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Abstract 

 

In this survey we overview graph-based clus-
tering and its applications in computational 
linguistics. We summarize graph-based clus-
tering as a five-part story: hypothesis, model-
ing, measure, algorithm and evaluation. We 
then survey three typical NLP problems in 
which graph-based clustering approaches 
have been successfully applied.  Finally, we 
comment on the strengths and weaknesses of 
graph-based clustering and envision that 
graph-based clustering is a promising solu-
tion for some emerging NLP problems. 

1 Introduction 

In the passing years, there has been a tremend-
ous body of work on graph-based clustering, 
either done by theoreticians or practitioners. 
Theoreticians have been extensively investigat-
ing cluster properties, quality measures and var-
ious clustering algorithms by taking advantage 
of elegant mathematical structures built in graph 
theory. Practitioners have been investigating the 
graph clustering algorithms for specific applica-
tions and claiming their effectiveness by taking 
advantage of the underlying structure or other 
known characteristics of the data. Although 
graph-based clustering has gained increasing 
attentions from Computational Linguistic (CL) 
community (especially through the series of 
TextGraphs workshops), it is studied case by 
case and as far as we know, we have not seen 
much work on comparative study of various 
graph-based clustering algorithms for certain 
NLP problems. The major goal of this survey is 
to “bridge” the gap between theoretical aspect 
and practical aspect in graph-based clustering, 
especially for computational linguistics. 

From the theoretical aspect, we state that the 
following five-part story describes the general 
methodology of graph-based clustering: 
(1) Hypothesis. The hypothesis is that a graph 
can be partitioned into densely connected sub-
graphs that are sparsely connected to each other. 
(2) Modeling. It deals with the problem of trans-
forming data into a graph or modeling the real 
application as a graph.  
(3) Measure. A quality measure is an objective 
function that rates the quality of a clustering.  
(4) Algorithm. An algorithm is to exactly or 
approximately optimize the quality measure.  
(5) Evaluation. Various metrics can be used to 
evaluate the performance of clustering by com-
paring with a “ground truth” clustering. 

From the practical aspect, we focus on three 
typical NLP applications, including coreference 
resolution, word clustering and word sense dis-
ambiguation, in which graph-based clustering 
approaches have been successfully applied and 
achieved competitive performance. 

2 Graph-based Clustering Methodology 

We start with the basic clustering problem. Let 
𝑋𝑋 = {𝑥𝑥1, … , 𝑥𝑥𝑁𝑁}  be a set of data points, 𝑆𝑆 =
�𝑠𝑠𝑖𝑖𝑖𝑖 �𝑖𝑖 ,𝑖𝑖=1,…,𝑁𝑁

 be the similarity matrix in which 
each element indicates the similarity 𝑠𝑠𝑖𝑖𝑖𝑖 ≥ 0 be-
tween two data points 𝑥𝑥𝑖𝑖  and 𝑥𝑥𝑖𝑖 . A nice way to 
represent the data is to construct a graph on 
which each vertex represents a data point and 
the edge weight carries the similarity of two 
vertices. The clustering problem in graph pers-
pective is then formulated as partitioning the 
graph into subgraphs such that the edges in the 
same subgraph have high weights and the edges 
between different subgraphs have low weights. 
In the next section, we define essential graph 
notation to facilitate discussions in the rest of 
this survey. 
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2.1 Graph Notation 

A graph is a triple G=(V,E,W)  where 𝑉𝑉 =
{𝑣𝑣1, … , 𝑣𝑣𝑁𝑁} is a set of vertices, E⊆V×V is a set 
of edges, and 𝑊𝑊 = �𝑤𝑤𝑖𝑖𝑖𝑖 �𝑖𝑖 ,𝑖𝑖=1,…,𝑁𝑁

 is called adja-
cency matrix in which each element indicates a 
non-negative weight ( 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0)  between two 
vertices 𝑣𝑣𝑖𝑖  and 𝑣𝑣𝑖𝑖 .  

In this survey we target at hard clustering 
problem which means we partition vertices of 
the graph into non-overlapping clusters, i.e., let 
𝒞𝒞 = (𝐶𝐶1, … ,𝐶𝐶𝐾𝐾) be a partition of 𝑉𝑉 such that 
(1) 𝐶𝐶𝑖𝑖 ≠ ∅ for 𝑖𝑖 ∈ {1, … ,𝐾𝐾}.  
(2) 𝐶𝐶𝑖𝑖 ∩ 𝐶𝐶𝑖𝑖 = ∅ for 𝑖𝑖, 𝑖𝑖 ∈ {1, … ,𝐾𝐾} and 𝑖𝑖 ≠ 𝑖𝑖  
(3) 𝐶𝐶1 ∪ …∪ 𝐶𝐶𝐾𝐾 = 𝑉𝑉 

2.2 Hypothesis 

The hypothesis behind graph-based clustering 
can be stated in the following ways:  
(1) The graph consists of dense subgraphs such 

that a dense subgraph contains more well-
connected internal edges connecting the 
vertices in the subgraph than cutting edges 
connecting the vertices across subgraphs.  

(2) A random walk that visits a subgraph will 
likely stay in the subgraph until many of its 
vertices have been visited (Dongen, 2000). 

(3) Among all shortest paths between all pairs 
of vertices, links between different dense 
subgraphs are likely to be in many shortest 
paths (Dongen, 2000). 

2.3 Modeling 

Modeling addresses the problem of transform-
ing the problem into graph structure, specifical-
ly, designating the meaning of vertices and 
edges in the graph, computing the edge weights 
for weighted graph, and constructing the graph. 
Luxburg (2006) stated three most common me-
thods to construct a graph: 𝜀𝜀 -neighborhood 
graph, 𝑘𝑘-nearest neighbor graph, and fully con-
nected graph. Luxburg analyzed different beha-
viors of the three graph construction methods, 
and stated that some graph-cluster algorithms 
(e.g., spectral clustering) can be quite sensitive 
to the choice of graphs and parameters (𝜺𝜺 and 𝒌𝒌). 
As a general recommendation, Luxburg sug-
gested exploiting 𝑘𝑘-nearest neighbor graph as 
the first choice, which is less vulnerable to the 
choices of parameters than other graphs. Unfor-
tunately, theoretical justifications on the choices 

of graphs and parameters do not exist and as a 
result, the problem has been ignored by practi-
tioners.  

2.4 Measure 

A measure is an objective function that rates the 
quality of a clustering, thus called quality meas-
ure. By optimizing the quality measure, we can 
obtain the “optimal” clustering. 

It is worth noting that quality measure should 
not be confused with vertex similarity measure 
where it is used to compute edge weights. Fur-
thermore, we should distinguish quality meas-
ure from evaluation measure which will be dis-
cussed in section 2.6. The main difference is 
that cluster quality measure directly identifies a 
clustering that fulfills a desirable property while 
evaluation measure rates the quality of a cluster-
ing by comparing with a ground-truth clustering.  

We summarize various quality measures in 
Table 1, from the basic density measures (intra-
cluster and inter-cluster), to cut-based measures 
(ratio cut, ncut, performance, expansion, con-
ductance, bicriteria), then to the latest proposed 
measure modularity. Each of the measures has 
strengths and weaknesses as commented in Ta-
ble 1. Optimizing each of the measures is NP-
hard. As a result, many efficient algorithms, 
which have been claimed to solve the optimal 
problem with polynomial-time complexity, 
yield sub-optimal clustering.  

2.5  Algorithm 

We categorize graph clustering algorithms into 
two major classes: divisive and agglomerative 
(Table 2). In the divisive clustering class, we 
categorize algorithms into several subclasses, 
namely, cut-based, spectral clustering, multile-
vel, random walks, shortest path. Divisive clus-
tering follows top-down style and recursively 
splits a graph into subgraphs. In contrast, ag-
glomerative clustering works bottom-up and 
iteratively merges singleton sets of vertices into 
subgraphs. The divisive and agglomerative al-
gorithms are also called hierarchical since they 
produce multi-level clusterings, i.e., one cluster-
ing follows the other by refining (divisive) or 
coarsening (agglomerative). Most graph cluster-
ing algorithms ever proposed are divisive. We 
list the quality measure and the running com-
plexity for each algorithm in Table 2. 
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Measures Comments 
intra-cluster density 
inter-cluster density 

― Maximizing intra-cluster density is equivalent to minimizing inter-cluster 
density and vice versa 

― Drawback: both favor cutting small sets of isolated vertices in the graph 
(Shi and Malik, 2000) 

ratio cut (Hagan and Kahng, 
1992) 
ncut (Shi and Malik, 2000) 

― Ratio cut is suitable for unweighted graph, and ncut is a better choice for 
weighted graph 

― Overcome the drawback of intra-cluster density or inter-cluster density 
― Drawback: both favor clusters with equal size  

performance (Dongen, 2000; 
Brandes et al., 2003) 

― Performance takes both intra-cluster density and inter-cluster density  
into considerations simultaneously 

expansion, conductance, 
bicriteria 
(Kannan et al., 2000) 

― Expansion is suitable for unweighted graph, and conductance is a better 
choice for weighted graph 

― Both expansion and conductance impose quality within clusters, but not 
inter-cluster quality; bicriteria takes both into considerations 

modularity (Newman and 
Girvan,2004) 

― Evaluates the quality of clustering with respect to a randomized graph  
― Drawbacks: (1) It requires global knowledge of the graph’s topology, 

i.e., the number of edges. Clauset (2005) proposed an improved measure 
Local Modularity. (2) Resolution limit problem: it fails to identify clus-
ters smaller than a certain scale. Ruan and Zhang (2008) proposed an 
improved measure HQcut. (3) It fails to distinguish good from bad clus-
tering between different graphs with the same modularity value. Chen et 
al. (2009) proposed an improved measure Max-Min Modularity 

Table 1. Summary of Quality Measures 

Category Algorithms optimized 
measure 

running 
complexity 

divisive cut-based Kernighan-Lin algorithm 
(Kernighan and Lin, 1970) 

intercluster 𝑂𝑂(|𝑉𝑉|3) 

cut-clustering algorithm 
(Flake et al., 2003) 

bicriteria 𝑂𝑂(|𝑉𝑉|) 

spectral unnormalized spectral clustering 
(Luxburg, 2006) 

ratiocut 𝑂𝑂(|𝑉𝑉||𝐸𝐸|) 

normalized spectral clustering I  
(Luxburg, 2006; Shi and Malik, 2000) 

ncut 𝑂𝑂(|𝑉𝑉||𝐸𝐸|) 

normalized spectral clustering II 
 (Luxburg, 2006; Ng, 2002) 

ncut 𝑂𝑂(|𝑉𝑉||𝐸𝐸|) 

iterative conductance cutting (ICC) 
 (Kannan et al.,2000) 

conductance 𝑂𝑂(|𝑉𝑉||𝐸𝐸|) 

geometric MST clustering (GMC) 
(Brandes et al., 2007)  

pluggable(any 
quality measure) 

𝑂𝑂(|𝑉𝑉||𝐸𝐸|) 

modularity oriented 
(White and Smyth,2005) 

modularity 𝑂𝑂(|𝑉𝑉||𝐸𝐸|) 

multilevel multilevel recursive bisection 
(Karypis and Kumar, 1999) 

intercluster 𝑂𝑂(|𝑉𝑉|𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾) 

multilevel 𝐾𝐾-way partitioning 
(Karypis and Kumar, 1999) 

intercluster 𝑂𝑂(|𝑉𝑉|
+ 𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾) 

random Markov Clustering Algorithm (MCL) 
(Dongen, 2000) 

performance 𝑂𝑂(𝑚𝑚2|𝑉𝑉|) 

shortest 
path 

betweenness  
(Girvan and Newman, 2003) 

modularity 𝑂𝑂(|𝑉𝑉||𝐸𝐸|2) 

information centrality 
(Fortunato et al., 2004) 

modularity 𝑂𝑂(|𝑉𝑉||𝐸𝐸|3) 

agglomerative modularity oriented 
(Newman, 2004) 

modularity 𝑂𝑂(|𝑉𝑉||𝐸𝐸|) 

Table 2. Summary of Graph-based Clustering Algorithms (|𝑉𝑉|: the number of vertices, |𝐸𝐸|: the 
number of edges, 𝐾𝐾: the number of clusters, 𝑚𝑚: the number of resources allocated for each vertex) 
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The first set of algorithms (cut-based) is asso-
ciated with max-flow min-cut theorem (Ford and 
Fulkerson, 1956) which states that “the value of 
the maximum flow is equal to the cost of the 
minimum cut”. One of the earliest algorithm, 
Kernighan-Lin algorithm (Kernighan and Lin, 
1970) splits the graph by performing recursive 
bisection (split into two parts at a time), aiming 
to minimize inter-cluster density (cut size). The 
high complexity of the algorithm ( 𝑂𝑂(|𝑉𝑉|3) 
makes it less competitive in real applications. 
Flake et al. (2003) proposed a cut-clustering al-
gorithm which optimizes the bicriterion measure 
and the complexity is proportional to the number 
of clusters 𝐾𝐾 using a heuristic, thus the algorithm 
is competitive in practice. 

The second set of algorithms is based on spec-
tral graph theory with Laplacian matrix as the 
mathematical tool. The connection between clus-
tering and spectrum of Laplacian matrix (𝐿𝐿) bas-
ically lies in the following important proposition: 
the multiplicity 𝑘𝑘 of the eigenvalue 0 of 𝐿𝐿 equals 
to the number of connected components in the 
graph. Luxburg (2006) and Abney (2007) pre-
sented a comprehensive tutorial on spectral clus-
tering. Luxburg (2006) discussed three forms of 
Laplacian matrices (one unnormalized form and 
two normalized forms) and their three corres-
ponding spectral clustering algorithms (unnorma-
lized, normalized I and normalized II). Unnorma-
lized clustering aims to optimize ratiocut meas-
ure while normalized clustering aims to optimize 
ncut measure (Shi and Malik, 2000), thus spec-
tral clustering actually relates with cut-based 
clustering. The success of spectral clustering is 
mainly based on the fact that it does not make 
strong assumptions on the form of the clusters 
and can solve very general problems like intert-
wined spirals which k-means clustering handles 
much worse. Unfortunately, spectral clustering 
could be unstable under different choices of 
graphs and parameters as mentioned in section 
2.3. Luxburg et al. (2005) compared unnorma-
lized clustering with normalized version and 
proved that normalized version always converges 
to a sensible limit clustering while for unnorma-
lized case the same only holds under strong addi-
tional assumptions which are not always satisfied. 
The running complexity of spectral clustering 
equals to the complexity of computing the eigen-
vectors of Laplacian matrix which is 𝑂𝑂(|𝑉𝑉|3) . 
However, when the graph is sparse, the complex-
ity is reduced to 𝑂𝑂(|𝑉𝑉||𝐸𝐸|) by applying efficient 
Lanczos algorithm. 

The third set of algorithms is based on multi-
level graph partitioning paradigm (Karypis and 
Kumar, 1999) which consists of three phases: 
coarsening phase, initial partitioning phase and 
refinement phase. Two approaches have been 
developed in this category, one is multilevel re-
cursive bisection which recursively splits into 
two parts by performing multilevel paradigm 
with complexity of 𝑂𝑂(|𝑉𝑉|𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾) ; the other is 
multilevel 𝐾𝐾 -way partitioning which performs 
coarsening and refinement only once and directly 
partitions the graph into 𝐾𝐾  clusters with com-
plexity of 𝑂𝑂(|𝑉𝑉| + 𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾). The latter approach 
is superior to the former one for less running 
complexity and comparable (sometimes better) 
clustering quality.  

The fourth set of algorithms is based on the 
second interpretation of the hypothesis in section 
2.2, i.e., a random walk is likely to visit many 
vertices in a cluster before moving to the other 
cluster. An outstanding approach in this category 
is presented in Dogen (2000), named Markov 
clustering algorithm (MCL). The algorithm itera-
tively applies two operators (expansion and infla-
tion) by matrix computation until convergence. 
Expansion operator simulates spreading of ran-
dom walks and inflation models demotion of in-
ter-cluster walks; the sequence matrix computa-
tion results in eliminating inter-cluster interac-
tions and leaving only intra-cluster components. 
The complexity of MCL is 𝑂𝑂(𝑚𝑚2|𝑉𝑉|) where 𝑚𝑚 is 
the number of resources allocated for each vertex. 
A key point of random walk is that it is actually 
linked to spectral clustering (Luxburg, 2006), 
e.g., ncut can be expressed in terms of transition 
probabilities and optimizing ncut can be 
achieved by computing the stationary distribu-
tion of a random walk in the graph. 

The final set of algorithms in divisive category 
is based on the third interpretation of the hypo-
thesis in section 2.2, i.e., the links between clus-
ters are likely to be in the shortest paths. Girvan 
and Newman (2003) proposed the concept of 
edge betweenness which is the number of short-
est paths connecting any pair of vertices that pass 
through the edge. Their algorithm iteratively re-
moves one of the edges with the highest bet-
weenness. The complexity of the algorithm is 
𝑂𝑂(|𝑉𝑉||𝐸𝐸|2). Instead of betweenness, Fortunato et 
al. (2004) used information centrality for each 
edge and stated that it performs better than bet-
weenness but with a higher complexity of 
𝑂𝑂(|𝑉𝑉||𝐸𝐸|3). 

The agglomerative category contains much 
fewer algorithms. Newman (2004) proposed an 
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algorithm that starts each vertex as singletons, 
and then iteratively merges clusters together in 
pairs, choosing the join that results in the greatest 
increase (or smallest decrease) in modularity 
score. The algorithm converges if there is only 
cluster left in the graph, then from the clustering 
hierarchy, we choose the clustering with maxi-
mum modularity. The complexity of the algo-
rithm is 𝑂𝑂(|𝑉𝑉||𝐸𝐸|). 

The algorithms we surveyed in this section are 
by no means comprehensive as the field is long-
standing and still evolving rapidly. We also refer 
readers to other informative references, e.g., 
Schaeffer (2007), Brandes et al. (2007) and 
Newman (2004). 

A natural question arises: “which algorithm 
should we choose?” A general answer to this 
question is that no algorithm is a panacea. First, 
as we mentioned earlier, a clustering algorithm is 
usually proposed to optimize some quality meas-
ure, therefore, it is not fair to compare an algo-
rithm that favors one measure with the other one 
that favors some other measure. Second, there is 
not a perfect measure that captures the full cha-
racteristics of cluster structures; therefore a per-
fect algorithm does not exist. Third, there is no 
definition for so called “best clustering”. The 
“best” depends on applications, data characteris-
tics, and granularity. 

2.6 Evaluation 

We discussed various quality measures in section 
2.4, however, a clustering optimizing some 
quality measure does not necessarily translate 
into effectiveness in real applications with re-
spect to the ground truth clustering and thus an 
evaluation measure plays the role of evaluating 
how well the clustering matches the gold stan-
dard. Two questions arise: (1) what constraints 
(properties, criteria) should an ideal evaluation 
measure satisfy? (2) Do the evaluation measures 
ever proposed satisfy the constraints?  

For the first question, there have been several 
attempts on it: Dom (2001) developed a parame-
tric technique for describing the quality of a clus-
tering and proposed five “desirable properties” 
based on the parameters; Meila (2003) listed 12 
properties associated with the proposed entropy 
measure; Amigo et al. (2008) proposed four con-
straints including homogeneity, completeness, 
rag bag, and cluster size vs. quantity. A parallel 
comparison shows that the four constraints pro-
posed by Amigo et al. (2008) have advantages 
over the constraints proposed in the other two 
papers, for one reason, the four constraints can 

describe all the important constraints in Dom 
(2001) and Meila (2003), but the reverse does 
not hold; for the other reason, the four con-
straints can be formally verified for each evalua-
tion measure, but it is not true for the constraints 
in Dom (2001). 

Table 3 lists the evaluation measures ever pro-
posed (including those discussed in Amigo et al., 
2008 and some other measures known for corefe-
rence resolution). To answer the second question 
proposed in this section, we conclude the find-
ings in Amigo et al. (2008) plus our new findings 
about MUC and CEAF as follows: (1) all the 
measures except B-Cubed fail the rag bag con-
straint and only B-Cubed measure can satisfy all 
the four constraints; (2) two entropy based meas-
ures (VI and V) and MUC only fail the rag bag 
constraint; (3) all the measures in set mapping 
category fail completeness constraint (4) all the 
measures in pair counting category fail cluster 
size vs. quantity constraint; (5) CEAF, unfortu-
nately, fails homogeneity, completeness, rag bag 
constraints. 

Category Evaluation Measures 
set mapping  purity, inverse purity, F-measure 

pair counting rand index, Jaccard Coefficient, 
Folks and Mallows FM 

entropy entropy, mutual information, VI, 
V 

editing  
distance 

editing distance 

coreference 
resolution 

MUC (Vilain et al.,1995),  
B-Cubed (Bagga and Baldwin, 
1998), CEAF (Luo, 2005) 

Table 3. Summary of Evaluation Measures 

3 Applying Graph Clustering to NLP 

A variety of structures in NLP can be naturally 
represented as graphs, e.g., co-occurrence graphs, 
coreference graphs, word/sentence/ document 
graphs. In recent years, there have been an in-
creasing amount of interests in applying graph-
based clustering to some NLP problems, e.g., 
document clustering (Zhong and Ghosh, 2004), 
summarization (Zha, 2002), coreference resolu-
tion (Nicolae and Nicolae, 2006), word sense 
disambiguation (Dorow and Widdows, 2003; 
Véronis, 2004; Agirre et al., 2007), word cluster-
ing (Matsuo et al., 2006; Biemann, 2006). Many 
authors chose one or two their favorite graph 
clustering algorithms and claimed the effective-
ness by comparing with supervised algorithms 
(which need expensive annotations) or other non-
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graph clustering algorithms. As far as we know, 
there is not much work on the comparative study 
of various graph-based clustering algorithms for 
certain NLP problems. As mentioned at the end 
of section 2.5, there is not a graph clustering al-
gorithm that is effective for all applications. 
However, it is interesting to find out, for a spe-
cific NLP problem, if graph clustering methods 
can be applied, (1) how the parameters in the 
graph model affects the performance? (2) Does 
the NLP problem favor some quality measure 
and some graph clustering algorithm rather than 
the others? Unfortunately, this survey neither 
provides answers for these questions; instead, we 
overview a few NLP case studies in which some 
graph-based clustering methods have been suc-
cessfully applied. 

3.1 Coreference Resolution 

Coreference resolution is typically defined as the 
problem of partitioning a set of mentions into 
entities. An entity is an object or a set of objects 
in the real world such as person, organization, 
facility, while a mention is a textual reference to 
an entity. The approaches to solving coreference 
resolution have shifted from earlier linguistics-
based (rely on domain knowledge and hand-
crafted rules) to machine-learning based ap-
proaches. Elango (2005) and Chen (2010) pre-
sented a comprehensive survey on this topic. One 
of the most prevalent approaches for coreference 
resolution is to follow a two-step procedure: (1) a 
classification step that computes how likely one 
mention corefers with the other and (2) a 
clustering step that groups the mentions into 
clusters such that all mentions in a cluster refer 
to the same entity. In the past years, NLP 
researchers have explored and enriched this 
methodogy from various directions (either in 
classification or clustering step). Unfortunately, 
most of the proposed clustering algorithms, e.g., 
closest-first clustering (Soon et al., 2001), best-
first clustering (Ng and Cardie, 2002), suffer 
from a drawback: an instant decision is made (in 
greedy style) when considering two mentions are 
coreferent or not, therefore, the algorithm makes 
no attempt to search through the space of all 
possible clusterings, which results in a sub-
optimal clustering (Luo et al., 2004). Various 
approaches have been proposed to alleviate this 
problem, of which graph clustering methodology 
is one of the most promising solutions.  

The problem of coreference resolution can be 
modeled as a graph such that the vertex 
represents a mention, and the edge weight carries 

the coreference likelihood between two mentions. 
Nicolae and Nicolae (2006) proposed a new 
quality measure named BESTCUT which is to 
optimize the sum of “correctly” placed vertices 
in the graph. The BESTCUT algorithm works by 
performing recursive bisection (similar to Ker-
nighan-Lin algorithm) and in each iteration, it 
searches the best cut that leads to partition into 
halves. They compared BESTCUT algorithm 
with (Luo et al., 2004)’s Belltree and (Ng and 
Cardie, 2002)’s Link-Best algorithm and showed 
that using ground-truth entities, BESTCUT out-
performs the other two with statistical signific-
ance (4.8% improvement over Belltree and Link-
Best algorithm in ECM F-measure). Nevertheless, 
we believe that the BESTCUT algorithm is not 
the only choice and the running complexity of 
BESTCUT,𝑂𝑂(|𝑉𝑉||𝐸𝐸| + |𝑉𝑉|2𝑙𝑙𝑙𝑙𝑙𝑙|𝑉𝑉|), is not com-
petitive, thus could be improved by other graph 
clustering algorithms. 

Chen and Ji (2009a) applied normalized spec-
tral algorithm to conduct event coreference reso-
lution: partitioning a set of mentions into events. 
An event is a specific occurrence involving par-
ticipants. An event mention is a textual reference 
to an event which includes a distinguished trig-
ger (the word that most clearly expresses an 
event occurs) and involving arguments (enti-
ties/temporal expressions that play certain roles 
in the event).  A graph is similarly constructed as 
in entity coreference resolution except that it in-
volves quite different feature engineering (most 
features are related with event trigger and argu-
ments). The graph clustering approach yields 
competitive results by comparing with an agglo-
merative clustering algorithm proposed in (Chen 
et al., 2009b), unfortunately, a scientific compar-
ison among the algorithms remains unexplored. 

3.2 Word Clustering 

Word clustering is a problem defined as cluster-
ing a set of words (e.g., nouns, verbs) into groups 
so that similar words are in the same cluster.  
Word clustering is a major technique that can 
benefit many NLP tasks, e.g., thesaurus construc-
tion, text classification, and word sense disam-
biguation. Word clustering can be solved by fol-
lowing a two-step procedure: (1) classification 
step by representing each word as a feature vec-
tor and computing the similarity of two words; (2) 
clustering step which applies some clustering 
algorithm, e.g., single-link clustering, complete-
link clustering, average-link clustering, such that 
similar words are grouped together.  

Matsuo et al. (2006) presented a graph cluster-
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ing algorithm for word clustering based on word 
similarity measures by web counts. A word co-
occurrence graph is constructed in which the ver-
tex represents a word, and the edge weight is 
computed by applying some similarity measure 
(e.g., PMI, χ2) on a co-occurrence matrix, which 
is the result of querying a pair of words to a 
search engine. Then an agglomerative graph 
clustering algorithm (Newman, 2004), which is 
surveyed in section 2.5, is applied. They showed 
that the similarity measure  χ2  performs better 
than PMI, for one reason, PMI performs worse 
when a word group contains rare or frequent 
words, for the other reason, PMI is sensitive to 
web output inconsistency, e.g., the web count of 
𝑤𝑤1 is below the web count of 𝑤𝑤1𝐴𝐴𝑁𝑁𝐴𝐴𝑤𝑤2 in ex-
treme case. They also showed that their graph 
clustering algorithm outperforms average-link 
agglomerative clustering by almost 32% using χ2 
similarity measure. The concern of their ap-
proach is the running complexity for constructing 
co-occurrence matrix, i.e., for 𝑛𝑛  words, 𝑂𝑂(𝑛𝑛2) 
queries are required which is intractable for a 
large graph.  

Ichioka and Fukumoto (2008) applied similar 
approach as Matsuo et al. (2006) for Japanese 
Onomatopoetic word clustering, and showed that 
the approach outperforms 𝑘𝑘-means clustering by 
16.2%. 

3.3 Word Sense Disambiguation (WSD) 

Word sense disambiguation is the problem of 
identifying which sense of a word (meaning) is 
conveyed in the context of a sentence, when the 
word is polysemic. In contrast to supervised 
WSD which relies on pre-defined list of senses 
from dictionaries, unsupervised WSD induces 
word senses directly from the corpus. Among 
those unsupervised WSD algorithms, graph-
based clustering algorithms have been found 
competitive with supervised methods, and in 
many cases outperform most vector-based clus-
tering methods. 

Dorow and Widdows (2003) built a co-
occurrence graph in which each node represents 
a noun and two nodes have an edge between 
them if they co-occur more than a given thre-
shold. They then applied Markov Clustering al-
gorithm (MCL) which is surveyed in section 2.5, 
but cleverly circumvent the problem of choosing 
the right parameters. Their algorithm not only 
recognizes senses of polysemic words, but also 
provides high-level readable cluster name for 
each sense. Unfortunately, they neither discussed 
further how to identify the sense of a word in a 

given context, nor compared their algorithm with 
other algorithms by conducting experiments. 

Véronis (2004) proposed a graph based model 
named HyperLex based on the small-world prop-
erties of co-occurrence graphs. Detecting the dif-
ferent senses (uses) of a word reduces to isolat-
ing the high-density components (hubs) in the 
co-occurrence graph. Those hubs are then used to 
perform WSD. To obtain the hubs, HyperLex 
finds the vertex with highest relative frequency 
in the graph at each iteration and if it meets some 
criteria, it is selected as a hub. Agirre (2007) 
proposed another method based on PageRank for 
finding hubs. HyperLex can detect low-frequency 
senses (as low as 1%) and most importantly, it 
offers an excellent precision (97% compared to 
73% for baseline). Agirre (2007) further con-
ducted extensive experiments by comparing the 
two graph based models (HyperLex and Page-
Rank) with other supervised and non-supervised 
graph methods and concluded that graph based 
methods perform close to supervised systems in 
the lexical sample task and yield the second-best 
WSD systems for the Senseval-3 all-words task. 

4 Conclusions 

In this survey, we organize the sparse related 
literature of graph clustering into a structured 
presentation and summarize the topic as a five 
part story, namely, hypothesis, modeling, meas-
ure, algorithm, and evaluation. The hypothesis 
serves as a basis for the whole graph clustering 
methodology, quality measures and graph clus-
tering algorithms construct the backbone of the 
methodology, modeling acts as the interface be-
tween the real application and the methodology, 
and evaluation deals with utility. We also survey 
several typical NLP problems, in which graph-
based clustering approaches have been success-
fully applied. 

We have the following final comments on the 
strengths and weaknesses of graph clustering 
approaches:  
(1) Graph is an elegant data structure that can 

model many real applications with solid ma-
thematical foundations including spectral 
theory, Markov stochastic process.  

(2) Unlike many other clustering algorithms 
which act greedily towards the final clustering 
and thus may miss the optimal clustering, 
graph clustering transforms the clustering 
problem into optimizing some quality meas-
ure. Unfortunately, those optimization prob-
lems are NP-Hard, thus, all proposed graph 
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clustering algorithms only approximately 
yield “optimal” clustering.  

(3) Graph clustering algorithms have been criti-
cized for low speed when working on large 
scale graph (with millions of vertices). This 
may not be true since new graph clustering 
algorithms have been proposed, e.g., the mul-
tilevel graph clustering algorithm (Karypis 
and Kumar, 1999) can partition a graph with 
one million vertices into 256 clusters in a few 
seconds on current generation workstations 
and PCs. Nevertheless, scalability problem of 
graph clustering algorithm still needs to be 
explored which is becoming more important 
in social network study.  

We envision that graph clustering methods can 
lead to promising solutions in the following 
emerging NLP problems:  
(1) Detection of new entity types, relation types 

and event types (IE area). For example, the 
eight event types defined in the ACE 1

(2) Web people search (IR area). The main issue 
in web people search is the ambiguity of the 
person name. Thus by extracting attributes 
(e.g., attended schools, spouse, children, 
friends) from returned web pages, construct-
ing person graphs (involving those attributes) 
and applying graph clustering, we are opti-
mistic to achieve a better person search en-
gine. 

 pro-
gram may not be enough for wider usage and 
more event types can be induced by graph 
clustering on verbs. 
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