove all head information and use our Maxent 
classifier to retrieve the heads. Experimental 
results show the accuracy has reached 98.28%. 
However, the final performance would drop 
much when the parse trees are generated 
automatically. Because the automatically 
generated parse trees would bring many errors, 
and the post procedure of head finding can’t 
correct the errors. 

5 Experiments and Analysis 

5.1 Data Preparation 

In order to evaluate the effectiveness of our 
approach, we do experiments for Chinese 
parsing using Tsinghua Chinese Treebank 
(TCTB) on target side and Penn Chinese 
Treebank (PCTB) on source side. We divide the 
training portion of the Tsinghua Chinese 
Treebank provided by CLP2010 into three parts 
as follows: 500 trees are randomly extracted as 
development set, another 500 as validating set 
and the rest trees are taken as training set. For 
trees in PCTB, all the empty-node and function 
tag information are removed. All the ParseVal 
measures reported in this paper are evaluated by 
the EVALB tool2.

5.2 Experiments 

In order to get a good final accuracy, we choose 
BerkeleyParser 3 , which is a state-of-the-art 
unlexicalized parser, and train a model with the 
training set as our baseline. The F1 score of 
validating set parsed by baseline parser is 
85.72%. In the following of this subsection, we 
try to combine our strategies into the baseline 
parser and evaluate the effectiveness. Because 
mult-time iterations can’t improve parsing 
performance tremendously but cost much time 
during our experiments, we take Iter=1 here. 

(1) Corpus weighting experiment 
To evaluate the corpus weighting strategy, we 
take sentences (ignore the tree structure) in 
PCTB as unlabeled data, and train a parser with 
self-training strategy. F1 scores of validating set 
varying with in equation (4) are shown in 
Figure 2. From Figure 2, we find that the F1 
score varies with , and reaches 86.46% 

2 http://nlp.cs.nyu.edu/evalb/ 
3 http://code.google.com/p/berkeleyparser/ 

Feature templates 
The label of the current constituent; 
The label of the left most child, the middle child and the right most child; 
The head word of the left most child, the middle child and the right most child; 
The POS tag of the head word of the left most child, the middle child and the right most child; 
Bigram of label, head word and POS tag of head word of the children: L/M, M/R; 
Trigram of label, head word and POS tag of head word of the children: L/M/R; 
The number of children; 
Table 1: Feature Templates for Head Finding 



when =1. The 0.74 absolute improvement 
comparing with the baseline certifies the 
effectiveness of our corpus weighting strategy. 

(2) Parse selection experiments 
In this subsection we evaluate our parse 
selection strategies with the help of PCTB. 
According to Algorithm 1, we train an initial 
parser with training set and development set. 
Then we generate 50-best parses list with the 
initial parser for each sentence in PCTB, and 
select a higher-score parse for each sentence 
through our parse selection strategies to build a 
conversion Treebank. Finally, we retrain a parser 
with training set and the conversion Treebank 
with the help of corpus weighting strategy. 

Figure 3 shows F1 scores of validating set 
using UAF to select higher quality parses. 
When =0.3, F1 score reaches 86.92%. The 
improvement over baseline is 1.2 percentage 
points. Comparing with the highest F1 score of 
self-training, we got 0.46 more improvement. So 
our parse selection strategy with UAF is 
effective.

Because the highest F1 score is at the point 
=0.3 in Figure 3, we choose =0.3 to 

evaluating LAF strategy. Figure 4 shows F1 
scores on validating set using LAF. The highest 
F1 score is 87.44% at the point =6, and it gets 
1.72 percentage points improvement over 
baseline. Comparing with UAF, LAF gets 0.52 

more improvement. So we can conclude that the 
parse selection strategy with LAF is much more 
effective.

5.3 Discussion 

Table 2 reports the highest performances of 
various strategies. From the table we can easily 
find that all strategies outperform the baseline 
parser. Corpus weighting experiment tells us that 
balancing the importance of gold target 
Treebank and conversion trees is helpful for the 
final performance. Using UAF to select 
conversion trees can get more improvement than 
self-training which just selects the best-first trees. 
This fact proves that our SSPTC strategy is 
reasonable and effective. Making use of LAF, 
we get more improvement than UAF. It tells us 
that exploiting source Treebank deeply can bring 
us more useful knowledge which is helpful to 
develop high-performance parser. 

6 Experiments for Task 2 of CLP2010 

Task 2 of CLP2010 includes two sub-tasks: sub-
sentence parsing and complete sentence parsing. 
For each sub-task, there are two tracks: closed 
track and open track. To accomplish tasks in 
closed track, we make use of our baseline parser 
shown in section 5 and train it with different 
parameters and data set. For open track, we 
make use of our SSPTC strategy and train it with 
different parameters and data set. We tuned the 
parameters on the development set and selected 

Strategy F1 score 
Baseline 85.72% 
Corpus weighting 86.46% 
UAF 86.92% 
LAF 87.44% 

Table 2: F1 scores of various strategies 

Figure 4: F1 score of LAF strategy 

Figure 2: F1 score of self-training 

Figure 3: F1 score of UAF strategy 



some configurations which achieve higher 
performance on the development set(more 
details have been shown in section 5). The final 
parameters and training data of our systems are 
shown in Table 34. We also make use of the 
approach explained in section 4 for the head 
finding procedure. 

The parsing results of our systems on the test 
set can be found on the official ranking report. 
Our systems training with SSPTC strategy bring 
us an amazing performance which outperforms 
other systems in both the two sub-tasks. 

7 Conclusion and Future work 

In this paper, we propose a novel self-training 
strategy for parsing which is based on Treebank 
conversion. Benefiting from SSPTC strategy, we 
have gotten higher quality parse trees with the 
help of source Treebank, and gotten conversion 
Treebank with target Treebank grammar 
formalism simply and consistently. The parsing 
results on validating set show SSPTC is 
effective. We apply SSPTC to the test set of 
Task 2 in CLP2010, and get 1.275 percentage 
points improvement over baseline parser using 
the parameters tuned on validating set.  

4 The parsing result for system b in open track of sub-
task1 has been submitted mistakenly, so the figures of 
this system on the official ranking report have no 
reference value. 
5 The F1 score of baseline parser is 75.24%, and it 
reaches 76.51% using TCBS strategy. 

All the delightful results tell us that SSPTC is 
a promoting strategy for parsing. However, there 
is much knowledge in source Treebank remained 
to further exploit, e.g. the POS tags in source 
Treebank is a good resource to improve the POS 
tagging accuracy of target Treebank. So, in the 
next step we will exploit source Treebank deeply 
and try to get more knowledge from it for 
parsing.
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