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Abstract

We present the first full-scale event extrac-
tion experiment covering the titles and ab-
stracts of all PubMed citations. Extraction
is performed using a pipeline composed
of state-of-the-art methods: the BANNER
named entity recognizer, the McClosky-
Charniak domain-adapted parser, and the
Turku Event Extraction System. We an-
alyze the statistical properties of the re-
sulting dataset and present evaluations of
the core event extraction as well as nega-
tion and speculation detection components
of the system. Further, we study in de-
tail the set of extracted events relevant
to the apoptosis pathway to gain insight
into the biological relevance of the result.
The dataset, consisting of 19.2 million oc-
currences of 4.5 million unique events,
is freely available for use in research at
http://bionlp.utu.fi/.

1 Introduction

There has recently been substantial interest in
event models in biomedical information extraction
(IE). The expressive event representation captures
extracted knowledge as structured, recursively
nested, typed associations of arbitrarily many par-
ticipants in specific roles. The BioNLP’09 Shared
Task on Event Extraction (Kim et al., 2009), the
first large scale evaluation of biomedical event
extraction systems, drew the participation of 24
groups and established a standard event represen-
tation scheme and datasets. The training and test
data of the Shared Task comprised 13,623 manu-
ally annotated events in 1,210 PubMed citation ab-
stracts, and on this data the top performing system
of Björne et al. (2009; 2010b) achieved an overall
F-score of 51.95% (Kim et al., 2009).

∗Equal contribution by first three authors.

The issue of the scalability and generalization
ability of the introduced event extraction systems
beyond the domain of the GENIA corpus on which
the Shared Task was based has remained largely
an open question. In a prior study, we have es-
tablished on a 1% random sample of PubMed ti-
tles and abstracts that the event extraction system
of Björne et al. is able to scale up to PubMed-
wide extraction without prohibitive computational
time requirements, however, the actual extraction
from the entire PubMed was left as a future work
(Björne et al., 2010a). Thus, the top-ranking event
extraction systems in the Shared Task have, in fact,
not been used so far for actual mass-scale event ex-
traction beyond the carefully controlled setting of
the Shared Task itself. Further, since an automated
named entity recognition step was not part of the
Shared Task, the interaction of the event extrac-
tion systems with gene/protein name recognizers
remains largely unexplored as well.

In this study, we address some of these ques-
tions by performing a mass-scale event extraction
experiment using the best performing system1 of
the Shared Task (Björne et al., 2009; Björne et al.,
2010b), and applying it to the entire set of titles
and abstracts of the nearly 18 million citations in
the 2009 distribution of PubMed. The extraction
result, containing 19.2 million event occurrences,
is the largest dataset of its type by several orders
of magnitude and arguably represents the state-of-
the-art in automatic event extraction with respect
to both accuracy and size.

To support emerging community efforts in tasks
that build on event extraction output, such as event
network refinement, hypothesis generation, path-
way extraction, and others, we make the entire
resulting dataset freely available for research pur-
poses. This allows researchers interested in ques-
tions involving text mining, rather than initial in-

1Available at http://bionlp.utu.fi/
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Event type Example
Gene expression 5-LOX is expressed in leukocytes
Transcription promoter associated with IL-4 gene

transcription
Localization phosphorylation and nuclear translo-

cation of STAT6
Protein catabolism I kappa B-alpha proteolysis by

phosphorylation.
Phosphorylation BCL-2 was phosphorylated at the

G(2)/M phase
Binding Bcl-w forms complexes with Bax and

Bak
Regulation c-Met expression is regulated by Mitf
Positive regulation IL-12 induced STAT4 binding
Negative regulation DN-Rac suppressed NFAT activation

Table 1: Targeted event types with brief example
statements expressing an event of each type. In the
examples, the word or words marked as triggering
the presence of the event are shown in italics and
event participants underlined. The event types are
grouped by event participants, with the first five
types taking one theme, binding events taking mul-
tiple themes and the regulation types theme and
cause participants. Adapted from (Björne et al.,
2009).

formation extraction, to make use of the many fa-
vorable statistical properties of the massive dataset
without having to execute the laborious and time-
consuming event extraction pipeline.

In the following, we describe the Shared Task
event representation applied throughout this study,
the event extraction pipeline itself, and a first set
of analyzes of multiple aspects of the resulting
dataset.

2 Event extraction

The event extraction pipeline follows the model of
the BioNLP’09 Shared Task in its representation
of extracted information. The primary extraction
targets are gene or gene product-related entities
and nine fundamental biomolecular event types in-
volving these entities (see Table 1 for illustration).

Several aspects of the event representation, as
defined in the context of the Shared Task, differ-
entiate the event extraction task from the body of
domain IE studies targeting e.g. protein–protein
interactions and gene–disease relations, including
previous domain shared tasks (Nédellec, 2005;
Krallinger et al., 2008). Events can have an ar-
bitrary number of participants with specified roles
(e.g. theme or cause), making it possible to cap-
ture n-ary associations and statements where some
participants occur in varying roles or are only oc-
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Figure 1: Event extraction. A multi-stage sys-
tem produces an event graph for each sentence.
Named entities are detected (A) using BANNER.
Independently of named entity detection, sen-
tences are parsed (B) to produce a dependency
parse. Event detection (C) uses the named entities
and the parse in predicting the trigger nodes and
argument edges that form the events. Finally, po-
larity and certainty (D) are predicted for the gen-
erated events. Adapted from (Björne et al., 2009).

casionally mentioned. A further important prop-
erty is that event participants can be other events,
resulting in expressive, recursively nested struc-
tures. Finally, events are given GENIA Event on-
tology types drawn from the community-standard
Gene Ontology (The Gene Ontology Consortium,
2000), giving each event well-defined semantics.

2.1 Event Extraction Pipeline
The event extraction pipeline applied in this work
consists of three main processing steps: named en-
tity recognition, syntactic parsing, and event ex-
traction. The process is illustrated in Figure 1.

For named entity recognition, we use the BAN-
NER system of Leaman and Gonzales (2008),
which in its current release achieves results close
to the best published on the standard GENETAG
dataset and was reported to have the best perfor-
mance in a recent study comparing publicly avail-
able taggers (Kabiljo et al., 2009). Titles and ab-
stracts of all 17.8M citations in the 2009 distribu-
tion of PubMed are processed through the BAN-
NER system.

Titles and abstracts of PubMed citations in
which at least one named entity was identified, and
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which therefore contain a possible target for event
extraction, are subsequently split into sentences
using a maximum-entropy based sentence splitter
trained on the GENIA corpus (Kazama and Tsujii,
2003) with limited rule-based post-processing for
some common errors.

All sentences containing at least one named
entity are then parsed with the domain-adapted
McClosky-Charniak parser (McClosky and Char-
niak, 2008; McClosky, 2009), which has achieved
the currently best published performance on the
GENIA Treebank (Tateisi et al., 2005). The con-
stituency parse trees are then transformed to the
collapsed-ccprocessed variant of the Stanford De-
pendency scheme using the conversion tool2 intro-
duced by de Marneffe et al. (2006).

Finally, events are extracted using the Turku
Event Extraction System of Björne et al. which
achieved the best performance in the BioNLP’09
Shared Task and remains fully competitive with
even the most recent advances (Miwa et al., 2010).
We use a recent publicly available revision of the
event extraction system that performs also extrac-
tion of Shared Task subtask 2 and 3 information,
providing additional event arguments relevant to
event sites and localization (site, atLoc, and toLoc
role types in the Shared Task) as well as informa-
tion on event polarity and certainty (Björne et al.,
2010b).

2.2 Extraction result and computational
requirements

Named entity recognition using the BANNER sys-
tem required in total roughly 1,800 CPU-hours
and resulted in 36,454,930 named entities identi-
fied in 5,394,350 distinct PubMed citations.

Parsing all 20,037,896 sentences with at least
one named entity using the McClosky-Charniak
parser and transforming the resulting constituency
trees into dependency analyzes using the Stanford
conversion tool required about 5,000 CPU-hours,
thus averaging 0.9 sec per sentence. Even though
various stability and scalability related problems
were met during the parsing process, we were able
to successfully parse 20,020,266 (99.91%) of all
sentences.

Finally, the event extraction step required ap-
proximately 1,500 CPU-hours and resulted in
19,180,827 event instances. In total, the entire cor-

2http://www-nlp.stanford.edu/
downloads/lex-parser.shtml

pus of PubMed titles and abstracts was thus pro-
cessed in roughly 8,300 CPU-hours, or, 346 CPU-
days, the most time-consuming step by far being
the syntactic parsing.

We note that, even though the components used
in the pipeline are largely well-documented and
mature, a number of technical issues directly re-
lated to, or at least magnified by, the untypi-
cally large dataset were met at every point of the
pipeline. Executing the pipeline was thus far from
a trivial undertaking. Due to the computational re-
quirements of the pipeline, cluster computing sys-
tems were employed at every stage of the process.

2.3 Evaluation

We have previously evaluated the Turku Event
Extraction System on a random 1% sample of
PubMed citations, estimating a precision of 64%
for event types and arguments pertaining to sub-
task 1 of the Shared Task (Björne et al., 2010a),
which compares favorably to the 58% precision
the system achieves on the Shared Task dataset it-
self (Björne et al., 2009).

To determine precision on subtasks 2 and 3
on PubMed citations, we manually evaluate 100
events with site and location arguments (sub-
task 2) and 100 each of events predicted to be
speculated or negated (subtask 3).

Subtask 2 site and location arguments are
mostly external to the events they pertain to and
therefore were evaluated independently of their
parent event. Their precision is 53% (53/100),
comparable to the 58% precision established on
the BioNLP’09 Shared Task development set, us-
ing the same parent-independent criterion.

To estimate the precision of the negation detec-
tion (subtask 3), we randomly select 100 events
predicted to be negated. Of these, 9 were incor-
rect as events to such an extent that the correct-
ness of the predicted negation could not be judged
and, among the remaining 91 events, the negation
was correctly predicted in 82% of the cases. Sim-
ilarly, to estimate the precision of speculation de-
tection, we randomly select 100 events predicted
to be speculated, of which 20 could not be judged
for correctness of speculation. Among the remain-
ing 80, 88% were correctly predicted as specula-
tive events. The negations were mostly signalled
by explicit statements such as is not regulated, and
speculation by statements, such as was studied,
that defined the events as experimental questions.
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For comparison, on the BioNLP’09 Shared Task
development set, for correctly predicted events,
precision for negation examples was 83% (with
recall of 53%) and for speculation examples 77%
(with recall of 51%).

In the rest of this paper, we turn our attention to
the extraction result.

3 Term-NE mapping

As the event types are drawn from the Gene On-
tology and the original data on which the system
is trained has been annotated with reference to the
GO definitions, the events targeted by the extrac-
tion system have well-defined biological interpre-
tations. The meaning of complete event struc-
tures depends also on the participating entities,
which are in the primary event extraction task con-
strained to be of gene/gene product (GGP) types,
as annotated in the GENIA GGP corpus (Ohta et
al., 2009a). The simple and uniform nature of
these entities makes the interpretation of complete
events straightforward.

However, the semantics of the entities au-
tomatically tagged in this work are somewhat
more openly defined. The BANNER system was
trained on the GENETAG corpus, annotated for
“gene/protein entities” without differentiating be-
tween different entity types and marking entities
under a broad definition that not only includes
genes and gene products but also related entities
such as gene promoters and protein complexes,
only requiring that the tagged entities be specific
(Tanabe et al., 2005). The annotation criteria of
the entities used to train the BANNER system as
well as the event extraction system also differ in
the extent of the marked spans, with GENIA GGP
marking the minimal name and GENETAG allow-
ing also the inclusion of head nouns when a name
occurs in modifier position. Thus, for example, the
latter may annotate the spans p53 gene, p53 pro-
tein, p53 promoter and p53 mutations in contexts
where the former would in each case mark only
the substring p53.

One promising future direction for the present
effort is to refine the automatically extracted data
into an event network connected to specific entries
in gene/protein databases such as Entrez Gene and
UniProt. To achieve this goal, the resolution of
the tagged entities can be seen to involve two re-
lated but separate challenges. First, identifying
the specific database entries that are referred to

Relation Examples
Equivalent GGP gene, wild-type GGP
Class-Subclass human GGP, HIV-1 GGP
Object-Variant

GGP-Isoform GGP isoform
GGP-Mutant dominant-negative GGP
GGP-Recombinant GGP expression plasmid
GGP-Precursor GGP precursor, pro-GGP

Component-Object
GGP-Amino acid GGP-Ile 729
GGP-AA motif GGP NH2-terminal
GGP-Reg. element GGP proximal promoter
GGP-Flanking region GGP 5’ upstream sequence

Object-Component
GGP-Protein Complex GGP homodimers

Place-Area
GGP-Locus GGP loci

Member-Collection
GGP-Group GGP family members

Table 2: Gene/gene product NE-term relation
types with examples. Top-level relations in the re-
lation type hierarchy shown in bold, specific NE
names in examples replaced with GGP. Intermedi-
ate levels in the hierarchy and a number of minor
relations omitted. Relation types judged to allow
remapping (see text) underlined.

by the genes/proteins named in the tagged enti-
ties, and second, mapping from the events involv-
ing automatically extracted terms to ones involv-
ing the associated genes/proteins. The first chal-
lenge, gene/protein name normalization, is a well-
studied task in biomedical NLP for which a num-
ber of systems with promising performance have
been proposed (Morgan and Hirschman, 2007).
The second we believe to be novel. In the follow-
ing, we propose a method for resolving this task.

We base the decision on how to map events ref-
erencing broadly defined terms to ones referencing
associated gene/protein names in part on a recently
introduced dataset of “static relations” (Pyysalo et
al., 2009) between named entities and terms (Ohta
et al., 2009b). This dataset was created based on
approximately 10,000 cases where GGP NEs, as
annotated in the GENIA GGP corpus (Ohta et al.,
2009a), were embedded in terms, as annotated in
the GENIA term corpus (Ohta et al., 2002). For
each such case, the relation between the NE and
the term was annotated using a set of introduced
relation types whose granularity was defined with
reference to MeSH terms (see Table 2, Ohta et al.,
2009b). From this data, we extracted prefix and
suffix strings that, when affixed to a GGP name,
produced a term with a predictable relation (within
the dataset) to the GGP. Thus, for example, the
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term GGP
p53 protein p53
p53 gene p53
human serum albumin serum albumin
wild-type p53 p53
c-fos mRNA c-fos
endothelial NO synthase NO synthase
MHC cl. II molecules MHC cl. II
human insulin insulin
HIV-1 rev.transcriptase rev.transcriptase
hepatic lipase lipase
p24 antigen p24
tr. factor NF-kappaB NF-kappaB
MHC molecules MHC
PKC isoforms PKC
HLA alleles HLA
RET proto-oncogene RET
ras oncogene ras
SV40 DNA SV40
EGFR tyrosine kinase EGFR

Table 3: Examples of frequently applied map-
pings. Most frequent term for each mapping is
shown. Some mention strings are abbreviated for
space.

Mentions Types
Total 36454930 4747770
Mapped 2212357 (6.07%) 547920 (11.54%)
Prefix 430737 (1.18%) 129536 (2.73%)
Suffix 1838646 (5.04%) 445531 (9.38%)

Table 4: Statistics for applied term-GGP map-
pings. Tagged mentions and types (unique men-
tions) shown separately. Overall total given for
reference, for mappings overall for any mapping
shown and further broken down into prefix-string
and suffix-string based.

prefix string “wild-type” was associated with the
Equivalent relation type and the suffix string “ac-
tivation sequence” with the GGP-Regulatory ele-
ment type. After filtering out candidates shorter
than 3 characters as unreliable (based on prelim-
inary experiments), this procedure produced a set
of 68 prefix and 291 suffix strings.

To make use of the data for predicting relations
between GGP names and the terms formed by af-
fixing a prefix or suffix string, it is necessary to
first identify name-term pairs. Candidates can be
generated simply by determining the prefix/suffix
strings occurring in each automatically tagged en-
tity and assuming that what remains after remov-
ing the prefixes and suffixes is a GGP name. How-
ever, this naive strategy often fails: while remov-
ing “protein” from “p53 protein” correctly identi-
fies “p53” as the equivalent GGP name, for “cap-

sid protein” the result, “capsid” refers not to a
GGP but to the shell of a virus – “protein” is prop-
erly part of the protein name. To resolve this is-
sue, we drew on the statistics of the automatically
tagged entities, assuming that if a prefix/suffix
string is not a fixed part of a name, the name will
appear tagged also without that string. As the tag-
ging covers the entire PubMed, this is likely to
hold for all but the very rarest GGP names. To
compensate for spurious hits introduced by tag-
ging errors, we specifically required that to accept
a candidate prefix/suffix string-name pair, the can-
didate name should occur more frequently without
the prefix/suffix than with it. As the dataset is very
large, this simple heuristic often gives the right de-
cision with secure margins: for example, “p53”
was tagged 117,835 times but “p53 protein” only
11,677, while “capsid” was (erroneously) tagged
7 times and “capsid protein” tagged 1939 times.

A final element of the method is the definition
of a mapping to events referencing GGP NEs from
the given events referencing terms, the NEs con-
tained in the terms, and the NE-term relations. In
this work, we apply independently for each term a
simple mapping based only on the relation types,
deciding for each type whether replacing refer-
ence to a term with reference to a GGP holding
the given relation to the term preserves event se-
mantics (to an acceptable approximation) or not.
For the Equivalent relation this holds by defini-
tion. We additionally judged all Class-Subclass
and Component-Object relations to allow remap-
ping (accepting e.g. P1 binds part of P2 → P1

binds P2) as well as selected Object-Variant rela-
tions (see Table 2). For cases judged not to allow
remapping, we simply left the event unmodified.

Examples of frequently applied term-GGP map-
pings are shown in Table 3, and Table 4 shows
the statistics of the applied mappings. We find
that suffix-based mappings apply much more fre-
quently than prefix-based, perhaps reflecting also
the properties of the source dataset. Overall, the
number of unique tagged types is reduced by over
10% by this procedure. It should be noted that the
applicability of the method could likely be consid-
erably extended by further annotation of NE-term
relations in the dataset of Ohta et al. (2009b): the
current data is all drawn from the GENIA corpus,
drawn from the subdomain of transcription factors
in human blood cells, and its coverage of PubMed
is thus far from exhaustive.
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4 Event recurrence

Given a dataset of events extracted from the en-
tire PubMed, we can study whether, and to what
extent, events are re-stated in multiple PubMed ci-
tations. This analysis may shed some light — nat-
urally within the constraints of an automatically
extracted dataset rather than gold-standard anno-
tation — on the often (informally) discussed hy-
pothesis that a high-precision, low recall system
might be a preferred choice for large-scale extrac-
tion as the lower recall would be compensated by
the redundancy of event statements in PubMed.

In order to establish event recurrence statistics,
that is, the number of times a given event is re-
peated in the corpus, we perform a limited normal-
ization of tagged entities consisting of the Term-
NE mapping presented in Section 3 followed
by lowercasing and removal of non-alphanumeric
characters. Two named entities are then consid-
ered equal if their normalized string representa-
tions are equal. For instance, the two names IL-
2 gene and IL2 would share the same normalized
form il2 and would thus be considered equal.

For the purpose of recurrence statistics, two
events are considered equal if their types are equal,
and all their Theme and Cause arguments, which
can be other events, are recursively equal as well.
A canonical order of arguments is used in the com-
parison, thus e.g. the following events are consid-
ered equal:

regulation(Cause:A, Theme:binding(Theme:B, Theme:C))

regulation(Theme:binding(Theme:C, Theme:B), Cause:A)

In total, the system extracted 19,180,827 instances
of 4,501,883 unique events. On average, an
event is thus stated 4.2 times. The distribution
is, however, far from uniform and exhibits the
“long tail” typical of natural language phenom-
ena, with 3,484,550 (77%) of events being single-
ton occurrences. On the other hand, the most fre-
quent event, localization(Theme:insulin), occurs
as many as 59,821 times. The histogram of the
number of unique events with respect to their oc-
currence count is shown in Figure 2.

The total event count consists mostly of sim-
ple one-argument events. The arguably more
interesting category of events that involve at
least two different named entities constitutes
2,064,278 instances (11% of the 19.2M total)
of 1,565,881 unique events (35% of the 4.5M
total). Among these complex events, recur-
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Figure 2: Number of unique events (y-axis) with a
given occurrence count (x-axis).

R P N L B E T C H
R 561 173 128 42 63 83 30 16 17
P 173 1227 192 58 99 143 39 20 23
N 128 192 668 46 73 98 31 17 18
L 42 58 46 147 57 75 25 15 15
B 63 99 73 57 1023 134 35 20 21
E 83 143 98 75 134 705 49 22 24
T 30 39 31 25 35 49 79 11 11
C 16 20 17 15 20 22 11 39 7
H 17 23 18 15 21 24 11 7 49

Table 5: Event type confusion matrix. Each el-
ement contains the number of unique events, in
thousands, that are equal except for their type.
The matrix is symmetric and its diagonal sums to
4,5M, the total number of extracted unique events.
The event types are (R)egulation, (P)ositive
regulation, (N)egative regulation, (L)ocalization,
(B)inding, gene (E)xpression, (T)ranscription,
protein (C)atabolism, and p(H)osphorylation.

rence is thus considerably lower, an event be-
ing stated on average 1.3 times. The most
frequent complex event, with 699 occurrences,
is positive-regulation(Cause:GnRG,Theme:local-
ization(Theme:LH)), reflecting the well-known
fact that GnRG causes the release of LH, a hor-
mone important in human reproduction.

To gain an additional broad overview of the
characteristics of the extracted events, we com-
pute an event type confusion matrix, shown in Ta-
ble 5. In this matrix, we record for each pair of
event types T1 and T2 the number of unique events
of type T1 for which an event of type T2 can be
found such that, apart for the type difference, the
events are otherwise equal. While e.g. a posi-
tive regulation-negative regulation pair is at least
unusual, in general these event pairs do not sug-
gest extraction errors: for instance the existence
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of the event expression(Theme:A) does not in any
way prevent the existence of the event localiza-
tion(Theme:A), and regulation subsumes positive-
regulation. Nevertheless, Table 5 shows a clear
preference for a single type for the events.

5 Case Study: The apoptosis pathway

In this section, we will complement the preceding
broad statistical overview of the extracted events
with a detailed study of a specific pathway, the
apoptosis pathway, determining how well the ex-
tracted events cover its interactions (Figure 3).

To create an event network, the events must be
linked through their protein arguments. In addi-
tion to the limited named entity normalization in-
troduced in Section 4, we make use of a list of syn-
onyms for each protein name in the apoptosis path-
way, obtained manually from protein databases,
such as UniProt. Events whose protein arguments
correspond to any of these known synonyms are
then used for reconstructing the pathway.

The apoptosis pathway consists of several over-
lapping signaling routes and can be defined on
different levels of detail. To have a single, ac-
curate and reasonably high-level definition, we
based our pathway on a concisely presentable sub-
set of the KEGG human apoptosis pathway (entry
hsa04210) (Kanehisa and Goto, 2000). As seen
in Figure 3, the extracted dataset contains events
between most interaction partners in the pathway.

The constructed pathway also shows that the ex-
tracted events are not necessarily interactions in
the physical sense. Many “higher level” events
are extracted as well. For example, the extracel-
lular signaling molecule TNFα can trigger path-
ways leading to the activation of Nf-κB. Although
the two proteins are not likely to interact directly,
it can be said that TNFα upregulates NF-κB, an
event actually extracted by the system. Such state-
ments of indirect interaction co-exist with state-
ments of actual, physical interactions in the event
data.

6 Conclusions

In this paper, we have presented the result of pro-
cessing the entire, unabridged set of PubMed titles
and abstracts with a state-of-the-art event extrac-
tion pipeline as a new resource for text mining in
the biomedical domain. The extraction result ar-
guably represents the best event extraction output
achievable with currently available tools.

The primary contribution of this work is the set
of over 19M extracted event instances of 4.5M
unique events. Of these, 2.1M instances of 1.6M
unique events involve at least two different named
entities. These form an event network several
orders of magnitude larger than those previously
available. The data is intended to support re-
search in biological hypothesis generation, path-
way extraction, and similar higher-level text min-
ing tasks. With the network readily available in an
easy-to-process format under an open license, re-
searchers can focus on the core tasks of text min-
ing without the need to perform the tedious and
computationally very intensive task of event ex-
traction with a complex IE pipeline.

In addition to the extracted events, we make
readily available the output of the BANNER sys-
tem on the entire set of PubMed titles and abstracts
as well as the parser output of the McClosky-
Charniak domain-adapted parser (McClosky and
Charniak, 2008; McClosky, 2009) further trans-
formed to the Stanford Dependency representa-
tion using the tools of de Marneffe et al. (2006)
for nearly all (99.91%) sentences with at least one
named entity identified. We expect this data to be
of use for the development and application of sys-
tems for event extraction and other BioNLP tasks,
many of which currently make extensive use of
dependency syntactic analysis. The generation of
this data having been far from a trivial technical
undertaking, its availability as-is can be expected
to save substantial duplication of efforts in further
research.

A manual analysis of extracted events relevant
to the apoptosis pathway demonstrates that the
event data can be used to construct detailed bio-
logical interaction networks with reasonable accu-
racy. However, accurate entity normalization, in
particular taking into account synonymous names,
seems to be a necessary prerequisite and remains
among the most important future work directions.
In the current study, we take first steps in this di-
rection in the form of a term-NE mapping method
in event context. The next step will be the applica-
tion of a state-of-the-art named entity normaliza-
tion system to obtain biological database identities
for a number of the named entities in the extracted
event network, opening possibilities for combin-
ing the data in the network with other biological
information. A further practical problem to ad-
dress will be that of visualizing the network and
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Figure 3: Extracted apoptosis event network. Events shown in the figure are selected on their
prominence in the data or correspondence to known apoptosis interactions. Events corresponding
to KEGG apoptosis pathway interaction partners are highlighted with a light grey background. The
event types are (P)ositive regulation, (N)egative regulation, (R)egulation, gene (E)xpression, (B)inding,
p(H)osphorylation, (L)ocalization and protein (C)atabolism.

presenting the information in a biologically mean-
ingful manner.

The introduced dataset is freely available for
research purposes at http://bionlp.utu.
fi/.
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