
Proceedings of the 2010 Workshop on NLP and Linguistics: Finding the Common Ground, ACL 2010, pages 22–24,
Uppsala, Sweden, 16 July 2010. c©2010 Association for Computational Linguistics

Matching needs and resources:
How NLP can help theoretical linguistics

Alexis Dimitriadis
Utrecht institute of Linguistics OTS

a.dimitriadis@uu.nl

Abstract
While some linguistic questions pose chal-
lenges that could be met by developing
and applying NLP techniques, other prob-
lems can best be approached with a blend
of old-fashioned linguistic investigation
and the use of simple, well-established
NLP tools. Unfortunately, this means that
the NLP component is too simple to be
of interest to the computationally-minded,
while existing tools are often difficult for
the programming novice to use. For NLP
to come to the aid of research in theoreti-
cal linguistics, a continuing investment of
effort is required to bridge the gap. This
investment can be made from both sides.

1 Introduction

Linguistics is in its heart an empirical discipline,
and the data management and data analysis tech-
niques of computational linguistics could, in prin-
ciple, be productively brought to bear on descrip-
tive and theoretical questions. That this does not
happen as much as it could is, as I understand it,
the point of departure for this colloquium. Instead
of focusing on exciting research questions that are
crying out for fruitful collaboration between the-
oretical and computational linguists, I want to ex-
amine the broader range of ways that NLP know-
how could be put to productive use in the domain
of theoretical linguistics, and some of the ways
that this could come to happen more.

In brief, I believe that the lack of interaction is
not simply due to lack of interest, or lack of infor-
mation, on both sides. Rather, the goals and needs
of computational interests are not always served
well by catering to the community of theoretical
and descriptive linguists, the so-called “Ordinary
Working Linguists” with a minimum of computa-
tional skills and (equally important) no direct in-
terest in computational questions.

Such linguists could draw a lot of benefit from
boring, old-hat NLP tools that computational lin-
guists take for granted: searchable parsed corpora,
tools to search large collections of text or com-
pute lexicostatistics, online questionnaire tools for
collecting and analyzing speaker judgements, etc.
Computational linguists have ready access to a
number of wonderful tools of this sort. In fact
these are often the building blocks and resources
on which new applications at the forefront of NLP
are built: Who would build a text summarization
system without access to a large corpus of text to
practice on?

But such uses of NLP are too simple to be of in-
terest from the computational standpoint. Search-
ing a huge corpus for particular syntactic struc-
tures could be invaluable to a syntactician, but
making this possible is not interesting to a compu-
tational linguist: it’s not research anymore. This
should not be taken to suggest, however, that com-
putational linguists ought to become more “altru-
istic.” Creating tools targeted to non-technical lin-
guists, even successful tools, can still have draw-
backs in the long run.

2 The Linguist’s Search Engine

The Linguist’s Search Engine (Resnik et al. 2004)
is an example of an application created for the ben-
efit of ordinary, non-technical linguists. It allowed
users to search the web for a specified syntactic
structure. Out of view of the user, the engine first
executed an ordinary word-match web search and
then parsed the hits and matched against the search
structure. The user interface (a java application)
allowed the query term to be graphically con-
structed and refined (“query by example”). The
authors’ goal was to create a true web application:
Easy to launch from a web browser, and easy to
use without lengthy user manuals or a complicated
command language. While the user interface was
innovative, its linguistic function was not: The ap-

22



plication provided a web interface to a collection
of tools that had been assembled to support struc-
tured searches. The application stagnated after the
end of the project, and ceased working altogether
as of April, 2010.

While it was operating, the LSE was used as
intended: Resnik et al. report on a number of
case studies of users who independently used the
search engine to carry out linguistic research. Un-
fortunately, however, the burden of maintenance
turned out to be too great for an application that is
of no real continuing interest for a computational
linguist.

2.1 The cost of new tools

Complex resources are difficult to create and can
be difficult to use. In the world of Language Re-
sources, large corpora are created by the millions
of words in various standardized formats, often in
conjunction with integrated mega-tools for access-
ing and managing them. But language resources
are geared for institutional clients, can cost a lot
of money, and are not acquired or used effectively
by individuals without access to dedicated IT sup-
port.

At the frontier of NLP, on the other hand, tools
don’t usually come shrink-wrapped with graphical
installers. They often don’t come with a graphical
interface at all. A new research project may in-
volve a new workflow to be created. Needed cor-
pora will be bought, shared or created as needed.
A typical project will involve a jumble of file for-
mats, filters, and workflows that manage text in ad
hoc ways until the sought-for result is perfected.

Making such a tool available to someone out-
side the project, even another computational lin-
guist, is a time-consuming enterprise. Like any
complicated body of software, it needs to be doc-
umented, encapsulated, and then configured and
understood by its new users. This requires a con-
siderable time investment which an NLP lab is
willing to undertake, but which is of dubious util-
ity to a theoretical linguist— even one who has
the computer skills necessary to undertake it. In
brief, the expected amount of use must justify the
investment in setting up and learning the system.
Tagging, parsing and tree-searching programs are
commonplace, but setting up a system for one’s
own use is a non-trivial exercise. A syntactician
looking for a few examples of a rare construction
may prefer trial and error on google instead of try-

ing to get a complex system to compile. A syntac-
tician looking for similar data from multiple lan-
guages is even less likely to take the plunge, since
the benefit derived from a single language is pro-
portionally reduced.

3 Services and interoperability

With the goal of reducing the burden of installing
complex resources and getting them to talk to
each other, the CLARIN program (Common Lan-
guage Resources and Technology Infrastructure)
is working to establish a cutting edge infrastruc-
ture of standards and protocols, which will allow
language resources and applications to be utilized
remotely, and workflows to be constructed interac-
tively in (hopefully) intuitive ways. The vision is
to be able to gain remote access to a language cor-
pus, couple it to a processing application (perhaps
an experimental parser using a new syntactic anal-
ysis), send the results to yet another application for
analysis, etc.

It would be great to have ready access to the
tools and resources envisioned for the network.
But will it be a platform for development of ex-
perimental applications by tomorrow’s computa-
tional linguists, or will the command line con-
tinue to compete with web services as an inter-
face? The answer probably depends on the ben-
efits that CLARIN (and any such framework) will
offer to researcher-developers. If adopted, it offers
hopes of opening up the computational linguist’s
toolbox to a wider range of users.

4 Helping ourselves

Wouldn’t it be great to have a simple tool for exe-
cuting simple web searches, converting hits into
flat text and compiling the results into a simple
corpus? Throw in a tagger, a parser and a search
application, and we have the functionality of the
Linguist’s Search Engine but in several pieces.
Tools for most of these tasks are already widely
available, but only as part of a complex infrastruc-
ture that requires skill and non-trivial time invest-
ment to deploy. Other tasks are solved over and
over on an ad hoc basis, according to the needs of
each NLP project. Until the vision of CLARIN
becomes reality, ordinary linguists without access
to a team of developers are out of luck.

Still, we need not agree with the perspective
(held by Resnik et al. 2005, inter alia) that tools
for linguists should be point-and-click and really

23



easy for an untrained user to figure out. Setting the
bar that high greatly shrinks the pool of compu-
tational linguists willing to write software for the
non-technical masses. The life cycle of the Lin-
guist’s Search Engine is a case in point.

Instead, linguists should meet the new technol-
ogy halfway: As Bird (2006) has argued, no inte-
grated tools can be expected to provide the flexi-
bility needed for the creativity of original research.
The NLTK (Natural Language Toolkit) is a more
flexible alternative: It is a python library provid-
ing a high-level scripting environment for interac-
tive linguistic exploration, with a reasonably small
amount of technical skill required. Crucially, the
NLTK comes with a very accessible book (Bird
et al. 2009) that allows an “ordinary working lin-
guist” to learn how to use the system.

The NLTK will still be beyond the reach of lin-
guists unable, or unwilling, to make the neces-
sary time investment. Is this a big problem? I
believe that it should be addressed by persuad-
ing linguists (especially junior and future ones) of
the benefits of achieving a minimal level of com-
putational competence. The availability of more
tools that are usable and installable with a mod-
erate investment in training, time and equipment
would encourage linguists to make this kind of in-
vestment, and would in the long run decrease the
support burden for those technology folks who try
to make life easier for non-programming linguists.
Conversely, computational linguists would hope-
fully be encouraged to package their programs in
a reasonably accessible format if a growing num-
ber of potential users is clamoring for them– and if
“packaging” need not mean a complete point-and-
click interface.

On the subject of command-line tools, I believe
that the obstacle is not with the command line
per se (anyone can learn to open a terminal win-
dow and type a few symbols), but with the power-
ful and flexible workflows that the command line
makes possible. This is the bread and butter of
the computational linguist (and of any program-
mer), and its benefits could belong to descriptive
and theoretical linguists as well.

Theoretical linguistics, of course, also has NLP
needs that are anything but trivial. At UiL-OTS
there are projects underway to model the acquisi-
tion of phonotactic constraints; to improve textual
entailments (in a linguistically informative way)
by taking into account the contribution of lexical

meaning; and others. These and other projects
can provide challenges that a computational lin-
guist can be happy to tackle. But for theoretical
linguistics to fully benefit from NLP, we theoreti-
cal linguists need to pick up more of the tools of
the computational linguist.

References
Bird, Steven. 2006. “Linguistic Data Management

with the Natural Language Toolkit.” Plenary talk at
the Annual Meeting of the DGfS, Universität Biele-
feld.

Bird, Steven, Ewan Klein, and Edward Loper. 2006.
Natural Language Processing with Python: An-
alyzing Text with the Natural Language Toolkit.
O’Reilly Media.

CLARIN. Common Language Resources and Technol-
ogy Infrastructure. http://www.clarin.eu/.

Resnik, Philip, Aaron Elkiss, Ellen Lau, and Heather
Taylor. 2005. “The Web in Theoretical Linguistics
Research: Two Case Studies Using the Linguist’s
Search Engine.” 31st Meeting of the Berkeley Lin-
guistics Society, pp. 265-276.

24


