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Abstract

This paper presents a data-driven model
of eye movement control in reading that
builds on earlier work using machine
learning methods to model saccade behav-
ior. We extend previous work by model-
ing the time course of eye movements, in
addition to where the eyes move. In this
model, the initiation of eye movements is
delayed as a function of on-line process-
ing difficulty, and the decision of where to
move the eyes is guided by past reading
experience, approximated using machine
learning methods. In benchmarking the
model against held-out previously unseen
data, we show that it can predict gaze dura-
tions and skipping probabilities with good
accuracy.

1 Introduction

Eye movements during reading proceed as an al-
ternating series of fixations and saccades with con-
siderable variability in fixation times and saccade
lengths. This variation reflects, at least to some
extent, language-related processes during reading.
Much psycholinguistic research, therefore, relies
on measures of eye movements in reading to gain
an understanding of human sentence processing.
Eye tracking recordings are routinely used to study
how readers’ eye movements respond to experi-
mental manipulation of linguistic stimuli (Clifton
et al., 2007), and corpus-based analysis of eye-
tracking data has recently emerged as a new way
to evaluate theories of human sentence process-
ing difficulty (Boston et al., 2008; Demberg and
Keller, 2008).

More detailed accounts of the workings of the
eye movement system during reading are offered
by computational models of eye movement con-
trol (see Reichle (2006b), for an overview of re-

cent models). These models receive text as in-
put and produce predictions for the placement
and duration of fixations, in approximation to hu-
man reading behavior. Because eye movements
in reading rely on a coupled cognitive-motor sys-
tem, such models provide detailed accounts for
how eye movements are controlled both by on-line
language processing and lower-level motor con-
trol. Current models such as E-Z Reader (Reichle,
2006a; Pollatsek et al., 2006; Reichle et al., 2009)
and SWIFT (Engbert et al., 2002; Engbert et al.,
2005) account for numerous of the known facts
about saccade behavior in reading. This includes
word frequency and predictability effects on fixa-
tion times, word skipping rates, and preview and
spillover effects.

A recent approach to eye-movement model-
ing, less tied to psychophysiological assumptions
about the mechanisms that drive eye movements,
is to build models directly from eye-tracking data
using machine learning techniques inspired by re-
cent work in natural language processing. Thus,
Nilsson and Nivre (2009) show how a classifier
can be trained on authentic eye-tracking data and
then used to predict the saccade behavior of in-
dividual readers on new texts. Methodologically
this differs from the standard approach in compu-
tational modeling of eye movement control, where
model parameters are often fitted to data but model
predictions are not evaluated on unseen data in or-
der to assess the generalization error of these pre-
dictions. Without questioning the validity of the
standard approach, we believe that the strict sep-
aration of training data and test data assumed in
machine learning may provide additional insights
about the properties of these models.

The model of Nilsson and Nivre (2009) is based
on a simple transition system for saccadic move-
ments, a classifier that predicts where to fixate next
and a classifier-guided search algorithm to simu-
late fixation sequences over sentences.
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One obvious limitation of the model proposed
by Nilsson and Nivre (2009) is that it does not at
all capture the temporal aspects of eye movement
behavior. Thus, for example, it says nothing about
when eye movements are initiated or when the de-
cision of where to fixate next is made during fixa-
tions. In this paper, we try to overcome this limita-
tion by placing the machine-learning approach in
a broader psychological context and detail a model
that also accounts for the timing of fixations. More
precisely, we present a model of the time course of
eye movements, where saccade timing is driven by
on-line language processing and where-decisions
are driven by the experience readers have built up
through years of reading practice.1

It is not our intention in this paper to present
a full-fledged model of eye movement control in
reading. The model is limited in scope and does
not address certain important aspects of eye move-
ment control, such as within-word fixation lo-
cations, refixations and regressions triggered by
higher-order processing. In addition, the linguistic
features influencing timing (when-decisions) and
target selection (where-decisions) are restricted to
the basic variables word length and frequency. In
this way, we hope to provide a baseline against
which richer models of language processing can
be evaluated.

The rest of this paper is structured as follows.
Section 2 provides a brief background on what is
known about the time course of eye movements
during reading. Here we introduce some com-
mon notions that will be used later on. In sec-
tion 3, we first give an overview of the model
and then describe its component processes and
how these processes interrelate. In section 4, we
present an experimental evaluation of the model
using data from the English section of the Dundee
corpus (Kennedy and Pynte, 2005). Section 5 con-
tains our conclusions and suggestions for future
research.

2 The Timing of Eye Movements

The average fixation duration in reading is about
250 ms, and most fixations last between 200-300
ms, although they may range from under 100 ms
to over 500 ms for a given reader (Rayner, 1998).
Because eye movements are a motor response re-

1This view of where-decisions being driven by experience
is similar in spirit to some earlier theories of saccade target
selection in reading, such as the probabilistic account of word
skipping proposed by Brysbaert and Vitu (1998).

quiring preparation before execution, they are ini-
tiated well before the end of the fixation. Hence,
there is a saccade latency of about 150-200 ms
from the time when a saccade is first initiated un-
til the eye movement is actually executed (Becker
and Jürgens, 1979; McPeek et al., 2000). Once
the eye movement is executed, it takes about 25-
45 ms before the eyes are fixated on a new word
again, depending on the length of the movement.

Given an average saccade latency of about 150-
200 ms, and an average fixation duration of 250
ms, it seems clear that eye movements are often
initiated within the first 100 ms of a fixation. How-
ever, as Reichle notes (Reichle et al., 2003), since
the time it takes to identify words is on the order
of 150 - 300 ms, this suggests that there is not
enough time for language processes to have any
direct on-line influence on eye movements. One
key observation to explain language influences on
eye movements, however, is the finding that read-
ers often start processing upcoming words before
they are fixated. Studies on parafoveal preview
show that the amount of time spent fixating a
word depends, among other things, on how much
parafoveal preview of the word is available prior
to the word being fixated (Balota et al., 1985; Pol-
latsek et al., 1992).

A further finding supporting the assumption that
language processes can have an early effect on
eye movements comes from the disappearing text
studies (Rayner et al., 1981; Rayner et al., 2003).
In these studies, words become masked or disap-
pear at a certain point during the fixation. De-
spite this, a word need only be on display for 50-
60 ms in order for reading to proceed quite nor-
mally. More importantly, the time the eyes re-
main fixated after a word disappears depends on
the frequency of the word. Readers remain fix-
ated on low-frequency words longer than on high-
frequency words, even though the word that was
fixated has actually disappeared. In summary,
these studies suggest that there is a robust word
frequency effect in reading as early as 60 ms after
the onset of the fixation.

3 A Model of Eye Movement Control

3.1 General Overview

The model we develop takes the basic time con-
straints associated with language processing and
motor control as a starting point. This means that
our model is driven by estimates of the time it
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takes to process words, plan an eye movement, ex-
ecute a saccade etc. In line with cognitive con-
trol models of eye movements in reading, such
as E-Z Reader, we assume that the cognitive pro-
cessing of words is the “engine” that drives eye
movements. That is, eye movements are initiated
in response to on-line language processing. Un-
like E-Z Reader, however, we do not presume a
two-stage lexical process where the completion of
a certain hypothesized first stage triggers an eye
movement.2 Instead, when the eyes move to a new
word, an eye movement is initiated after some de-
lay that is proportional to the amount of cognitive
work left on the word. Furthermore, in contrast
to E-Z Reader we assume that saccade initiation
is decoupled from the decision of where to move
the eyes. In E-Z Reader, the initiation of a saccade
program is in effect a decision to start program-
ming a saccade to the next word. Here, instead,
the target for the next saccade can be any of the
words in the forward perceptual span. Another re-
lated difference, with respect to previous cognitive
control models, is that we assume that the deci-
sion of where to move the eyes is not directly in-
fluenced by on-line language processing. Instead,
this decision is governed by an autonomous rou-
tine, having its own dynamics automated through
years of reading experience. This experience is
approximated using machine learning methods on
authentic eye tracking data.

The model is defined in terms of four processes
that we assume are operative during reading: lex-
ical processing (L), saccade initiation delay (D),
motor programming (M), and saccade execution
(S). These processes are defined in terms of a set
of parameters that determine their duration. Once
an ongoing process ends, a subsequent process is
initiated, for as long as reading continues. As is
commonly assumed in most models of eye move-
ment control, language-related processes and mo-
tor control processes can run in parallel. We will
use the notation wi to refer to the ith word in a text
w1, . . . , wn consisting of n words, and we will use
subscripted symbols Li, Di, Mi and Si to refer to
the lexical processing, the saccade initiation delay,
the motor programming, and the saccade execu-
tion associated with wi.

In the following four subsections, we outline

2In E-Z Reader, the first stage of lexical processing is an
early estimate of the word’s familiarity that provides the sig-
nal to the eye movement system that lexical access is immi-
nent and that a saccade should be planned.

these processes in detail and discuss the general
assumptions underlying them. We then conclude
this section by summarizing how the processes dy-
namically interact to produce eye movement be-
havior.

3.2 Lexical Processing
The time needed to process individual words in
reading is certain to depend on numerous fac-
tors related to a person’s prior reading experi-
ence, word-level properties such as length and fre-
quency, and higher-order language processes such
as syntactic and semantic processing. However,
since our goal in this paper is to validate a sim-
ple model, with as few parameters as possible, we
make the simplifying assumption that the process-
ing time of a word can be approximated by its
length (number of characters) and its frequency of
occurrence in printed text. In particular, we as-
sume that the mean time required for processing a
word wi is a linear function of its length and the
natural logarithm of its frequency:3

t(Li) = b0+b1 length(wi)−b2 ln(freq(wi)) (1)

In equation 1, b0 is the intercept representing the
base time needed to process a word while b1 and
b2 are the respective slopes for the effect of length
and frequency on the base processing time. Again,
we stress that equation 1 is by all accounts an over-
simplification. Thus, for example, it does not take
into account any higher-level top-down influence
on processing time.

Still, we believe equation 1 provides a reason-
able first approximation. A large part of the vari-
ance in measures of reading time can be accounted
for by word frequency and word length. At any
rate, our simple assumption with respect to pro-
cessing time represents a methodological decision
rather than a theoretical one. We want to keep the
model as simple as possible at this stage, and later
explore the effect of including variables related to
higher-order processing.

Once the time interval t(Li) has passed for a
given word wi, lexical processing begins on the
next word. Thus, the completion of t(Li) results
in the initiation of Li+1. Because the processing
of the next word does not start until the processing
of the current word is finished, lexical processing

3We use the logarithm of word frequency because hu-
man response times, in lexical decision tasks for instance, are
linearly related to the natural logarithm of word frequency
(Balota and Chumbley, 1984).
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proceeds serially and no more than one word is
processed at any given time.

3.3 Saccade Initiation Delay
When the eyes move to a new word wi, a motor
program is initiated after some time. We assume
that the time when a motor program is initiated
depends on the processing difficulty of the fixated
word wi. In particular, the signal to initiate a sac-
cade is deferred in proportion to how much pro-
cessing remains on wi, or put differently, in pro-
portion to how much work remains to be done on
that word. This general routine serves to prevent
the control system from making over-hasty sac-
cades to new words. The length of the saccade ini-
tiation delay t(D) is proportional to the remaining
processing time of word wi at fixation onset:

t(Di) = d (t(Li)− t(Ei)) (2)

where d is a free parameter representing a pro-
portion, t(Li) is the lexical processing time for
the fixated word, and t(Ei) denotes the interval of
time that has elapsed since the initiation of t(Li).
More difficult words are associated with longer
processing times and thus cause later initiation of
saccade programs and therefore also longer fix-
ation durations. The free parameter d defines a
proportion taking values in the range [0, 1]. The
extremes of this range can be interpreted as fol-
lows. If d is set equal to 0, a new saccade program
is initiated immediately upon a new fixation. If
d instead is set equal to 1, the saccade program
starts only after the fixated word has been fully
processed. More generally, a change of the value
of this parameter can be understood as a change of
the amount of cognitive influence on fixation du-
rations. The higher its value, the more cognitive
work must be carried out before a new saccade
program is started. Once the time interval t(D)
has passed, the planning of a new eye movement
starts, i.e., a motor program, M , is initiated.

3.4 Motor Programming
The time needed to plan and initiate an eye move-
ment defines the saccade latency, or motor pro-
gramming time t(M). We assume that the dura-
tion of this period is given by the free parameter
m:

t(Mi) = m (3)

The following is worth noting. Some influential
research suggests that motor programming is com-
pleted in two stages (Becker and Jürgens, 1979).

The first of these being a labile stage during which
a planned saccade can be canceled, e.g., in fa-
vor of another saccade target. The second stage,
closer in time to the execution of the saccade, is
non-labile and once entered, a saccade underway
can no longer be modified or canceled. This divi-
sion between labile and non-labile stages of motor
programming is sometimes implemented in com-
putational models, for example in E-Z Reader and
SWIFT. For now, however, our model does not op-
erationalize the notion of saccade canceling and
thus makes no useful distinction between labile
and non-labile stages of motor programming. Our
only assumption with respect to these different
stages of motor programming is that their respec-
tive durations sum up to m.

An important function of motor programming
in our model, however, is to select a target for the
saccade. Before discussing how this is achieved
we should point out that we make no claim as
to how much time of motor programming is con-
sumed by target selection. It is only presupposed
that saccade target selection, in the normal course
of events, is initiated as soon as there is a decision
to make an eye movement (i.e., when motor pro-
gramming starts), and that, whatever time remains
of motor programming once a target is selected,
this time is spent on preparation of the physical
movement to the selected target. Once motor pro-
gramming is finished, a saccade S is executed to
the target.

Following Nilsson and Nivre (2009), we treat
target selection as a classification task. In prac-
tical terms, this means that we train a classifier
to predict the most likely eye movement follow-
ing any fixation. An instance to be classified con-
sists of a feature vector encoding feature informa-
tion over the current fixated word and words in
the immediate context. Given such feature rep-
resentations and training data obtained from eye-
tracking recordings, essentially any standard ma-
chine learning algorithm can be applied to the
classification task. The type of learning algorithm
that performs best on this task is, however, un-
known. Rather than speculate, we suggest that this
is a question for further research.

The remaining assumptions we make are as fol-
lows. First, because there is a sharp drop-off in
acuity of the human eye around the point of fix-
ation, the number of words that can be discrim-
inated in parafoveal vision on a given fixation is
limited to a few. Therefore, it is reasonable to as-
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sume that the potential targets for a saccade on
any given fixation are limited to the words avail-
able within the range of effective vision. 4 This
is supported empirically by the fact that the great
majority of outgoing saccades tend to land in one
of the three words that follow the current fixation.
Moreover, we assume that for these potential tar-
gets, only rather coarse, visual information, such
as a gross appreciation of their length, can be ex-
tracted on any given fixation. The reason for this
is that target selection generally occurs relatively
early on in a fixation, at a time when only low-
level visual information can reasonably be gleaned
from the parafovea.

Secondly, we reason that target selection re-
flects an autonomous process that has been au-
tomated, through years of practice, to progress
through the text and select targets in the default
reading direction. Hence, the possible targets for
target selection, as construed here, is limited to the
targets within the forward field of effective vision.
As a consequence, words to the left of the current
fixation are not fixated as a result of target selec-
tion.

Finally, we assume that target selection by de-
fault is a mechanical routine, insensitive to ongo-
ing lexical processing. In the general case, then,
the decision of where to move eyes is made in-
dependently of processing considerations. Mo-
tor programs in general, however, may sometimes
override the default target selection mechanism
and be initiated, not in order to select a new target,
but to correct for situations where motor control
and ongoing language processing are threatening
to desynchronize. Such a corrective program may
be initiated, for instance, if a saccade is executed
to wordi but lexical processing has not yet com-
pleted on wordi−1, and so more lexical process-
ing of wordi−1 is needed before moving on. In
this case, a corrective motor program is initiated
to wordi−1, subsequently resulting in a regression
to that word. In this way, corrective motor pro-
grams serve to synchronize the eyes with the cur-
rent processing stream and for that reason they al-
ways target the word being processed. Moreover,
because corrective saccade programs are launched
with a fixed target, they do not trigger target selec-
tion during motor programming.

4The effective visual field (the perceptual span) extends
about four characters to the left and 15 characters to the right
of the fixation for normal readers of left-to-right orthogra-
phies (Rayner, 1998).

3.5 Saccade Execution
The time to execute a saccade t(S) is determined
by the free parameter s:

t(Si) = s (4)

Once a saccade has been executed, the position of
the eyes shifts to a new word and thus, in the nor-
mal course of events, a new motor program is initi-
ated after t(Di). However, sometimes a saccade is
made ahead of the current processing stream, be-
cause, as noted earlier, a word needs not be fully
processed before a saccade is executed to another
word. Likewise, a saccade may sometimes be ex-
ecuted to a word that has already been fully pro-
cessed, because target selection is an autonomous
process, not influenced by ongoing processing. In
these situations, corrective saccade programs are
initiated. Since corrective saccade programs serve
only to rapidly coordinate the eyes and the cur-
rent processing stream, we assume that they can
be initiated immediately and hence that they are
not subject to saccade initiation delay.

3.6 Eye Movement Control
Having defined the respective component pro-
cesses, we now consider how these processes are
coordinated to model eye movement control. Lex-
ical processing is always running in parallel with
the processes controlling saccade initiation delay,
motor programming and saccade execution, which
are executed in sequence. A simulation of read-
ing is started by initiating lexical processing of the
first word (L1), and the saccade initiation delay
for the first word (D1) (i.e., the first word is fix-
ated). Whenever one of the running processes ter-
minates, new processes are initiated in the follow-
ing way:

• If Li terminates, initiate Li+1.

• If Di terminates, initiate Mi and select new
fixation target wj .

• If Mi terminates, initiate Si.

• If Si terminates and the ongoing lexical pro-
cess is Lj :

– If i = j, initiate Di.
– If i 6= j, initiate Mj and set fixation tar-

get to wj

The simulation terminates when all words have
been lexically processed.
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4 Experimental Evaluation

4.1 Experimental Setup
In order to estimate the performance of the model
described in the previous section, some experi-
ments were performed using data from the English
section of the Dundee corpus (Kennedy and Pynte,
2005).

In most evaluations of eye movement control
models, the model parameters are fitted against
one and the same corpus by searching the param-
eter space to find the set of parameter values that
best simulates the observed data. This approach
makes it somewhat hard to appreciate how well
a given model generalizes to new, previously un-
seen data. A more stringent evaluation, which af-
fords an assessment of the generalization error of
model predictions, is to set the model parameters
on some portion of the data and then test the model
on another held-out portion. The results we report
in this paper were obtained this way.

The Dundee corpus that was used in these ex-
periments contains the eye tracking records of ten
subjects reading editorials from The Independent,
a UK broadsheet newspaper. The data consist of
20 texts that were read by all subjects, and close to
2400 sentences. We divided these texts into three
sets: the first 16 for training (1911 sentences),
17-18 for model development and validation (237
sentences), and the last two texts, 19-20, for blind
testing of the model (231 sentences). Model pa-
rameters were fitted using only the training and
validation set, prior to evaluating the model on the
held-out test set.

Next we discuss how training was performed,
both in terms of the training of the classifier for
target selection and in terms of the estimation of
the model’s process parameters on the training
data. Before presenting the results, we also discuss
some standard practice in benchmarking models
of eye movement control.

4.2 Training the Classifier
We used the transition-based model outlined by
Nilsson and Nivre (2009) in combination with lo-
gistic regression for training the target selection
classifier. The classifier was trained on a restricted
number of features defined over words in the fixa-
tion context. The feature model we used for these
experiments included information about the word
length of the current fixation and upcoming words,
as well as some historical information about re-

cently made eye movements. The history of pre-
vious eye movements was represented in terms
of the saccade distance (measured in number of
words) that led up to recently made fixations (in-
cluding the current fixation). In this way, the fea-
ture model contained information about, for in-
stance, whether the saccade that led up to the cur-
rent fixation skipped a word or two.

In contrast to Nilsson and Nivre (2009) we did
not train one model for each individual subject in
the corpus. Instead, we trained a single multiple-
subject classifier on all ten readers in the training
set. The performance of this classifier was as-
sessed in terms of how well, on average, it pre-
dicted the observed saccade targets for any given
reader on the development set. Moreover, in line
with the assumption that target selection is re-
stricted to a limited number of candidate words in
the forward visual field, the classifier was trained
to select one of the three words following any fixa-
tion as the target for a saccade. This cross-subject
classifier achieved an average prediction accuracy
of 72% on the development set.

4.3 Estimating Model Parameters

Because the model’s process parameters can not
be directly estimated from eye tracking data they
need to be approximated in other ways. The val-
ues for the intercept and slope parameters for lexi-
cal processing time t(Li) were obtained by fitting
a linear regression of gaze duration on logarithmic
word frequency and word length on the training
data. The assumption that the gaze duration on
a given word reflects the time required to process
the word is necessarily an oversimplification but
is sometimes used in eye movement modeling. A
number of studies indicate that it is indeed a rea-
sonable approximation (Engbert et al., 2002; Pol-
latsek et al., 2006).

The value for the parameter d in the equation for
t(Di) was selected based on a simple parameter
search over the training data. The best fitting value
was assessed by calculating the root mean square
error between predicted and observed values for
gaze durations for different values of d ranging
from 0 to 1 in 0.1 increments, while keeping other
parameter values unchanged. To keep things sim-
ple, the parameters that determine the mean dura-
tion of motor programming, m, and saccade exe-
cution, s, were fixed at 200 ms, and 25 ms, respec-
tively. These values are in good agreement with
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Parameter Interpretation Value
b0 Intercept: base lexical processing time (ms) 165.5
b1 Slope: effect of length on lexical processing time (ms) 13.5
b2 Slope: effect of frequency on lexical processing time (ms) 3.2
d Proportion of lexical processing time (determines saccade initiation delay) 0.5
m Mean motor programming time (ms) 200
s Mean saccade execution time (ms) 25

Table 1: Model parameters, their interpretations and values, as estimated during training.

estimated values in experimental studies. Table 1
lists the model’s six process parameters and their
values, obtained prior to testing the model.

4.4 Benchmark Evaluation

Models of eye movement control in reading are
typically benchmarked against a set of word-based
dependent eye movement measures which are av-
eraged across subjects. Two such measures are
gaze duration and probability of skipping. Gaze
duration is defined as the sum duration of all fix-
ations on a word prior to any saccade leaving
the word during first-pass reading. Probability of
skipping is simply the mean probability (across
subjects) that a given word is skipped (not fixated)
during first-pass reading.

Because word frequency effects on eye move-
ments during reading are robust and well-
documented, one common benchmark practice is
to evaluate models with respect to their capabil-
ity of reproducing word frequency effects on fix-
ation times and fixation probabilities. Typically,
averages of word-based measures are then broken
down into word-frequency classes. This is a fairly
simple way to see how well a given model can
predict observed means for measures such as gaze
duration and skipping probability for words of dif-
ferent frequency classes. The results we report are
presented this way. We used frequency estimates
based on word occurrences in the written part of
the British National Corpus (BNC). Frequencies
were normalized to occurrences per million words
and then divided into five frequency classes, as
suggested by Reichle et al. (1998).

In addition to the model we have outlined so
far, we also present results for two alternative
versions. These models differ from the one we
have discussed only in positing a simpler func-
tion for lexical processing time. The alternative
versions model lexical processing time only as a
linear function of either word length or logarith-
mic word frequency. Hence, we fitted two sepa-

rate simple linear regressions of gaze duration first
on word length, and then on logarithmic word fre-
quency. The regression coefficient and slope were
estimated to 132.5 and 16 for the model based on
word length, and 284 and -11 for the model based
on frequency.

4.5 Results and Discussion

Table 2 shows the observed (empirical) and pre-
dicted (simulated) values of gaze durations and
skipping probabilities for each of the five word fre-
quency classes, both on the development set and
on the held-out test set. M1 and M2 represent the
versions of the model in which lexical processing
time is a linear function of word length, and word
frequency, respectively. M3 represents the version
of the model where lexical processing time is a
linear function of both variables.

The results show that all three models, on the
development set as well as on the test set, are
able to reproduce the most important aspect of
the observed data, namely, that mean gaze du-
rations decrease and mean skipping probabilities
increase with increasing word frequency. Over-
all, M3 performs better than the two other models
in predicting this relationship. The model based
only on word length, M1, performs worse than the
other two models. This is mainly due to the poor
performance of this model in simulating the pro-
portions of skipped words in the upper frequency
classes 4 and 5. In comparison to both M2 and M3,
M1 seriously underestimates the observed skip-
ping probability for words belonging to these fre-
quency classes, on both development and test data.

With respect to gaze duration alone, the three
models perform similarly, although M3 provides
a somewhat better fit on both data sets. The mod-
els generally predict longer gaze durations than the
observed means, except for the most low-frequent
words. In particular, gaze durations for higher-
frequency words (class 4 and 5) are prolonged
compared to the means, giving an overall nar-
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Gaze duration Probability of skipping
Development Test Development Test

Frequency class Observed M1 M2 M3 Observed M1 M2 M3 Observed M1 M2 M3 Observed M1 M2 M3

1 290 282 280 285 286 278 280 284 0.17 0.15 0.18 0.13 0.16 0.14 0.19 0.14
2 257 271 259 272 261 273 260 275 0.19 0.18 0.20 0.16 0.19 0.15 0.22 0.17
3 229 254 252 249 235 257 254 252 0.24 0.19 0.24 0.20 0.22 0.19 0.25 0.20
4 208 240 238 237 210 244 238 237 0.52 0.23 0.36 0.43 0.53 0.24 0.34 0.40
5 198 238 236 228 195 239 237 230 0.65 0.34 0.51 0.54 0.67 0.32 0.52 0.51

Table 2: Observed and predicted values of Gaze Durations (ms) and Skipping Probabilities on de-
velopment and test set for five frequency classes of words. M1: t(Li) = b0 + b1length(wi), Root
mean square error on development set = 0.48, Root mean square error on test set = 0.52; M2:
t(Li) = b0 − b1 ln(freq(wi)), Root mean square error on development set = 0.33, Root mean square
error on test set = 0.35; M3: t(Li) = b0 + b1length(wi) − b2 ln(freq(wi)), Root mean square error on
development set = 0.21, Root mean square error on test set = 0.26; Frequency range: 1:1-10, 2:11-100,
3:101-1000, 4:1001-10000, 5: 10001+

rower range of mean values for the five frequency
classes.

The overall performance of each model, M1,
M2 and M3 was estimated by calculating the root
mean square error (RMSE) between the mean ob-
served and predicted gaze durations and probabil-
ities of skipping. The errors were normalized as
described in Reichle et al. (1998). In comparing
the results for both development and test data, the
best overall fit is provided by M3 on the develop-
ment set, giving an RMSE of 0.21 (smaller val-
ues indicate better fit). The fit for the same model
drops to 0.26 when evaluated on the held-out test
data.

To provide some basis for comparison, the ear-
liest version of E-Z Reader (Reichle et al., 1998)
which was fitted to the same dependent measures,
had an RMSE of 0.145. It is important to point
out, however, that this result was based on fitting
the model parameters to a single sentence corpus
of 48 sentences designed for experimental pur-
poses. This corpus contained relatively short (8-
14 words) isolated sentences without any connect-
ing discourse. More generally, as noted by Re-
ichle et al. (2009), RMSD values lower than 0.5
provide fits that are reasonably close to the ob-
served means. By this standard, the model M3 per-
forms rather well in simulating the observed data.
Moreover, this version of the model provides the
most realistic estimates of the time it takes to iden-
tify words. Thus, for example, the mean time to
identify the most frequent word in English, “the”
(frequency class 5), is estimated to be 171 ms,
whereas the mean time to identify the word “re-
populate”, which is a low-frequency (frequency

class 1) ten-letter word is estimated to be 301 ms.
These estimates are in good agreement with ex-
perimental estimates, which show that word iden-
tification latencies range between 150 and 300 ms
(Rayner and Pollatsek, 1989).

5 Conclusion

In this paper we built on previous work using ma-
chine learning methods to model saccade behavior
in reading and we extended this work by present-
ing a data-driven model of eye movement control
that provides detailed predictions for both when
and where the eyes move during reading. The most
important principles of this model are (i) the initi-
ation of eye movements is delayed as a function
of on-line processing difficulty, and (ii) the deci-
sion of where to move the eyes is driven by an
autonomous routine that has become automated
through years of practice in reading. The model
was trained on eye movements made over a large
corpus of natural text. In benchmarking the model
against held-out data we showed that it is able to
reproduce frequency effects on both gaze dura-
tion and skipping probability with good accuracy
(RMSE = 0.26).

Looking ahead, we plan to extend the model
to account for more empirical data on eye move-
ment behavior in reading. One important step
to meet this goal is to develop a more informed
model of language processing. Current models
of eye movement control in reading generally as-
sume that influences from syntactic and higher-
order processing occur too late in the process-
ing stream to directly influence eye movements.
This is, however, seemingly at odds with recent
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findings in sentence processing research showing
an influence of syntactic processing difficulty on
both early and late measures of eye movements
in reading (Demberg and Keller, 2008; Boston et
al., 2008). Hence, it is possible that a more ac-
curate model of eye movements in reading will
need to allow for syntactic processing to influ-
ence the early decisions that control the timing of
eye movements. This and other issues will be ad-
dressed in future work.
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