
Treebank Conversion based Self-training Strategy for Parsing

Zhiguo Wang and Chengqing Zong
National Laboratory of Pattern Recognition

Institute of Automation, Chinese Academy of Sciences
{zgwang, cqzong}@nlpr.ia.ac.cn

Abstract

In this paper, we propose a novel self-
training strategy for parsing which is
based on Treebank conversion (SSPTC).
In SSPTC, we make full use of the
strong points of Treebank conversion
and self-training, and offset their
weaknesses with each other. To provide
good parse selection strategies which are
needed in self-training, we score the
automatically generated parse trees with
parse trees in source Treebank as a
reference. To maintain the constituency
between source Treebank and conversion
Treebank which is needed in Treebank
conversion, we get the conversion trees
with the help of self-training. In our
experiments, SSPTC strategy is utilized
to parse Tsinghua Chinese Treebank
with the help of Penn Chinese Treebank.
The results significantly outperform the
baseline parser.

1 Introduction

Syntax parsing is one of the most fundamental
tasks in natural language processing (NLP) and
has attracted extensive attention during the past
few decades. In statistical area, according to the
type of data used in training stage, the parsing
approaches can be classified into three
categories: supervised, semi-supervised and
unsupervised. In supervised parsing approach, a
high-performance parser can be built when given
sufficient labeled data (Charniak, 2000; Collins,
2003; Henderson, 2004). The semi-supervised
approach utilizes some labeled data to annotate
unlabeled data, then uses the annotated data to
improve original model, e.g., self-training
(McClosky et al., 2006) and co-training (Hwa et
al., 2003). In unsupervised parsing, the labeled
data was not employed and all annotations and

grammars are discovered automatically from
unlabeled data.

State-of-the-art supervised parsers (Charniak,
2000; Collins, 2003; Henderson, 2004) require
large amounts of manually annotated training
data, such as the Penn Treebank (Marcus et al.,
1993), to achieve high performance. However, it
is quite costly and time-consuming to create
high quality labeled data. So it becomes a key
bottleneck for supervised approach to acquire
sufficient labeled training data. Self-training is
an effective strategy to overcome this shortage.
It tries to enlarge the training set with
automatically annotated unlabeled data and
trains a parser with the enlarged training set.

During the last few decades, many Treebanks
annotated with different grammar formalisms
are released (Zhou, 2004; Xue et al., 2005).
Although they are annotated with different
schemes, they have some linguistic consistency
in some extent. Intuitively, we can convert
Treebank annotated with one grammar
formalisms into another Treebank annotated
with grammar formalism that we are interested
in. For simplicity, we call the first source
Treebank, and the second target Treebank. And
we call this strategy as Treebank conversion.

Although both self-training and Treebank
conversion can overcome the limitation of
labeled data shortage for supervised parsing in
some extent, they all have drawbacks. For self-
training, the quality of automatically annotated
unlabeled data will affect the performance of
semi-supervised parsers highly. For example,
McClosky et al. (2006) shows that when the
parser-best list is used for self-training, the
parsing performance isn’t improved, but after
using reranker-best list, the retrained parser
achieves an absolute 1.1% improvement. For
Treebank conversion, different types among
Treebanks make the converting procedure very
complicated, and it is very hard to get a

conversion Treebank constituent with target
Treebank.

To overcome the limitations mentioned above,
we propose a Treebank conversion based self-
training strategy for parsing, which tries to
combine self-training and Treebank conversion
together.

Remainder of this paper is organized as
follows. In Section 2, we introduce some related
work. Section 3 describes details of our SSPTC
strategy. In Section 4, we propose a head finding
method for Task21 in CLP2010. The
experiments and analysis is given in Section 5.
The last section draws conclusions and describes
the future work.

2 Related Work

With the development of statistical parsing
approaches, large scale corpus has become an
indispensable resource. Because of the limited
amount of existing labeled training data and the
hardness of constructing corpus, many strategies
have been proposed and experimented to
overcome the contradiction.

Self-training is one of the most successful
strategies. McClosky et al. (2006) shows that
self-training effectively improves the accuracy
of English parsing. First, they trained a two-
stage reranking parser(Charniak and Johnson,
2005) using Penn Treebank (PTB)(Marcus et al.,
1993) and parsed 1,750k unlabeled sentences
from North American News Text corpus
(NANC). Then they combined the labeled
NANC sentences with PTB together as training
set and retrained the first stage of the parser. The
final result got a 1.1% improvement over the
previous best parser for section 23 of the Penn
Treebank. Huang and Harper (2009) combined
self-training into a PCFG-LA based parser both
for English and Chinese. Experimental result
showed that self-training contributed 0.83%
absolute improvement using only 210k
unlabeled sentences with a single generative
parser. For the Chinese parsing, self-training
contributed 1.03% absolute improvement.

Treebank Conversion is another potential
strategy to reuse existing source Treebanks for
the study of target grammar parsing. Wang et al.
(1994) proposed a Treebank conversion
algorithm for corpus sharing. They employed a
parser with target grammar formalism to get N-

best parse list for each sentence in source
Treebank, selected the best conversion tree from
the list using their algorithm, then inserted the
conversion trees into training set, and finally
retrained the parser with the enlarged training set.
Experimental result shows their algorithm is
effective. Collins et al. (1999) performed
statistical constituency parsing of Czech on a
Treebank that was converted from the Prague
Dependency Treebank under the guidance of
conversion rules and heuristic rules, and the final
performance was also improved. Xia and Palmer
(2001) proposed three methods to convert
dependency trees into phrase structure trees with
some hand-written heuristic rules. For
acquisition of better conversion rules, Xia et al.
(2008) proposed a method to automatically
extract conversion rules from a target Treebank.
Niu et al. (2009) tried to exploit heterogeneous
Treebanks for parsing. They proposed a
grammar formalism conversion algorithm to
convert dependency formalism Treebank into
phrase structure formalism, and did phrase
structure parsing with the conversion trees. Their
experiments are done in Chinese parsing, and the
final performance is improved indeed.

In summary, from the existing work we are
confident that the strategies of self-training and
Treebank conversion are effective to improve
the performance of parser.

3 Our Strategy

3.1 Parsing Algorithm

Although self-training and Treebank Conversion
are effective for training set enlarging, they all
have drawbacks. Self-training needs some parse
selection strategies to select higher quality
parsers. Treebank Conversion needs us to
maintain the consistency between conversed
Treebank and target Treebank. On the other
hand, self-training strategy provides us a good
idea to get annotated trees consistent with target
grammar formalism, and the parse trees in
source side provide a reference for higher
quality parsers selecting. So we can combine
self-training and Treebank Conversion together,
use self-training strategy to get converted
candidates for sentences in source Treebank, and
select higher quality parses according to trees in
source Treebank. We call this strategy Treebank

Conversion based Self-training, and show more
details in Algorithm 1.

In Algorithm 1, target Treebank tT and source
Treebank sT are input first (line 1). Then tT is
split into two parts: training set trainT and
development set devT (line 3). And we train an

initial parser with trainT and devT in line 4. From
line 6 to line 12, we train parsers with SSPTC
strategy Iter times iteratively. Let i

s tT be the
automatically converted Treebank from source
Treebank to target Treebank grammar formalism
during the i-th iteration. From line 8 to line 11,
we try to get a conversion tree with target
grammar for each of the N sentences in source
Treebank. We get N-best parse list kParseList for
sentence ks with 1iParser (line 9), select the
parse ˆ

kp with the highest score from kParseList

(line 10), and insert it into i
s tT (line 11). This

procedure runs iteratively until all the trees in
source Treebank have been converted, finally,
we train a new parser iParser with trainT , devT and

i
s tT (line 12).

3.2 Parse selection

In line 10 of Algorithm 1, we select the highest
quality parse ˆ

kp from kParseList according to
function (,)s s tScore p p , where sp denotes a tree
in source Treebank and s tp denotes a
conversion tree with target Treebank grammar
formalism for sp . (,)s s tScore p p compares

s tp with sp and computes a score for s tp

taken sp as a reference. According to the idea
proposed in Wang et al. (1994), we use the
number of aligned constituents in the source and
target trees to construct (,)s s tScore p p . We
propose two types of (,)s s tScore p p as follows.
(1) Unlabeled aligned constituents F1 score
(UAF)
First, we define a constituent as tag[i,j], which
represents a non-terminal node labeled with tag
and spanning words from positions i to j of the
input sentence. A non-terminal node in s tp

aligns with a non-terminal node in sp when they
span the same words. If two nodes are aligned,
we call them an aligned constituent and denote
the aligned relationship as [,] [,]s ttag i j tag i j .
For example in Figure 1, there are three aligned
constituents between the source Treebank tree
and the conversion tree, and we can denote them
as [0, 7] [0, 7]s tIP dj , [0, 2] [0, 2]s tNR sp and

[2, 6] [2, 6]s tNR np , respectively.
When given sp and s tp , we can easily

collect all the aligned constituents. So we define
Unlabeled aligned constituents Precision (UAP)
and Unlabeled aligned constituents Recall (UAR)
as follows.

,

,

([,] [,])

([,])

s t
i j

t
i j

Count tag i j tag i j

UAP
Count tag i j

,

,

([,] [,])

([,])

s t
i j

s
i j

Count tag i j tag i j

UAR
Count tag i j

Algorithm 1

1: Input: tT and sT
2: initialize
3: { , ()}train dev tT T Split T

4: 0 (,)train devParser Train T T

5: Iter iterations
6: for i 1… Iter do

7: i
s tT

8: for k 1… N do
9: 1(,)k i kParseList Nbest Parser s

10: ,
ˆ arg max (,)

j kk s k jp ParseListp Score p p

11: ˆi
s t kT p

12: (, ,)i
i train dev s tParser Train T T T

13: return IterParser

Then Unlabeled aligned constituents F1 score
(UAF) is defined as:

,

,

2
(,)

2 ([,] [,])

(([,]) ([,]))

s s t

s t
i j

s t
i j

UAP UAR
Score p p

UAP UAR
Count tag i j tag i j

Count tag i j Count tag i j
 (1)

(2) Labeled aligned constituents F1 score
(LAF)
In the last subsection, we define (,)s s tScore p p
according to UAF. In fact, the tags of
constituents bring us much information to score
conversion trees. So we
define (,)s s tScore p p with Labeled aligned
constituents F1 score (LAF) in this subsection.

Because the annotation schemes are different,
constituent tags in source Treebank may be
much more different from target Treebank. The
number of such tags may be drastically different
and the mapping may not be one-to-one. To
eliminate the contradiction, we assume that each
tag in source Treebank can be converted into
every tag in target Treebank with various
probabilities. So there is a converting matrix
representing the converting probabilities, and we
can calculate the converting matrix through
source Treebank and N-best conversion trees.

Given the source Treebank and N-best
conversion trees, first we align all the
constituents, then collect all the aligned tags and
compute the converting probability as the
following equation.

()
()

()
s t

s t
s

Count tag tag
p tag tag

Count tag (2)
Finally, we modify UAF computed by

equation (1) into LAF as below.

,

,

()

2 (1 ()) ([,] [,])

(([,]) ([,]))

,

s t s t
i j

s t
i j

s s tScore

p tag tag Count tag i j tag i j

Count tag i j Count tag i j

p p

 (3)
In equation (3), is a tunable variable, which

is used to weight the converting probability.
Especially, LAF will be transferred into UAF
when =0.

3.3 Corpus weighting technique

In line 12 of Algorithm 1, we train a new parser
with target Treebank and conversion trees.
However, the errors in automatically conversion
trees are unavoidable and they would limit the
accuracy of the self-trained model. So we have
to take some measures to weight the gold target
Treebank and the automatically conversion trees.
McClosky et al. (2006) and Niu et al. (2009)
take the strategy that duplicates the gold
Treebank data many times. However, this
strategy isn’t suitable for PCFG-LA
parser 1 (Matsuzaki et al., 2005; Petrov et al.,
2006), because PCFG-LA employs an EM
algorithm in training stage, so duplicating gold
Treebank would increase the training time
tremendously. Instead, according to Huang and
Harper (2009), we weight the posterior
probabilities computed for the gold and
automatically converted trees to balance their
importance.

Let (|)count A t be the count of rule
A in a parse tree t . tT and s tT are the sets
of target Treebank and automatically converted
trees from source Treebank respectively. The
posterior probability of rule A (with
weighting parameter) can be expressed as:

1 We will use BerkeleyParser as our baseline parser,
which is a PCFG-LA based parser.

NR NR NN CC NN NN VV

nS nS vN cC n vN v

NR [0,2] NR [2,6] VP [6,7]

VP [0,6]

IP [0,7]

sp [0,2] np [4,6]

np [2,6]

vp [2,7]

dj [0,7]

(a) parse tree in source Treebank

(b) conversion tree with target Treebank grammar

Figure 1: source tree and its conversion
tree with target grammar formalism

()

(|) (|)

((|) (|))
t s t

t s t

t T t T

t T t T

p A

Count A t Count A t

Count A t Count A t

(4)

4 Head Finding

In Task21 of CLP2010, we are required to find
heads for each constituent. Our method is to
make head finding as a post procedure after
parsing.

We treat head finding problem as a
classification problem, which is to classify each
context-free production into categories labelled
with their heads. For example, there are three
types of heads: -0, -0-2 and -2 for
vp vp wP vp , so we try to classify this
production into categories labelled with -0, -0-2
and -2. First, we scan the train set and collect all
the heads for each context-free production. Then
we train a Maxent classifier to classify each
context-free production into categories. We take
the same feature templates for the classification
as Chen et al. (2009) did, which is described in
Table 1.

The head finding procedure proceeds in a
bottom-up fashion, so that we can make use of
heads of productions in lower layers as features
for classification of the higher layers.

To evaluate the accuracy of our head finding
method, we randomly select a development set,
remove all head information and use our Maxent
classifier to retrieve the heads. Experimental
results show the accuracy has reached 98.28%.
However, the final performance would drop
much when the parse trees are generated
automatically. Because the automatically
generated parse trees would bring many errors,
and the post procedure of head finding can’t
correct the errors.

5 Experiments and Analysis

5.1 Data Preparation

In order to evaluate the effectiveness of our
approach, we do experiments for Chinese
parsing using Tsinghua Chinese Treebank
(TCTB) on target side and Penn Chinese
Treebank (PCTB) on source side. We divide the
training portion of the Tsinghua Chinese
Treebank provided by CLP2010 into three parts
as follows: 500 trees are randomly extracted as
development set, another 500 as validating set
and the rest trees are taken as training set. For
trees in PCTB, all the empty-node and function
tag information are removed. All the ParseVal
measures reported in this paper are evaluated by
the EVALB tool2.

5.2 Experiments

In order to get a good final accuracy, we choose
BerkeleyParser 3 , which is a state-of-the-art
unlexicalized parser, and train a model with the
training set as our baseline. The F1 score of
validating set parsed by baseline parser is
85.72%. In the following of this subsection, we
try to combine our strategies into the baseline
parser and evaluate the effectiveness. Because
mult-time iterations can’t improve parsing
performance tremendously but cost much time
during our experiments, we take Iter=1 here.

(1) Corpus weighting experiment
To evaluate the corpus weighting strategy, we
take sentences (ignore the tree structure) in
PCTB as unlabeled data, and train a parser with
self-training strategy. F1 scores of validating set
varying with in equation (4) are shown in
Figure 2. From Figure 2, we find that the F1
score varies with , and reaches 86.46%

2 http://nlp.cs.nyu.edu/evalb/
3 http://code.google.com/p/berkeleyparser/

Feature templates
The label of the current constituent;
The label of the left most child, the middle child and the right most child;
The head word of the left most child, the middle child and the right most child;
The POS tag of the head word of the left most child, the middle child and the right most child;
Bigram of label, head word and POS tag of head word of the children: L/M, M/R;
Trigram of label, head word and POS tag of head word of the children: L/M/R;
The number of children;
Table 1: Feature Templates for Head Finding

when =1. The 0.74 absolute improvement
comparing with the baseline certifies the
effectiveness of our corpus weighting strategy.

(2) Parse selection experiments
In this subsection we evaluate our parse
selection strategies with the help of PCTB.
According to Algorithm 1, we train an initial
parser with training set and development set.
Then we generate 50-best parses list with the
initial parser for each sentence in PCTB, and
select a higher-score parse for each sentence
through our parse selection strategies to build a
conversion Treebank. Finally, we retrain a parser
with training set and the conversion Treebank
with the help of corpus weighting strategy.

Figure 3 shows F1 scores of validating set
using UAF to select higher quality parses.
When =0.3, F1 score reaches 86.92%. The
improvement over baseline is 1.2 percentage
points. Comparing with the highest F1 score of
self-training, we got 0.46 more improvement. So
our parse selection strategy with UAF is
effective.

Because the highest F1 score is at the point
=0.3 in Figure 3, we choose =0.3 to

evaluating LAF strategy. Figure 4 shows F1
scores on validating set using LAF. The highest
F1 score is 87.44% at the point =6, and it gets
1.72 percentage points improvement over
baseline. Comparing with UAF, LAF gets 0.52

more improvement. So we can conclude that the
parse selection strategy with LAF is much more
effective.

5.3 Discussion

Table 2 reports the highest performances of
various strategies. From the table we can easily
find that all strategies outperform the baseline
parser. Corpus weighting experiment tells us that
balancing the importance of gold target
Treebank and conversion trees is helpful for the
final performance. Using UAF to select
conversion trees can get more improvement than
self-training which just selects the best-first trees.
This fact proves that our SSPTC strategy is
reasonable and effective. Making use of LAF,
we get more improvement than UAF. It tells us
that exploiting source Treebank deeply can bring
us more useful knowledge which is helpful to
develop high-performance parser.

6 Experiments for Task 2 of CLP2010

Task 2 of CLP2010 includes two sub-tasks: sub-
sentence parsing and complete sentence parsing.
For each sub-task, there are two tracks: closed
track and open track. To accomplish tasks in
closed track, we make use of our baseline parser
shown in section 5 and train it with different
parameters and data set. For open track, we
make use of our SSPTC strategy and train it with
different parameters and data set. We tuned the
parameters on the development set and selected

Strategy F1 score
Baseline 85.72%
Corpus weighting 86.46%
UAF 86.92%
LAF 87.44%

Table 2: F1 scores of various strategies

Figure 4: F1 score of LAF strategy

Figure 2: F1 score of self-training

Figure 3: F1 score of UAF strategy

some configurations which achieve higher
performance on the development set(more
details have been shown in section 5). The final
parameters and training data of our systems are
shown in Table 34. We also make use of the
approach explained in section 4 for the head
finding procedure.

The parsing results of our systems on the test
set can be found on the official ranking report.
Our systems training with SSPTC strategy bring
us an amazing performance which outperforms
other systems in both the two sub-tasks.

7 Conclusion and Future work

In this paper, we propose a novel self-training
strategy for parsing which is based on Treebank
conversion. Benefiting from SSPTC strategy, we
have gotten higher quality parse trees with the
help of source Treebank, and gotten conversion
Treebank with target Treebank grammar
formalism simply and consistently. The parsing
results on validating set show SSPTC is
effective. We apply SSPTC to the test set of
Task 2 in CLP2010, and get 1.275 percentage
points improvement over baseline parser using
the parameters tuned on validating set.

4 The parsing result for system b in open track of sub-
task1 has been submitted mistakenly, so the figures of
this system on the official ranking report have no
reference value.
5 The F1 score of baseline parser is 75.24%, and it
reaches 76.51% using TCBS strategy.

All the delightful results tell us that SSPTC is
a promoting strategy for parsing. However, there
is much knowledge in source Treebank remained
to further exploit, e.g. the POS tags in source
Treebank is a good resource to improve the POS
tagging accuracy of target Treebank. So, in the
next step we will exploit source Treebank deeply
and try to get more knowledge from it for
parsing.

Acknowledgement
The research work has been partially funded by
the Natural Science Foundation of China under
Grant No. 6097 5053, 90820303 and 60736014,
the National Key Technology R&D Program
under Grant No. 2006BAH03B02, the Hi-Tech
Research and Development Program (“863”
Program) of China under Grant No.
2006AA010108-4, and also supported by the
China-Singapore Institute of Digital Media
(CSIDM) project under grant No. CSIDM-
200804.

References
Eugene Charniak, 2000. A maximum-entropy-

inspired parser. In NAACL-2000

Eugene Charniak and Mark Johnson, 2005. Coarse-
to-fine n-best parsing and MaxEnt discriminative
reranking. In ACL-05.

Xiao Chen, Changning Huang, Mu Li and Chunyu
Kit, 2009. Better Parser Combination. In CIPS.

 Sub-task Track ID Parser Parameters Train data

 a Berkeley -- TS
 Closed

 b Berkeley -- TS && VS

a SSPTC 0.3 5 TS && PTCB
 Sub-task 1

Open
b SSPTC 0.3 5 TS && VS && PTCB
a Berkeley -- TS

 Closed
b Berkeley -- TS && VS

a SSPTC 0.3 6 TS && PTCB

b SSPTC 0.3 5 TS && VS && PTCB

c SSPTC 0.3 5 TS && PTCB

 Sub-task 2

Open

d SSPTC 0.3 3 TS && PTCB

Table 3: The configurations of our systems. The abbreviations in the last column mean
training set(TS) and validating set(VS) explaining in section 5.1.

Michael Collins, 2003. Head-driven statistical models
for natural language parsing. Computational
Linguistics, 29 (4). pages 589-637.

M Collins, J Hajic, L Ramshaw and C Tillman, 1999.
A statistical parser for Czech. In ACL-99. J
Henderson, 2004. Discriminative training of a
neural network statistical parser.

Zhongqiang Huang and Mary Harper, 2009. Self-
Training PCFG grammars with latent annotations
across languages. ACL-09.

R Hwa, M Osborne, A Sarkar and M Steedman, 2003.
Corrected co-training for statistical parsers.
Citeseer.

MP Marcus, B Santorini and MA Marcinkiewicz,
1993. Building a large annotated corpus of English:
The Penn Treebank. Computational Linguistics, 19
(2). pages 313-330.

Takuya Matsuzaki, Yusuke Miyao and Jun'ichi Tsujii,
2005. Probabilistic CFG with latent annotations. In
ACL-05.

David McClosky, Eugene Charniak and Mark
Johnson, 2006. Effective self-training for parsing.
In ACL-06.

Zheng-Yu Niu, Haifeng Wang and Hua Wu, 2009.
Exploiting heterogeneous treebanks for parsing. In
ACL-09, pages 46-54.

Slav Petrov, Leon Barrett, Romain Thibaux and Dan
Klein, 2006. Learning accurate, compact, and
interpretable tree annotation. In ACL-06.

Jong-Nae Wang, Jing-Shin Chang and Keh-Yih Su,
1994. An automatic treebank conversion algorithm
for corpus sharing. In ACL-94.

Fei Xia and Martha Palmer, 2001. Converting
dependency structures to phrase structures. In The
1st Human Language Technology Conference
(HLT-2001).

Fei Xia, Owen Rambow, Rajesh Bhatt, Martha
Palmer and Dipti Misra Sharma, 2008. Towards a
multi-representational treebank. Proc. of the 7th
Int'lWorkshop on Treebanks and Linguistic
Theories (TLT-7). pages 207-238.

Qiang Zhou, 2004. Annotation Scheme for Chinese
Treebank. Journal of Chinese Information
Processing, 18 (004).

