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Abstract 

Here we explore mining data on gene expres-

sion from the biomedical literature and 

present Gene Expression Text Miner 

(GETM), a tool for extraction of information 

about the expression of genes and their ana-

tomical locations from text. Provided with 

recognized gene mentions, GETM identifies 

mentions of anatomical locations and cell 

lines, and extracts text passages where au-

thors discuss the expression of a particular 

gene in specific anatomical locations or cell 

lines. This enables the automatic construction 

of expression profiles for both genes and ana-

tomical locations. Evaluated against a ma-

nually extended version of the BioNLP '09 

corpus, GETM achieved precision and recall 

levels of 58.8% and 23.8%, respectively. Ap-

plication of GETM to MEDLINE and 

PubMed Central yielded over 700,000 gene 

expression mentions. This data set may be 

queried through a web interface, and should 

prove useful not only for researchers who are 

interested in the developmental regulation of 

specific genes of interest, but also for data-

base curators aiming to create structured re-

positories of gene expression information. 

The compiled tool, its source code, the ma-

nually annotated evaluation corpus and a 

search query interface to the data set ex-

tracted from MEDLINE and  PubMed Cen-

tral is available at http://getm-

project.sourceforge.net/. 

1 Introduction 

With almost 2000 articles being published daily 

in 2009, the amount of available research litera-

ture in the biomedical domain is increasing ra-

pidly. Currently, MEDLINE contains reference 

records for almost 20 million articles (with about 

10 million abstracts), and PubMed Central 

(PMC) contains almost two million full-text ar-

ticles. These resources store an enormous wealth 

of information, but are proving increasingly dif-

ficult to navigate and interpret. This is true both 

for researchers seeking information on a particu-

lar subject and for database curators aiming to 

collect and annotate information in a structured 

manner. 

Text-mining tools aim to alleviate this prob-

lem by extracting structured information from 

unstructured text. Considerable attention has 

been given to some areas in text-mining, such as 

recognizing named entities (e.g. species, genes 

and drugs) (Rebholz-Schuhmann et al., 2007; 

Hakenberg et al., 2008; Gerner et al., 2010) and 

extracting molecular relationships, e.g. protein-

protein interactions (Donaldson et al., 2003; 

Plake et al., 2006; Chowdhary et al., 2009). 

Many other areas of text mining in the biomedi-

cal domain are less mature, including the extrac-

tion of information about the expression of genes 

(Kim et al., 2009). The literature contains a large 

amount of information about where and when 

genes are expressed, as knowledge about the ex-

pression of a gene is critical for understanding its 

function and has therefore often been reported as 

part of gene studies. Gene expression profiles 

from genome-wide studies are available in spe-

cialized databases such as the NCBI Gene Ex-

pression Omnibus (Barrett et al., 2009) and 

FlyAtlas (Chintapalli et al., 2007), but results on 

gene expression from smaller studies remain 

locked in the primary literature. 

Previously, a number of data-mining projects 

have combined text-mining methods with struc-

tured genome-wide gene expression data in order 
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to allow further interpretation of the gene expres-

sion data (Natarajan et al., 2006; Fundel, 2007). 

However, only recently has interest in text-

mining tools aimed at extracting gene expression 

profiles from primary literature started to grow. 

The 2009 BioNLP shared task (Kim et al., 2009) 

aimed at extracting biological "events", where 

one of the event types was gene expression. For 

this event type, participants were asked to deter-

mine locations in text documents where authors 

discussed the expression of a gene or protein and 

extract a trigger keyword (e.g. "expression") and 

its associated gene participant (the gene whose 

expression is discussed). The group that achieved 

the highest accuracy on the "simple event" task 

(where gene expression extraction was included) 

achieved recall and precision levels of 64.2% and 

77.5%, respectively (Björne et al., 2009). A key 

limitation of the 2009 shared task was that all 

genes had been annotated prior to the beginning 

of the task, making it difficult to anticipate the 

accuracy of tools that do not rely on pre-

annotated entities. 

Biologists are interested not only in finding 

statements of gene expression events, but also in 

knowing where and when a gene is expressed. 

However, to the best of our knowledge, no effort 

has previously been made to extract and map the 

expression of genes to specific tissues and cell 

types (and vice versa) from the literature. Thus, 

we have taken preliminary steps to construct a 

software tool, named Gene Expression Text 

Miner (GETM), capable of extracting informa-

tion about what genes are expressed and where 

they are expressed. An additional goal of this 

work is to apply this tool to the whole of MED-

LINE and PMC, and make both the tool and the 

extracted data available to researchers.  

We anticipate that the data extracted by 

GETM will provide researchers an overview 

about where a specific gene is expressed, or what 

genes are expressed in a specific anatomical lo-

cation. Moreover, GETM will aid in the curation 

of gene expression databases by providing text 

passages and identifiers to database curators for 

verification.  

2 Methods 

An overview of the workflow of GETM is given 

in Figure 1. Articles are initially scanned for 

mentions of gene entities, anatomical entities and 

keywords indicating the discussion of gene ex-

pression (called triggers following BioNLP ter-

minology, e.g. "expression" and "expressed in"). 

After the detection of the entities and triggers, 

abbreviations are detected and entities are 

grouped in the cases of enumerations. Finally, 

sentences are split and each sentence is 

processed in order to associate triggers with gene 

and anatomical entities. Each step is described 

below in more detail. 

2.1 Named entity recognition and abbrevia-

tion detection 

In order to extract information on the expression 

of genes and their anatomical locations, a key 

requirement is the accurate recognition and nor-

malization (mapping the recognized terms to da-

tabase identifiers) of both the genes and anatom-

ical locations in question. In order to locate and 

identify gene names, we utilized GNAT (Haken-

berg et al., 2008), an inter-species gene name 

recognition software package. Among the gene 

name recognition tools capable of gene normali-

zation, GNAT is currently showing the best ac-

curacy (compared to the BioCreative corpora 

(Hirschman et al., 2005; Morgan et al., 2008)). 

The species identification component of GNAT, 

used to help disambiguate gene mentions across 

species, was performed by LINNAEUS (Gerner 

et al., 2010). 

In order to perform named entity recognition 

(NER) of anatomical locations, we investigated 

the use of various anatomical ontologies. A key 

challenge with these ontologies is that the terms 

NER, trigger 

detection

Genes

(GNAT)

Anatomy

(Dictionaries)

Articles

Triggers

(Dictionaries)

Detect 

enumerations and 

abbreviations

Sentence splitting

Determine gene 

and anatomy 

targets of triggers

Results

(web access)
 

Figure 1. Schematic overview of the processing workflow of GETM. 
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vary significantly from one species to another. 

For example, fruit flies have wings while humans 

do not, and humans have fingers, while fruit flies 

do not. Efforts have been made in creating uni-

fied species-independent anatomical ontologies, 

such as Uberon (Haendel et al., 2009; Mungall et 

al., 2010). However, in preliminary experiments 

we found that the coverage of Uberon was not 

extensive enough for this particular application 

(data not shown), motivating us to instead use a 

combination of various species-specific anatomi-

cal ontologies hosted at the OBO Foundry 

(Smith et al., 2007). These ontologies (n = 13) 

were chosen in order to cover terms from the 

main model organisms that are used in research 

(e.g. human, fruit fly, mouse, Caenorhabditis 

elegans) and a few larger groups of organisms 

such as e.g. amphibians and fungi. It is worth 

noting that the more general terms, such as e.g. 

"brain", are likely to match anatomical locations 

in other species as well. In total, the selected on-

tologies contain terms for 38,459 different ana-

tomical locations. 

 We also utilized an ontology of cell lines 

(Romano et al., 2009), containing terms for a 

total of 8,408 cell lines (ranging across 60 spe-

cies), as cell lines can be viewed as biological 

proxies for the anatomical locations that gave 

rise to them. For example, the HeLa cell line was 

derived from human cervical cells, and the THP1 

cell line was derived from human monocytes 

(Romano et al., 2009). 

The anatomical and cell line NER, utilizing 

the OBO Foundry and cell line ontologies, was 

performed using dictionary-matching methods 

similar to those employed by LINNAEUS 

(Gerner et al., 2010). 

 After performing gene and anatomical NER 

on the document, abbreviations were detected 

(using the algorithm by Schwartz and Hearst 

(2003)) in order to allow the detection and mar-

kup of abbreviated entity names in the cases 

where the abbreviations do not exist in any of the 

ontologies that are used. 

2.2 Trigger detection 

The trigger keywords indicating that an author is 

discussing the expression of one or several 

genes, such as e.g. "expression" and "expressed 

in" were detected using a manually created list of 

regular expressions. The regular expressions 

were designed to match variations of a set of 

terms, listed below, that were identified when 

inspecting documents not used when building the 

gold-standard corpus (see Section 3.1). 

The terms used to construct the trigger regular 

expressions were orthographical, morphological 

and derivational variations of "expression", "pro-

duction" and "transcription". Descriptions of the 

level of expression were also considered for the 

different terms, such as "over-expression," "un-

der-expression," "positively expressed," "nega-

tively expressed," etc. 

Each gene expression mention that has been 

extracted by GETM contains information about 

the trigger term used by the author, allowing re-

searchers to look only at e.g. the "negative" men-

tions (where genes are e.g. "under-expressed" or 

"negatively expressed") or the "positive" men-

tions (where genes are e.g. "over-expressed"). 

2.3 Association of entities to the trigger 

To help associate triggers with the correct gene 

and anatomical entities, articles were first split 

into sentences, allowing each sentence to be 

processed in turn. In order to reduce the number 

of false positives and preserve a high level of 

precision, any sentences that did not contain a 

trigger, at least one gene mention and at least one 

anatomical mention were ignored. For the sen-

tences that did contain a combination of all three 

requirements (trigger, gene and anatomical men-

tion), the following pattern- and distance-based 

rules were employed in order to associate each 

trigger with the correct gene and anatomical 

mention: 

1. If there is only one gene mention and only 

one anatomical mention in the sentence, the 

trigger is associated with those mentions. 

2. If there is one gene mention (G) and one 

anatomical mention (A) in the sentence 

such that they match one of the patterns 

"<G> is expressed in <A>", "expression of 

<G> in <A>", "<A> transcribes <G>" or 

"<A> produces <G>", the gene mention 

<G> and anatomical mention <A> are asso-

ciated with the trigger (variations of the 

triggers, such as "over-expressed" and 

"negative expression" are considered as 

well). Additional gene or anatomical men-

tions that fall outside the pattern are ig-

nored. 

3. If neither of the above rules applies, the 

trigger is associated with the gene and ana-

tomical mentions that are closest to the trig-

ger. 

For the purposes of these rules, an enumera-

tion of several genes or anatomical locations was 
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handled as if it was only a single mention. For 

example, Rule 1 might trigger even if there are 

several genes mentioned in the same sentence, as 

long as they are mentioned together as part of an 

enumeration. 

In order to detect these enumerations, a rule-

based algorithm for connecting enumerated gene 

and anatomical entity mentions (as in e.g. "... 

RelB and DC-CK1 gene expression ...") was also 

implemented. Being able to detect enumerations 

allowed the rules described above to recognize 

that a particular gene expression mention do not 

refer to only e.g. "RelB" or "DC-CK1", but both 

of them at the same time. 

Each trigger was processed independently, al-

lowing the potential extraction of multiple gene 

expression statements from a single sentence. 

Initially, experiments were performed using 

stricter rules where only variations of Rule 2, 

requiring gene and anatomical mentions to con-

form to certain patterns, were used. However, 

recall was in these cases found to be extremely 

low (below 5%, data not shown). The current 

rules are more permissive, allowing higher recall. 

 The fact that the method requires a combina-

tion of a trigger, a gene and an anatomical loca-

tion makes it susceptible to false negatives: if 

any one of them cannot be found by the NER or 

trigger detection methods, the whole combina-

tion is missed. 

3 Evaluation 

3.1 Extending the BioNLP shared task 

gold-standard corpus 

In order to make a meaningful evaluation of the 

accuracy of text-mining applications, a gold-

standard corpus, consisting of manually anno-

tated mentions for a set of documents, is re-

quired. Previously, no such corpus existed that 

was suitable for this problem (providing annota-

tions linked to mentions of both gene and ana-

tomical locations). However, the BioNLP corpus 

(Ohta et al., 2009) which is based on the GENIA 

corpus (Kim et al., 2008), does contain annota-

tions about gene expression. Annotations in the 

corpus contain trigger terms that are linked to 

genes (or gene products) where the authors dis-

cuss gene expression. However, anatomical loca-

tions have not been annotated in this corpus.  

In order to allow evaluation of the accuracy of 

our software, we extended the annotations of 

gene expression events in part of the BioNLP 

corpus. Each gene expression entry in the corpus 

was linked to the anatomical location or cell line 

that the author mentioned. In cases where gene 

expression was only discussed generally without 

referring to expression in a particular location, no 

association to an anatomical location could be 

made (these entries were ignored during evalua-

tion). Note that named entities were only linked 

to their locations in the text, not to unique data-

base identifiers (such as Entrez Gene or OBO 

Foundry identifiers). Because of this, subsequent 

evaluation in this extended corpus is limited to 

the accuracy of recognition (locating the entities 

in the text), but not normalization (linking the 

entities to database identifiers). 

In total, annotations for 150 abstracts (consti-

tuting the development set of the BioNLP cor-

pus) were extended to also include anatomical 

locations. These abstracts contained 377 anno-

tated gene expression events, of which 267 

(71%) could be linked to anatomical locations. 

These results demonstrate that the majority of 

gene expression mentions include reference to an 

anatomical location. For a few cases where the 

author described the expression of a gene in sev-

eral cell types, a single gene expression event 

gave rise to several distinct "entries" in the ex-

tended corpus, creating a total of 279 final gene 

expression entries that are linked to anatomical 

locations. 

4 Results 

In order to evaluate the accuracy of GETM, it 

was first run on the 150 abstracts in the gold-

standard corpus, after which the extracted results 

were compared against the annotations of the 

corpus. GETM was also applied to the whole of 

MEDLINE and PMC, in order to extract a sear-

chable and structured data set of gene expression 

mentions in published biomedical articles. 

4.1 Accuracy 

The gene expression mentions extracted by 

GETM from the corpus were compared against 

the manually created annotations in order to es-

timate the accuracy of the software. After in-

specting the false positives and false negatives, 

we noted that a number of the false positives ac-

tually were correctly identified by our system 

and had been marked as false positives only be-

cause of incomplete annotations in the corpus. 

Because of this, all false positives were manually 

examined in order to determine the "correct" 

number of false positives. For one of the cor-

rected expression mentions, two anatomical loca-

tions were enumerated, with GETM only locat-
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ing one of them. This introduced both a new true 

positive (for the one that was recognized) and a 

new false negative (for the one that was not). The 

number of true positives, false positives, false 

negatives, precision and recall (before and after 

correction) are shown in Table 1.  

 
 Original Corrected 

TP 53 67  

FP 61 (p = 46.5%) 47 (p = 58.8%) 

FN 214 (r = 19.8%) 215 (r = 23.8%) 

Table 1. The number of true positives (TP), false 

positives (FP), false negatives (FN) and levels of 

precision (p) and recall (r) for GETM when 

compared against the gold-standard corpus. 

4.2 Analysis of false negatives 

In order to determine the causes of the relatively 

high number of false negatives, the gene entities, 

anatomical entities and triggers identified by 

GNAT and GETM were compared to the ex-

tended corpus, allowing us to determine the 

number of corpus entities that could not be found 

by the GNAT and GETM NER tools. An analy-

sis was also performed in order to determine the 

number of corpus entries that were spread across 

several sentences, as any expression mentions 

spread over several sentences are missed by 

GETM.  

The analysis results can be seen in Table 2, 

showing that virtually all false negatives are 

caused either by incomplete NER or multi-

sentence entries. Only considering the NER, 68% 

of the gold-standard corpus annotated entries 

contain either a trigger (example FN: "detected"), 

gene (example FN: CD4) or anatomical location 

(example FN: "lymphoblastoid cells") that could 

not be located automatically. GETM was further 

limited by entities being spread across several 

sentences (n=66, 23.6%). In total, 74.3% of all 

entries could not be extracted correctly due to 

either incomplete NER, incomplete trigger detec-

tion or the entities being spread across multiple 

sentences. This limited recall to 25.7%, even if 

the rule-based method was working perfectly. 

4.3 Analysis of false positives 

Manual inspection of the false positives (after 

adjusting the false positives caused by incom-

plete annotations) allowed the identification of 

one clear cause: if the NER methods fail to rec-

ognize the entity associated with a manually an-

notated expression entry, but there are other enti-

ties (that have been recognized) in the sentence, 

those entities might be incorrectly associated 

with the trigger instead. For example, in the sen-

tence "In conclusion, these data show that IL-10 

induces c-fos expression in human B-cells by 

activation of tyrosine and serine/threonine kinas-

es." (Bonig et al., 1996) (the correct entities and 

trigger are italicized), a correctly extracted entry 

would link c-fos to B-cells through the trigger 

expression. However, the gene NER component 

failed to recognize c-fos but did recognize IL-10, 

causing GETM to incorrectly associate IL-10 

with B-cells. Either increasing the accuracy of 

the NER methods or performing deeper gram-

matical parsing could potentially reduce the 

number of false positives of this type. We note  

that the number of cases for this category (n = 

15; 34%) only make up a minority of the total 

number of false positives, and the remainder 

have no easily identifiable common cause. 

4.4 Application to MEDLINE and PMC 

documents 

GETM was applied to the whole set of 

10,240,192 MEDLINE entries from the 2010 

baseline files that contain an abstract (many 

MEDLINE entries do not contain an abstract). 

From these abstracts, 578,319 statements could 

be extracted containing information about the 

expression of a gene and the location of this ex-

pression. In addition, GETM was also applied to 

the set of 186,616 full-text articles that make up 

the open-access portion of PMC (downloaded 

February 5th, 2010). The full-text articles al-

lowed the extraction of 145,796 statements (an 

18-fold increase in entries per article compared 

Problem type Number of occurrences 

Trigger not found 58 (20.7%) 

Gene not found 139 (49.6%) 

Anatomical location not found 74 (26.4%) 

Any of the entities or trigger not found 190 (67.9%) 

Total number of entities not contained in a single sentence 66 (23.6%) 

Total number of entities either not found or not in the same sentence 208 (74.3%) 

Table 2. Breakdown of the causes for false negatives in GETM, relative to the total number of 

entries in the gold-standard corpus. 
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to the MEDLINE abstracts). In total, 716,541 

statements were extracted, not counting the ab-

stracts in MEDLINE that also appear in PMC. 

Overall, the combined extracted information 

ranges across 25,525 different genes (the most 

common being tumor necrosis factor (TNF su-

perfamily, member 2) in human) and 3,655 dif-

ferent anatomical locations (the most common 

being T cells). The most common combination 

concerns the expression of human interleukin 2 

in T cells. The 10 most commonly mentioned 

combinations of genes and anatomical locations 

are shown in Table 3. Overall, these results sug-

gest that studies on gene expression in the field 

of mammalian immunology are the dominant 

signal in MEDLINE and PMC. The genes that 

were recognized and normalized range across 15 

species, out of the 23 supported by GNAT (Ha-

kenberg et al., 2008). The most common species 

is human, as expected (Gerner et al., 2010), fol-

lowed by mouse, rat, chicken and cow. 

The majority of statements were associated to 

anatomical locations from the OBO Foundry on-

tologies (n=649,819; 89.7%), while the remaind-

er were associated to cell lines (n=74,294; 

10.3%). This result demonstrates the importance 

of taking cell lines into account when attempting 

to identify anatomical entities.  

Finally, a total of 73,721 (11.7%) of the state-

ments extracted from MEDLINE contained ei-

ther genes or anatomical locations that had been 

enumerated by the author, underscoring the im-

portance of considering enumerations when de-

signing text-mining algorithms. 

4.5 Availability 

GETM is available under an open source license, 

and researchers may freely download GETM, its 

source code and the extended gold-standard cor-

pus from http://getm-project.sourceforge.net/. 

Also available on the web site is a search query 

interface where researchers may search for ex-

tracted gene expression entries relating to a par-

ticular gene, anatomical location or a combina-

tion of the two and view these in the context of 

the surrounding text.  

5 Discussion 

5.1 Overview of design philosophy 

When constructing text-mining applications, a 

balance between precision (reflecting the relative 

number of false positives) and recall (reflecting 

the relative number of false negatives) is often 

used to optimize system performance. Accor-

dingly, a measure which often is used to evaluate 

the accuracy of software is the F-score (the har-

monic mean of the precision and recall). In this 

work, we have decided that rather than trying to 

maximize the F-score, we have put more focus 

on precision in order to ensure that the data ex-

tracted by GETM are of as high quality as possi-

ble. This typically leads to lower recall, causing 

the software to detect a relatively smaller number 

of relevant passages. Nonetheless, we believe 

that for this particular application, a smaller 

amount of data with higher quality would be 

more useful to curators and biologists than a 

larger amount of data that is less reliable. 

5.2 Comparison with previous work 

It is difficult to compare the precision and recall 

levels of GETM (at 58.8% and 23.8%, respec-

tively) against other tools, as GETM is the first 

tool aiming to perform this particular task. The 

closest comparison that can be made is against 

the software evaluated in the BioNLP shared task 

(Kim et al., 2009). However, software developed 

for the BioNLP shared task did not attempt to 

extract the anatomical location of gene expres-

sion mentions, nor did they need to identify the 

component entities involved. The tool with the 

highest accuracy for the simple event task (where 

gene expression extraction was included) showed 

Gene Anatomical location Number of mentions 

Interleukin 2 T cells 3511 

Interferon, gamma T cells 2088 

CD4 T cells 1623 

TNF Macrophages 1596 

TNF Monocytes 1539 

Interleukin 4 T cells 1323 

Integrin, alpha M Neutrophils 1063 

Inteleukin 10 T cells 971 

ICAM 1 Endothelial cells 964 

Interleukin 2 Lymphocytes 876 

Table 3. The ten most commonly mentioned combinations of genes and anatomical locations 
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precision and recall levels of 77.5% and 64.2%, 

respectively (Björne et al., 2009). It is not clear 

how tools evaluated in the 2009 BioNLP shared 

task would perform if they identified entities 

themselves rather than using pre-annotated enti-

ties. 

5.3 Limits on accuracy 

When investigating the cause of the low level of 

recall, the main reason that emerged for the high 

number of false negatives was the high number 

of annotated entries that could not be automati-

cally extracted due to at least one of the gene, 

anatomical or trigger mentions not being recog-

nized. This fact underscores the importance of 

accurate NER for applications that rely on the 

extracted entity mentions, especially those that 

attempt to extract information from multiple enti-

ty types, like GETM. The results also demon-

strate that NER, particularly in the case of gene 

name normalization, continues to pose a chal-

lenging problem. It is possible that using a com-

bination of GNAT and other gene NER tools 

would improve the overall gene NER accuracy. 

We further explored the effects of "perfect" 

gene NER on the accuracy of GETM by using 

the manual gene mention annotations supplied in 

the BioNLP corpus. Using the pre-annotated 

gene names increased the number of gene ex-

pression mentions recognized and the number of 

true positives, significantly improving recall 

(from 23.8% to 37.8%; data not shown). Howev-

er, a number of additional false positives were 

also introduced, causing precision to decrease 

very slightly from 58.8% to 58.5% (data not 

shown). This demonstrates the complexity of 

gene expression mentions in text, indicating that 

a combination of accurate trigger detection, ac-

curate NER (for both genes and anatomical loca-

tions) and deeper NLP methods are needed in 

order to accurately capture gene expression pro-

files in text. 

A secondary cause of false negatives was a 

relatively high number of annotated corpus en-

tries that spanned several sentences. The high 

proportion (23%) of multi-sentence entries in our 

extended corpus differs from previously reported 

results. For the event annotations in the BioNLP 

corpus, previous analyses showed that only 5% 

of all entries spanned several sentences (Björne 

et al., 2009). This suggests that the mentions of 

anatomical locations are located outside of the 

"trigger sentence" more often than gene mentions 

or other entities in the BioNLP corpus. 

6 Conclusions 

In this paper, we have explored integrated min-

ing of gene expression mentions and their ana-

tomical locations from the literature and pre-

sented a new tool, GETM, which can be used to 

extract information about the expression of genes 

and where they are expressed from biomedical 

text. We have also extended part of a previously 

existing gold-standard corpus in order to allow 

evaluation of GETM. When evaluated against 

the gold-standard corpus, GETM performed with 

precision and recall levels of 58.8% and 23.8%, 

respectively.  

The relatively low level of recall was primari-

ly caused by incomplete recognition of individu-

al entities, indicating that – in order to increase 

the recall of GETM – future work would primari-

ly need to focus on increasing the accuracy of the 

NER methods. With more accurate NER, while 

increasing recall, the higher number of recog-

nized entities is also expected to increase the 

number of false positives, causing a need for 

deeper NLP methods in order to preserve and 

increase the level of precision. 

While having a low level of recall, GETM was 

nonetheless able to extract 716,541 statements 

from MEDLINE and PMC, constituting a large 

and potentially useful data set for researchers 

wishing to get an overview of gene expression 

for a particular gene or anatomical location. The 

high number of mentions extracted from MED-

LINE can give an indication of the amount of 

data available in MEDLINE: if the recall on the 

BioNLP corpus is representative for MEDLINE 

as a whole, a tool with perfect accuracy might be 

able to extract almost 2.5 million entries. 

The level of precision (p = 58.8%) will most 

likely not be high enough for researchers to rely 

on the extracted data for high-throughput bioin-

formatical experiments without some kind of 

verification. However, we believe that it none-

theless will be of high enough quality that re-

searchers and curators will not feel inconve-

nienced by false positives, as currently the only 

alternatives are multi-word free text searches 

through PubMed or Google. Additionally, we  

provide an interface with the text context sur-

rounding gene expression statements, making it 

easier for researchers to quickly locate relevant 

results. 

In the future, we will aim to evaluate the nor-

malization of entities detected by GETM in order 

to quantify the level to which the identifiers as-

signed to the entities are correct. In addition, 
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both the gene and anatomical NER components 

could be improved in order to both reduce the 

number of false negatives and cover gene and 

anatomical terms for a wider range of species, 

beyond the common model organisms. We also 

believe that extending this work by utilizing dee-

per NLP methods (e.g. dependency parsers) 

could further improve the accuracy of GETM 

and related approaches to mining the abundance 

of data on gene expression in the biomedical lite-

rature. 
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