
Proceedings of the 11th Meeting of the ACL-SIGMORPHON, ACL 2010, pages 38–45,
Uppsala, Sweden, 15 July 2010. c©2010 Association for Computational Linguistics

A Method for Compiling Two-level Rules with Multiple Contexts

Kimmo Koskenniemi

University of Helsinki
Helsinki, Finland

kimmo.koskenniemi@helsinki.fi

Miikka Silfverberg
University of Helsinki

Helsinki, Finland

miikka.silfverberg@helsinki.fi

Abstract

A novel method is presented for compiling

two-level rules which have multiple context

parts. The same method can also be applied

to the resolution of so-called right-arrow rule

conflicts. The method makes use of the fact

that one can efficiently compose sets of two-
level rules with a lexicon transducer. By in-

troducing variant characters and using simple

pre-processing of multi-context rules, all

rules can be reduced into single-context rules.

After the modified rules have been combined

with the lexicon transducer, the variant char-

acters may be reverted back to the original

surface characters. The proposed method ap-

pears to be efficient but only partial evidence

is presented yet.

1 Introduction

Two-level rules can be compiled into length-

preserving transducers whose intersection effec-

tively reflects the constraints and the correspon-

dences imposed by the two-level grammar. Two-
level rules relate input strings (lexical representa-

tions) with output strings (surface representa-

tions). The pairs of strings are treated as charac-

ter pairs x:z consisting of lexical (input) char-

acters x and surface (output) characters z, and

regular expressions based on such pairs. Two-

level rule transducers are made length-preserving

(epsilon-free) by using a place holder zero (0)

within the rules and in the representations. The
zero is then removed after the rules have been

combined by (virtual) intersection, before the

result is composed with the lexicon. There are
four kinds of two-level rules:

1. right-arrow rules or restriction rules,

(x:z => LC _ RC) saying that the

correspondence pair is allowed only if

immediately preceded by left context LC

and followed by right context RC,

2. left-arrow rules or surface coercion

rules, (x:z <= LC _ RC) which say

that in this context, the lexical character

x may only correspond to the surface

character z,

3. double-arrow rules (<=>), a shorthand

combining these two requirements, and

4. exclusion rules (x:z /<= LC _ RC)

which forbid the pair x:z to occur in

this context.

All types of rules may have more than one
context part. In particular, the right-arrow rule

x:z => LC1 _ RC1; LC2 _ RC2 would

say that the pair x:z (which we call the centre

of the rule) may occur in either one of these two

contexts. For various formulations of two-level

rules, see e.g. (Koskenniemi, 1983), (Grimley-
Evans et al., 1996), (Black et.al., 1987), (Ruess-

ink, 1989), (Ritchie, 1992), (Kiraz, 2001) and a

comprehensive survey on their formal interpreta-
tions, see (Vaillette, 2004).

Compiling two-level rules into transducers is

easy in all other cases except for right-arrow

rules with multiple context-parts; see e.g.
Koskenniemi (1983). Compiling right-arrow

rules with multiple context parts is more difficult

because the compilation of the whole rule is not
in a simple relation to the component expressions

in the rule; see e.g. Karttunen et al. (1987).

The method proposed here reduces multi-
context rules into a set of separate simple rules,

one for each context, by introducing some auxil-

iary variant characters. These auxiliary charac-

ters are then normalized back into the original
surface characters after the intersecting composi-

tion of the lexicon and the modified rules. The

method is presented in section 3. The compila-
tion of multiple contexts using the proposed

scheme appears to be very simple and fast. Pre-

liminary results and discussion about the compu-
tational complexity are presented in section 4.

38

1.1 The compilation task with an example

We make use of a simplified linguistic example

where a stop k is realized as v between identical

rounded close vowels (u, y). The example re-

sembles one detail of Finnish consonant grada-

tion but it is grossly simplified. According to the
rule in the example, the lexical representation

pukun would be realized as the surface repre-

sentation puvun. This correspondence is tradi-

tionally represented as:

p u k u n
p u v u n

where the upper tier represents the lexical or

morphophonemic representation which we inter-

pret as the input, and the lower one corresponds
to the surface representation which we consider

as the output. 1 This two-tier representation is

usually represented on a single line as a sequence
of input and output character pairs where pairs of

identical characters, such as p:p are abbreviated

as a single p. E.g. the above pair of strings be-

comes a string of pairs:

p u k:v u n

In our example we require that the correspon-

dence k:v may occur only between two identi-

cal rounded close vowels, i.e. either between two

letters u or between two letters y. Multiple con-

texts are needed in the right-arrow rule which

expresses this constraint. As a two-level gram-

mar, this would be:

Alphabet a b … k … u v w …
 k:v;
Rules
k:v => u _ u;
 y _ y;

This grammar would permit sequences such as:

p u k:v u n
k y k:v y n
p u k:v u k:v u n
l u k:v u n k y k:v y n
t u k k u

but it would exclude sequences:

p u k:v y n
t u k:v a n

1 In Xerox terminology, the input or lexical characters

are called the upper characters, and the output or sur-

face characters are called the lower characters. Other

orientations are used by some authors.

Whereas one can always express multi-

context left-arrow rules (<=) and exclusion rules

(/<=) equivalently as separate rules, this does

not hold for right-arrow rules. The two separate

rules

k:v => u _ u;
k:v => y _ y;

would be in conflict with each other permitting

no occurrences of k:v at all, (unless we apply

so-called conflict resolution which would effec-

tively combine the two rules back to a single rule

with two context parts).

2 Previous compilation methods

The first compiler of two-level rules was imple-

mented by the first author in 1985 and it handled
also multi-context rules (Koskenniemi, 1985).

The compiler used a finite-state package written

by Ronald Kaplan and Martin Kay at Xerox
PARC, and a variant of a formula they used for

compiling cascaded rewrite rules. Their own

work was not published until 1994. Kosken-

niemi’s compiler was re-implemented in LISP by
a student in her master’s thesis (Kinnunen,

1987).

Compilation of two-level rules in general re-
quires some care because the centres may occur

several times in pair strings, the contexts may

overlap and the centres may act as part of a con-
text for another occurrence of the same centre.

For other rules than right-arrow rules, each con-

text is yet another condition for excluding un-

grammatical strings of pairs, which is how the
rules are related to each other. The context parts

of a right-arrow rule are, however, permissions,

one of which has to be satisfied. Expressing un-
ions of context parts was initially a problem

which required complicated algorithms.

Some of the earlier compilation methods are
mentioned below. They all produce a single

transducer out of each multi-context right-arrow

rule.

2.1 Method based on Kaplan and Kay

Kaplan and Kay (1994) developed a method
around 1980 for compiling rewriting rules into

finite-state transducers 2 . The method was

adapted by Koskenniemi to the compilation of
two-level rules by modifying the formula

2 Douglas Johnson (1972) presented a similar tech-

nique earlier but his work was not well known in

early 1980s.

39

slightly. In this method, auxiliary left and right

bracket characters (<1, >1, <2, >2, ...)

were freely added in order to facilitate the check-
ing of the context conditions. A unique left and

right bracket was dedicated for each context part

of the rule. For each context part of a rule, se-
quences with freely added brackets were then

filtered with the context expressions so that only

such sequences remained where occurrences of

the brackets were delimited with the particular
left or right context (allowing free occurrence of

brackets for other context parts). Thereafter, it

was easy to check that all occurrences of the cen-
tre (i.e. the left hand part of the rule before the

rule operator) were delimited by some matching

pair of brackets. As all component transducers in

this expression were length-preserving (epsilon-
free), the constraints could be intersected with

each other resulting in a single rule transducer

for the multi-context rule (and finally the brack-
ets could be removed).

2.2 Method of Grimley-Evans, Kiraz and

Pulman

Grimley-Evans, Kiraz and Pulman presented a
simpler compilation formula for two-level rules

(1996). The method is prepared to handle more

than two levels of representation, and it does not

need the freely added brackets in the intermedi-
ate stages. Instead, it uses a marker for the rule

centre and can with it express disjunctions of

contexts. Subtracting such a disjunction from all
strings where the centre occurs expresses all pair

strings which violate the multi-context rule.

Thus, the negation of such a transducer is the

desired result.

2.3 Yli-Jyrä’s method

Yli-Jyrä (Yli-Jyrä et al., 2006) introduced a

concept of Generalized Restriction (GR) where

expressions with auxiliary boundary characters �
made it possible to express context parts of rules

in a natural way, e.g. as:

Pi* LC � Pi � RC Pi*

Here Pi is the set of feasible pairs of characters

and LC and RC are the left and right contexts.

The two context parts of our example would cor-

respond to the following two expressions:

Pi* u � Pi � u Pi*
Pi* y � Pi � y Pi*

Using such expressions, it is easy to express dis-

junctions of contexts as unions of the above ex-
pressions. This makes it logically simple to com-

pile multi-context right-arrow rules. The rule

centre x:z can be expressed simply as:

Pi* � x:z � Pi*

The right-arrow rule can be expressed as an im-

plication where the expression for the centre im-
plies the union of the context parts. Thereafter,

one may just remove the auxiliary boundary

characters, and the result is the rule-transducer.
(It is easy to see that only one auxiliary character

is needed when the length of the centres is one.)

The compilation of rules with centres whose

length is one using the GR seems very similar to
that of Grimley-Evans et al. The nice thing

about GR is that one can easily express various

rule types, including but not limited to the four
types listed above.

2.4 Intersecting compose

It was observed somewhere around 1990 at

Xerox that the rule sets may be composed with
the lexicon transducers in an efficient way and

that the resulting transducer was roughly similar

in size as the lexicon transducer itself (Karttunen

et al., 1992). This observation gives room to the
new approach presented below.

At that time, it was not practical to intersect

complete two-level grammars if they contained
many elaborate rules (and this is still a fairly

heavy operation). Another useful observation

was that the intersection of the rules could be

done in a joint single operation with the compo-
sition (Karttunen, 1994). Avoiding the separate

intersection made the combining of the lexicon

and rules feasible and faster. In addition to
Xerox LEXC program, e.g. the HFST finite-state

software contains this operation and it is rou-

tinely used when lexicons and two-level gram-
mars are combined into lexicon transducers

(Lindén et al., 2009).

Måns Huldén has noted (2009) that the com-

posing of the lexicon and the rules is sometimes
a heavy operation, but can be optimized if one

first composes the output side of the lexicon

transducer with the rules, and thereafter the
original lexicon with this intermediate result.

3 Proposed method for compilation

The idea is to modify the two-level grammar so
that the rules become simpler. The modified

grammar will contain only simple rules with sin-

gle context parts. This is done at the cost that the
grammar will transform lexical representations

into slightly modified surface representations.

40

The surface representations are, however, fixed

after the rules have been combined with the lexi-

con so that the resulting lexicon transducer is

equivalent to the result produced using earlier
methods.

3.1 The method through the example

Let us return to the example in the introduction.

The modified surface representation differs from
the ultimate representation by having a slightly

extended alphabet where some surface characters

are expressed as their variants, i.e. there might be

v1 or v2 in addition to v. In particular, the first

variant v1 will be used exactly where the first

context of the original multi-context rule for k:v

is satisfied, and v2 where the second context is

satisfied. After extending the alphabet and split-
ting the rule, our example grammar will be as

follows:

Alphabet a b … k … u v w x y …
 k:v1 k:v2;
Rules
k:v1 => u _ u;
k:v2 => y _ y;

These rules would permit sequences such as:

p u k:v1 u n
k y k:v2 y n
p u k:v1 u k:v1 u n

but exclude a sequence

p u k:v2 u n

The output of the modified grammar is now as

required, except that it includes these variants v1

and v2 instead of v. If we first perform the in-

tersecting composition of the rules and the lexi-
con, we then can compose the result with a trivial

transducer which simply transforms both v1 and

v2 into v.

It should be noted that here the context ex-

pressions of these example rules do not contain v

on the output side, and therefore the introduction

of the variants v1 and v2 causes no further

complications. In the general case, the variants

should be added as alternatives of v in the con-

text expressions, see the explanation below.

3.2 More general cases

The strategy is to pre-process the two-level
grammar in steps by splitting more complex con-

structions into simpler ones until we have units

whose components are trivial to compile. The

intersection of the components will have the de-
sired effect when composed with a lexicon and a

trivial correction module. Assume, for the time

being, that all centres (i.e. the left-hand parts) of

the rules are of length one.

(1) Split double-arrow (<=>) rules into one

right-arrow (=>) rule and one left-arrow (<=)

rule with centres and context parts identical to
those of the original double-arrow rule.

(2) Unfold the iterative where clauses in left-

arrow rules by establishing a separate left-arrow
rule for each value of the iterator variable, e.g.

V:Vb <= [a | o | u] ?* _;
 where V in (A O U)
 Vb in (a o u) matched;

becomes

A:a <= [a | o | u] ?* _;
O:o <= [a | o | u] ?* _;
U:u <= [a | o | u] ?* _;

Unfold the where clauses in right-arrow rules

in either of the two ways: (a) If the where

clauses create disjoint centres (as above), then

establish a separate right-arrow rule for each
value of the variable, and (b) if the clause does

not affect the centre, then create a single multi-

context right-arrow rule whose contexts consist

of the context parts of the original rule by replac-

ing the where clause variable by its values, one

value at a time, e.g.

k:v => Vu _ Vu; where Vu in (u y);

becomes

k:v => u _ u;
 y _ y;

If there are set symbols or disjunctions in the

centres of a right-arrow rule, then split the rule
into separate rules where each rule has just a sin-

gle pair as its centre, and the context part is iden-

tical to the context part (after the unfolding of the

where clauses).

Note that these two first steps would probably

be common to any method of compiling multi-
context rules. After these two steps, we have

right-arrow, left-arrow and exclusion rules. The

right-arrow rules have single pairs as their cen-
tres.

(3) Identify the right-arrow rules which, after

the unfolding, have multiple contexts, and record

each pair which is the centre of such a rule.
Suppose that the output character (i.e. the surface

character) of such a rule is z and there are n con-

text parts in the rule, then create n new auxiliary
characters z1, z2, ..., zn and denote the set consist-

ing of them by S(z).

41

Split the rule into n distinct single-context

right-arrow rules by replacing the z of the centre

by each zi in turn.

Our simple example rule becomes now.

k:v1 => u _ u;
k:v2 => y _ y;

(4) When all rules have been split according to
the above steps, we need a post-processing phase

for the whole grammar. We have to extend the

alphabet by adding the new auxiliary characters
in it. If original surface characters (which now

have variants) were referred to in the rules, each

such reference must be replaced with the union

of the original character and its variants. This
replacement has to be done throughout the

grammar. For any existing pairs x:z listed in the

alphabet, we add there also the pairs x:z1, ..., x:zn.
The same is done for all declarations of sets

where z occurs (as an output character). Insert a

declaration for a new character set corresponding
to S(z). In all define clauses and in all rule-

context expressions where z occurs as an output

character, it is replaced by the set S(z). In all

centres of left-arrow rules where z occurs as the
output character, it is replaced by S(z).

The purpose of this step is just to make the

modified two-level grammar consistent in terms
of its alphabet, and to make the modified rules

treat the occurrence of any of the output charac-

ters z1, z2, …, zn in the same way as the original

rule treated z wherever it occurred in its contexts.

After this pre-processing we only have right-

arrow, left-arrow and exclusion rules with a sin-
gle context part. All rules are independent of

each other in such a way that their intersection

would have the effect we wish the grammar to
have. Thus, we may compile the rule set as such

and each of these simple rules separately. Any

of the existing compilation formulas will do.

After compiling the individual rules, they have
to be intersected and composed with the lexicon

transducer which transforms base forms and in-

flectional feature symbols into the morphopho-
nemic representation of the word-forms. The

composing and intersecting is efficiently done as

a single operation because it then avoids the pos-
sible explosion which can occur if intermediate

result of the intersection is computed in full.

The rules are mostly independent of each

other, capable of recurring freely. Therefore
something near the worst case complexity is

likely to occur, i.e. the size of the intersection

would have many states, roughly proportional to

the product of the numbers of the states in the

individual rule transducers.

The composition of the lexicon and the logical

intersection of the modified rules is almost iden-
tical to the composition of the lexicon and the

logical intersection of the original rules. The only

difference is that the output (i.e. the surface) rep-
resentation contains some auxiliary characters zi

instead of the original surface characters z. A

simple transducer will correct this. (The trans-
ducer has just one (final) state and identity transi-

tions for all original surface characters and a re-

duction zi:z for each of the auxiliary characters.)

This composition with the correcting transducer
can be made only after the rules have been com-

bined with the lexicon.

3.3 Right-arrow conflicts

Right-arrow rules are often considered as per-
missions. A rule could be interpreted as “this

correspondence pair may occur if the following

context condition is met”. Further permissions

might be stated in other rules. As a whole, any
occurrence must get at least one permission in

order to be allowed.

The right-arrow conflict resolution scheme
presented by Karttunen implemented this

through an extensive pre-processing where the

conflicts were first detected and then resolved
(Karttunen et al., 1987). The resolution was done

by copying context parts among the rules in con-

flict. Thus, what was compiled was a grammar

with rules extended with copies of context parts
from other rules.

The scenario outlined above could be slightly

modified in order to implement the simple right-
arrow rule conflict resolution in a way which is

equivalent to the solution presented by Kart-

tunen. All that is needed is that one would first
split the right-arrow rules with multiple context

parts into separate rules. Only after that, one

would consider all right-arrow rules and record

rules with identical centres. For groups of rules
with identical centres, one would introduce the

further variants of the surface characters, a sepa-

rate variant for each rule. In this scheme, the
conflict resolution of right-arrow rules is imple-

mented fairly naturally in a way analogous to the

handling of multi-context rules.

3.4 Note on longer centres in rules

In the above discussion, the left-hand parts of
rules, i.e. their centres, were always of length

one. In fact, one may define rules with longer

centres by a scheme which reduces them into

42

rules with length one centres. It appears that the

basic rule types (the left and right-arrow rules)

with longer centres can be expressed in terms of

length one centres, if we apply conflict resolution
for the right-arrow rules.

We replace a right-arrow rule, e.g.

x1:z1 x2:z2 ... xk:zk => LC _ RC;

with k separate rules

x1:z1 => LC _ x2:z2 ... xk:zk RC;
x2:z2 => LC x1:z1 _ ... xk:zk RC;

...
xk:zk => LC x1:z1 x2:z2 ... _ RC;

Effectively, each input character may be realized

according to the original rule only if the rest of

the centre will also be realized according to the
original rule.

Respectively, we replace a left-arrow rule, e.g.

x1:z1 x2:z2 ... xk:zk <= LC _ RC;

with k separate rules

x1:z1 <= LC _ x2: ... xk: RC;
x2:z2 <= LC x1: _ ... xk: RC;

...
xk:zk <= LC x1: x2: ... _ RC;

Here the realization of the surface string is forced
for each of its character of the centre separately,

without reference to what happens to other char-

acters in the centre. (Otherwise the contexts of
the separate rules would be too restrictive, and

allow the default realization as well.)

4 Complexity and implementation

In order to implement the proposed method, one

could write a pre-processor which just transforms
the grammar into the simplified form, and then

use an existing two-level compiler. Alternatively,

one could modify an existing compiler, or write a

new compiler which would be somewhat simpler
than the existing ones. We have not implemented

the proposed method yet, but rather simulated the

effects using existing two-level rule compilers.
Because the pre-processing would be very fast

anyway, we decided to estimate the efficiency of

the proposed method through compiling hand-
modified rules with the existing HFST-TWOLC

(Lindén et al., 2009) and Xerox TWOLC3 two-

3 We used an old version 3.4.10 (2.17.7) which we

thought would make use of the Kaplan and Kay for-

mula. We suspected that the most recent versions

might have gone over to the GR formula.

level rule compilers. The HFST tools are built on

top of existing open source finite-state packages

OpenFST (Allauzen et al., 2007) and Helmut

Schmid’s SFST (2005).
It appears that all normal morphographemic

two-level grammars can be compiled with the

methods of Kaplan and Kay, Grimley-Evans and
Yli-Jyrä.

Initial tests of the proposed scheme are prom-

ising. The compilation speed was tested with a
grammar of consisting of 12 rules including one

multi-context rule for Finnish consonant grada-

tion with some 8 contexts and a full Finnish lexi-

con. When the multi-context rule was split into
separate rules, the compilation was somewhat

faster (12.4 sec) to than when the rule was com-

piled a multi-context rule using the GR formula
(13.9 sec). The gain in the speed by splitting was

lost at the additional work needed in the inter-

secting compose of the rules and the full lexicon
and the final fixing of the variants. On the whole,

the proposed method had no advantage over the

GR method.

In order to see how the number of context
parts affects the compilation speed, we made

tests with an extreme grammar simulating Dutch

hyphenation rules. The hyphenation logic was
taken out of TeX hyphenation patterns which had

been converted into two-level rules. The first

grammar consisted of a single two-level rule

which had some 3700 context parts. This gram-
mar could not be compiled using Xerox TWOLC

which applies the Kaplan and Kay method be-

cause more than 5 days on a dedicated Linux
machine with 64 GB core memory was not

enough for completing the computation. When

using of GR method of HFST-TWOLC, the
compilation time was not a problem (34 min-

utes). The method of Grimley-Evans et al.

would probably have been equally feasible.

Compiling the grammar after splitting it into
separate rules as proposed above was also feasi-

ble: about one hour with Xerox TWOLC and

about 20 hours with HFST-TWOLC. The differ-
ence between these two implementations de-

pends most likely on the way they handle alpha-

bets. The Xerox tool makes use of a so-called
'other' symbol which stands for characters not

mentioned in the rule. It also optimizes the com-

putation by using equivalence classes of charac-

ter pairs. These make the compilation less sensi-
tive to the 3700 new symbols added to the alpha-

bet than what happens in the HFST routines.

Another test was made using a 50 pattern sub-
set of the above hyphenation grammar. Using

43

the Xerox TWOLC, the subset compiled as a

multi-context rule in 28.4 seconds, and when

split according to the method proposed here, it

compiled in 0.04 seconds. Using the HFST-
TWOLC, the timings were 3.1 seconds and 5.4

seconds, respectively. These results corroborate

the intuition that the Kaplan and Kay formula is
sensitive to the number of context parts in rules

whereas the GR formula is less sensitive to the

number of context parts in rules.
There are factors which affect the speed of

HFST-TWOLC, including the implementation

detail including the way of treating characters or

character pairs which are not specifically men-
tioned in a particular transducer. We anticipate

that there is much room for improvement in

treating larger alphabets in HFST internal rou-
tines and there is no inherent reason why it

should be slower than the Xerox tool. The next

release of HFST will use Huldén’s FOMA finite-
state package. FOMA implements the ‘other’

symbol and is expected to improve the process-

ing of larger alphabets.

Our intuition and observation is that the pro-
posed compilation phase requires linear time

with respect to the number of context parts in a

rule. Whether the proposed compilation method
has an advantage over the compilation using the

GR or Grimley-Evans formula remains to be

seen.

5 Acknowledgements

Miikka Silfverberg, a PhD student at Finnish graduate

school Langnet and the author of HFST-TWOLC

compiler. His contribution consists of making all tests

used here to estimate and compare the efficiency of

the compilation methods.

The current work is part of the FIN-CLARIN infra-

structure project at the University of Helsinki funded
by the Finnish Ministry of Education.

References

Cyril Allauzen, Michael Riley, Johan Schalkwyk,

Wojciech Skut and Mehryar Mohri. 2007.

OpenFst: A General and Efficient Weighted Finite-

State Transducer Library. In Implementation and
Application of Automata, Lecture Notes in Com-

puter Science. Springer, Vol. 4783/2007, 11-23.

Alan Black, Graeme Ritchie, Steve Pulman, and Gra-

ham Russell. 1987. “Formalisms for morphogra-

phemic description”. In Proceedings of the Third
Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, 11–18.

Edmund Grimley-Evans, Georg A. Kiraz, Stephen G.

Pulman. 1996. Compiling a Partition-Based Two-

Level Formalism. In COLING 1996, Volume 1:
The 16th International Conference on Computa-
tional Linguistics, pp. 454-459.

Huldén, Måns. 2009. Finite-State Machine Construc-
tion Methods and Algorithms for Phonology and
Morphology. PhD Thesis, University of Arizona.

Douglas C. Johnson. 1972. Formal Aspects of Phono-
logical Description. Mouton, The Hague.

Ronald M. Kaplan and Martin Kay. 1994. Regular

Models of Phonological Rule Systems. Computa-
tional Linguistics 20(3): 331–378.

Lauri Karttunen. 1994. Constructing lexical transduc-

ers. In Proceedings of the 15th conference on

Computational linguistics, Volume 1. pp. 406-411.

Lauri Karttunen, Ronald M. Kaplan, and Annie Zae-

nen. 1992. Two-Level Morphology with Composi-

tion. Proceedings of the 14th conference on Com-
putational linguistics, August 23-28, 1992, Nantes,
France. 141-148.

Lauri Karttunen, Kimmo Koskenniemi, and Ronald.

M. Kaplan. 1987. A Compiler for Two-level Pho-

nological Rules. In Dalrymple, M. et al. Tools for
Morphological Analysis. Center for the Study of

Language and Information. Stanford University.

Palo Alto.

Maarit Kinnunen. 1987. Morfologisten sääntöjen
kääntäminen äärellisiksi automaateiksi. (Translat-

ing morphological rules into finite-state automata.

Master’s thesis.). Department of Computer Sci-

ence, University of Helsinki

George Anton Kiraz. 2001. Computational Nonlinear
Morphology: With Emphasis on Semitic Lan-
guages. Studies in Natural Language Processing.

Cambridge University Press, Cambridge.

Kimmo Koskenniemi. 1983. Two-Level Morph-

ology: A General Computational Model for

Word-form Recognition and Production. Uni-

versity of Helsinki, Department of General Lin-
guistics, Publications No. 11.

Kimmo Koskenniemi. 1985. Compilation of automata

from morphological two-level rules. In F. Karlsson

(ed.), Papers from the fifth Scandinavian Confer-
ence of Computational Linguistics, Helsinki, De-
cember 11-12, 1985. pp. 143-149.

Krister Lindén, Miikka Silfverberg and Tommi Piri-

nen. 2009. HFST Tools for Morphology – An Effi-

cient Open-Source Package for Construction of

Morphological Analyzers. In State of the Art in
Computational Morphology (Proceedings of Work-

shop on Systems and Frameworks for Computa-
tional Morphology, SFCM 2009). Springer.

Graeme Ritchie. 1992. Languages generated by two-

level morphological rules”. Computational Lin-
guistics, 18(1):41–59.

44

H. A. Ruessink. 1989. Two level formalisms. Utrecht

Working Papers in NLP. Technical Report 5.

Helmut Schmid. 2005. A Programming Language for

Finite State Transducers. In Proceedings of the 5th
International Workshop on Finite State Methods in
Natural Language Processing (FSMNLP 2005).
pp. 50-51.

Nathan Vaillette. 2004. Logical Specification of Fi-
nite-State Transductions for Natural Language
Processing. PhD Thesis, Ohio State University.

Anssi Yli-Jyrä and Kimmo Koskenniemi. 2006.
Compiling Generalized Two-Level Rules and

Grammars. International Conference on NLP: Ad-
vances in natural language processing. Springer.

174 – 185.

45

