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Abstract 

In this research, we use machine learning 

techniques to provide solutions for descriptive 

linguists in the domain of language standardi-
zation. With regard to the personal name con-

struction in Afrikaans, we perform function 

learning from word pairs using the De-

fault&Refine algorithm. We demonstrate how 

the extracted rules can be used to identify ir-

regularities in previously standardized con-

structions and to predict new forms of unseen 

words. In addition, we define a generic, auto-
mated process that allows us to extract con-

structional schemas and present these visually 

as categorization networks, similar to what is 

often being used in Cognitive Grammar. We 

conclude that computational modeling of con-

structions can contribute to new descriptive 

linguistic insights, and to practical language 

solutions. 

1 Introduction 

In the main, constructionist approaches to grammar 

focus on discovering generalizations in language 

by analyzing clusters of usage-based instances of 
linguistic phenomena. Similarly, computational 

linguistic approaches to grammar learning aim to 

discover these very same patterns, using automated 
techniques such as machine learning (ML).  

In this research, we use techniques from ML to 

analyze and predict irregular phenomena with li-

mited data available, and then represent these phe-

nomena visually in a way that is compatible with 

the Cognitive Grammar descriptive framework (as 
a constructionist approach to grammar; henceforth 

CG). Our grand goal is to develop language tech-

nology tools that could be used in descriptive lin-
guistics. Specifically, we aim to (1) develop a 

predictor that could suggest derivational forms for 

novel base-forms; and (2) automatically extract 
categorization networks (i.e. constructional sche-

mas and the relationships between them) from a 

dataset, which could serve as a heuristic input to 
descriptive linguistics. 

2 Contextualization  

This research originates from a practical problem 
related to language standardization. Similar to 

standardization bodies for languages like Dutch, 

and German, the “Afrikaanse Taalkommisie” (TK) 
is the official body responsible for the description 

and regulation of Afrikaans spelling. The TK regu-

larly publishes the official orthography of Afri-
kaans in the form of the Afrikaanse Woordelys en 

Spelreëls (‘Afrikaans Wordlist and Spelling 

Rules’; AWS (Taalkommissie, 2009)).  
One of the challenges faced by the TK is to 

standardize the spelling of foreign place names 

(including names of countries, cities, regions, 
provinces, etc.), and their derived forms (i.e. adjec-

tives, such as Amerika·ans ‘American’; and per-

sonal names, such as Amerika·ner ‘person from 
America’). In the absence of sufficient usage-based 
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evidence, many variant forms are often being ac-

cepted, either related to spelling or derivation; 
compare for instance the variant spelling forms 

Maskat or Masqat or Muskat ‘Muscat’, or the va-

riant derivational forms Turkmenistan·i or Turkme-
nistan·ner ‘person from Turkmenistan’. The TK is 

therefore challenged with the task to give guide-

lines regarding spelling and derivation, while faced 
with highly irregular and sparse data containing 

many variants.  

We contribute to address this challenge by dis-
covering the constructions in seemingly unsyste-

matic and irregular data. Based on our tools and 

outputs, the TK could then revise existing irregu-
larities and variants, or use these tools to guide 

future decisions.  

3 Related Work 

3.1 Constructional Schemas 

Morphological constructions can be defined as 

composite symbolic assemblies (i.e. complex 

form-meaning pairings) smaller than phrases, con-
sisting of component structures between which 

valence relations hold (Van Huyssteen, 2010; see 

also Tuggy, 2005). One of the main component 
structures in morphological constructions is the 

morpheme, which is simply defined as a simplex 

symbolic unit in the language system (i.e. it does 
not contain smaller symbolic units as subparts). 

More schematic symbolic assemblies (i.e. less spe-

cified in their characterization) are referred to as 
constructional schemas.  

Constructional schemas can be represented as a 

network with relationships of categorization hold-
ing between different constructional schemas; 

these categorization networks provide the structur-

al description of a construction (Langacker, 2008: 
222). In the representations used in CG, categori-

zation relationships of elaboration (i.e. full instan-

tiations of a schema), extension (i.e. partial 
instantiations), and correspondence are specified. 

Entrenchment and ease of activation is indicated 

by the thickness of boxes: the thicker the line of a 
box, the more prototypical that unit is (Langacker, 

2008: 226; see also Figure 5).  

 The aim of descriptive linguistics is to postulate 
categorization networks that describe a construc-

tion in a language, based on usage data. Our re-

search contributes to this aim by automatically 

creating visual representations of such language 

models. For our current research, we are specifical-
ly interested in the personal name construction in 

Afrikaans. 

3.2 Afrikaans Personal Name Construction 

Formation of personal names by means of a per-
sonal name creating derivational suffix (NRPERS) is 

a productive process in many languages. The spe-

cific category that we are investigating in this re-
search is personal names derived from place 

names, such as Trinidad·ees ‘person from Trini-

dad’.  
In one of the standard works on derivation in 

Afrikaans, Kempen (1969) identifies a number of 

NRPERS suffixes that are used in derivations from 
place names. He finds that there is no obvious sys-

tematicity in their distribution (based on a dataset 

of 132 instances), but concludes that, in derivations 
of foreign place names, the -ees and -s morphemes 

are most frequently used, with some distribution 

also over -i, -n (especially -aan) and -r. In addition 
to some of the morphemes mentioned by Kempen 

(1969), Combrink (1990) also mentions a few, 

while excluding others. In as far as we know, no 
other description of this construction in Afrikaans 

has been done, and based on the difference be-

tween Combrink (1990) and Kempen (1969), we 
can also deduct that there is no comprehensive un-

derstanding of this construction.  

Personal names from place names can be formed 
in four basic ways in Afrikaans: (1) suffixation 

(Aruba·an ‘Arubian’); (2) zero derivation (Aber-

deen ‘person from Aberdeen’); (3) clipping and 
back-formation (Turk<Turkye ‘person from Tur-

key’; Armeen<Armenië ‘person from Armenia’); 

and (4) lexicalization (Cornwallis>Korniër ‘person 
from Cornwallis’). In a rather large number of cas-

es (119 in our dataset of 1,034; see 5.1) none of the 
above strategies can be applied, and then paraph-

rasing is being used (e.g. ŉ persoon van Akkra ‘a 

person from Accra’).  
Variants of morphemes (i.e. allomorphs) exist 

for phonological reasons, of which a linking ele-

ment is the most prominent (Combrink, 1990). 
Compare for example -aar in Brussel·aar ‘person 

from Brussels’ (where the base-form is polysyllab-

ic) vs. -enaar in Delft·enaar ‘person from Delft’ 
(where the base-form is monosyllabic; Delftenaar 

could therefore also be analyzed as Delft·en·aar). 
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For our purposes, we consider -enaar as an allo-

morph (i.e. elaboration) of –aar, and is identified 
as such in our categorization network (see Figure 

5). Similarly, we classify morphemes as allo-

morphs in cases where an allomorph exists due to 
identical vowel deletion (e.g. -an as a variant of -

aan when it combines with a base-form ending on 

an -a, as in Afrika·an ‘person from Africa’), as well 
as consonant doubling after a short, stressed sylla-

ble in the auslaut (e.g. -mer as a variant of -er, as 

in Amsterdam·mer ‘person from Amsterdam’).  

3.3 Automatic Extraction of Constructional 

Schemas 

Computational modeling of morphology is a vast 

subfield in computational linguistics, gaining 
popularity since the 1980s. Pioneering work in the 

field has been done within the two-level morphol-

ogy framework, and elaborations on this frame-
work can be considered the basis of state-of-the-art 

morphological analyzers today. However, since 

constructing such analyzers manually is hugely 
expensive in terms of time and human effort, the 

approach does not scale well for new languages.  

To overcome this obstacle, many computational 
linguists have developed techniques towards the 

automatic learning of morphology (e.g. Goldsmith, 

2001). A key goal is to be able to produce a mor-
phological analysis of the words of a corpus when 

only provided with the unannotated corpus.   

We are interested in the related goal of function 
learning: given a base-form of a word, learn other 

forms of the word. Most typically, function learn-

ing takes pairs of words (base-forms plus in-
flected/derived forms) as input to discover patterns 

in the data. This is also the paradigm used in the 

current paper. 
Several ML techniques have been used to solve 

specific function learning tasks (such as learning 
the past tense form of the English verb). Ap-

proaches include the use of decision trees, neural 

networks, inductive logic programming, and statis-
tical approaches (Shalonova & Flach, 2007). 

We are not aware of any work related to the au-

tomated learning of categorization networks spe-
cifically. 

4 Approach 

Our research has two complementary goals, dealt 

with separately: (1) to develop a predictor that can 

suggest potential derivational forms for novel base-

forms (and alternative forms for existing base-
forms with irregular forms); and (2) to automati-

cally extract categorization networks that are easily 

interpretable by linguists.  

4.1 Prediction of Derivational Forms 

In order to analyze existing and predict new deri-

vational forms, we use the Default&Refine (D&R) 

algorithm (Davel & Barnard, 2004). This algorithm 
extracts context-sensitive rules from discrete data, 

and is particularly effective when learning from 

small training sets. It has the additional advantage 
that rules generated are interpretable by humans. 

When applied to the grapheme-to-phoneme predic-

tion task, it has been shown to outperform compar-
ative algorithms (Davel & Barnard, 2008). 

The D&R algorithm defines a set of templates 

and then uses a greedy search to find the most gen-
eral rule (matching the templates) that describes 

the training data in question. Examples that are 

successfully explained by this rule are removed 
from the data set and the process repeated. When-

ever a new rule contradicts examples previously 

dealt with successfully, these are again added to 
the training data to be “re-explained” by a later 

rule. The rule set therefore captures hierarchical 

default behavior: the last rule defines the default 
behavior for a specific pattern, and acts as a back-

off rule to the second-last (more refined) rule, 

which would capture deviations from default beha-
vior. The second-last rule would then act as back-

off to the third-last rule, and so forth. Rules are 

therefore explicitly ordered according to the re-
verse rule extraction order. (The rule extracted first 

is matched last.)  

Once a set of rules have been generated, these 
describe the training data completely. In addition, 

by tracing each of the possible rules that may apply 
to a new pattern (in order), various alternative de-

rivational forms are identified, along with the evi-

dence supporting each option (as in Table 2). 

4.2 Extraction of Categorization Networks 

While the D&R rules extracted in Section Error! 

Reference source not found. provide a perspec-

tive on the phenomena that occur, these rule sets 
could become extremely large and, accordingly, 

more difficult to interpret. We therefore attempt to 

extract categorization networks (a la CG) as visual 
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representations in a fully automated fashion. These 

networks are more easily interpretable, especially 
to humans.  

An iterative string matching process is used to 

structure “potential morphemes” within a directed 
tree. Our main assumptions are that: 

· the only input to the process consists of a 

set of unannotated word pairs: base-form + 

derivational form; 

· a morpheme is added as a suffix; 

· allomorphs are either shorter than the main 

morpheme (i.e. characters removed) or 

longer (i.e. characters added); and 

· preference is given to larger strings that 
occur systematically in the training data. 

The following steps are followed: 

1. Generate a list of initial transformation classes  
based on the word pairs provided.  These are 

derived through a comparison based on the 

longest common substring of the derivational 
form and its respective base-form (see Table 

1).  The classes specify the character string to 

be removed from the base-form (if any), and 
the replacement string; note that ellipses indi-

cates the base-form (or part of it), and curly 

brackets indicate deletions (i.e. in China, de-
lete the -a, and then add -ees). If a place name 

and its personal name are identical, the class 

will be “0”. 
 

Table 1: Examples of transformation classes 
Place 

name  

Personal 

name 
Class (constructional 

schema) 

Aberdeen Aberdeen [[x] [0]] 

Amerika Amerikaner [[…] [ner]] 

China Chinees [[…{a}] [ees]] 

 

2. Create a list of all transformation classes and, 

per transformation class, a set of all deriva-
tional forms (referred to as the transformation 

derivations set). 

3. For each transformation derivations set, find 
the largest end-of-word string common to all 

members of that set (the set best string). The 

set of all “set best strings” are referred to as the 
best string list and can be interpreted as a set 

of candidate morphemes. 

4. For each transformation derivations set, con-
sider the elements in the best string list, and 

determine if any subsets of the current set exist 

that match a larger string currently in the best 

string list. If so, partition the set into subsets 

accordingly. (Each subset is therefore identi-
fied by both a transformation class and a best 

string. For example, three different sets, each 

with a different best string may be related to a 
single transformation class. This makes it poss-

ible to identify situations where an allomorph 

is created in other ways than simply adding the 
morpheme as a suffix.) 

5. For each subset, update the set best string 

based on the latest partition; update the best 
string list to reflect new best strings created. 

6. Repeat steps (4) and (5) until no further 

changes are made. The set of morphemes are 
considered stable, and it now remains to struc-

ture these elements into a visual categorization 

network. 
7. In order to create the categorization network, 

we start with an empty directed graph. For 

each set best string, create a list of all the trans-
formation classes that are applicable (as calcu-

lated above) and add these transformation 

classes from largest to smallest to a single 
branch of the tree. (One branch is created for 

each string in the best string list, and is a first 

attempt at capturing a morpheme along with its 
different variations.)   

8. Consider the nodes at each level (all nodes that 

have the same node as parent) and wherever 
one node fully contains another, move the con-

tained node to become the parent of the other 

(cutting the link between the original parent 
node and the contained node). This process en-

sures that morpheme candidates that are ac-

tually variations of other morphemes are 
suppressed at each level of the tree.  

9. Now combine any nodes that occur in different 
places in the tree but have identical transfor-

mation classes, by merging the lower node 

with the higher node. Only identical transfor-
mation classes are merged. 

10. For each node in the final tree, consider 

whether the left hand side of the transforma-
tion class can be refined, specifically by add-

ing additional matching characters based on 

the final transformation derivations set. 
The result of this process is a set of final transfor-

mation classes, each describing a constructional 

schema, and the relationships among these con-
structional schemas, displayed as a categorization 

network. 
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Figure 1: Number of words, rules and initial trans-

formations for the various person-x data sets 

5 Experimental Setup and Results 

5.1 Data 

The dataset that we use is the list of foreign place 
names and their corresponding personal names 

from the AWS (Taalkommissie, 2009). For pur-

poses of brevity, we only report on suffixation and 
back-formation, and exclude cases with variant 

morphemes, zero derivation and clipping, as well 
as all cases of paraphrasing. 732 instances are re-

tained (from the original dataset of 1,034 in-

stances).  
A supplementary dataset consisting of adjectival 

derivations of place names was also taken from the 

AWS and treated in the same manner as the per-
sonal names; this dataset is used in Section 6.3 to 

verify certain of the findings. This set contains 786 

instances. 

5.2 Development of Predictor 

The full dataset is highly irregular, containing 

many transformation classes that occur only once. 

We are interested in these irregularities (in order to 
identify words that may need further review), as 

well as in more systematic phenomena that occur 

in the data. We therefore create different data sets; 
in each set (referred to as person-x) we only retain 

those instances that occur x or more times in the 

transformations. (The person-1 set therefore con-
tains all training data, including all exceptions, 

while the person-6 set only contains transforma-

tions supported by 6 or more instances.) In Figure 

 
 Figure 2: Cross-validated rule accuracy for the per-

son-x and adjective-x data sets. 

 
1 the number of words and number of unique 

transformation classes are displayed for each per-

son-x data set.  
In order to verify the accuracy of our extracted 

rules, we use 10-fold cross-validation to obtain a 

mean accuracy per data set, as depicted in Figure 2 
(labeled “person”). We also generate a rule set 

from the training and test data combined: this larg-

er set is used to extract categorization networks.  
When the rule set is structured as a graph (called 

a rule network), the data can be interpreted as fol-

lows: the root node indicates the default transfor-
mation, which applies unless any child node is 

matched by the base-form, which again only ap-

plies unless a child of the child node matches the 
base-form (and so forth), which indicates that a 

more refined rule should be applied. A small part 

of a rule network is displayed in Figure 3, with 
each node listing the end-of-word string of the 

base-form that will trigger the rule, the transforma-

tion rule that will be applied, and the number of 
instances of the rule in the training data. The com-

plete rule network is very large: 266 nodes for the 

person-1 data set, as indicated in Figure 1.  
As was expected, a large number of exceptional 

rules are generated, indicating much inconsistency 

in how derivations are formed. For the person-1 
data set, 217 exceptions are identified. For each of 

these exceptions, alternatives are suggested in or-

der of prototypicality by tracing the rule network, 
as illustrated for the base-form Smirna in Table 2. 

Automatically generated tables like these provide a 

practical tool for language standardization. 
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Figure 3: A small subsection of a rule network 

 

 

Table 2: Alternative suggestions for the exception: 

Smirna -> Smirnioot 

Alternative Instances Examples 

Smirna 1 Smirna>Smirnioot 

Smirnees 1 Navarra>Navarrees 
Smirnaan 58 Sparta>Spartaan 

Astana>Astanaan 

Smirnaer 155 Hiroshima>Hiroshimaer 
Breda>Bredaer 

 

5.3 Development of Categorization Networks 

The categorization network in Figure 5 was com-

piled automatically, as described in 4.2. Note that 
this specific categorization network is based on 

construction schemas with three or more support-

ing examples per node; for the sake of brevity, we 
do not include the full categorization network 

(based on all the examples) in this paper. 

The relative prototypicality of constructional 
schemas (indicated by the thickness of lines in 

Figure 5) is determined post hoc by observing dis-

tribution frequencies. We obtain four natural clus-
ters in this way: highly prototypical (hundred or 

more instantiations), prototypical (forty or more 

instantiations), less prototypical (three or more in-
stantiations), and unprototypical (less than three 

instantiations, therefore also including exceptions); 

the latter category is not included in Figure 5.  
Full instantiations of a schema (i.e. relationships 

of elaboration) is indicated with solid arrows; the 

highest node in our network represents the seman-
tic pole, and is here simply indicated as [[PLACE X] 

[NRPERS]]. For each node in the network, we also 

indicate the class frequency, and provide three ex-
amples of the base-form.  

6 Discussion 

6.1 Predictor 

The extracted rules immediately provide us with: 

· An indication of the predictability of the 

data (rule accuracy); 

· A set of all exceptions (single instances 

that require an individual rule to describe 

that instance); and 

· A predictor of new forms (applying the 

rules to unseen words).  
From the accuracies depicted in Figure 2, it is clear 

that the full data set, including all phenomena that 

only occur once, describes a difficult learning task, 
with an overall accuracy of only 63.2% achieved. 

When more systematic phenomena are investigated 

(i.e. transformations with six or more instances), 
our classification accuracy quickly increases above 

80%, indicating that the predictor is in fact usable. 

An error analysis reveals that improvements may 
be possible by taking pronunciation information 

into account (stress patterns, syllable information, 

consonant categories, etc.).  
A standardization body such as the TK could 

use the automatically generated list of exceptions 

(similar to Table 2) to review prior standardization 
decisions.  In addition, the predictor can be used to 

suggest derivational forms for novel base-forms, 

which could then be verified with usage data. 

6.2 Categorization Networks 

From Figure 5, observe that we have identified 

seven basic morphemes (i.e. nodes on the highest 

level), viz. -aan, -aar, -ees, -er, -i, -iet and -ër; 
with the exception of the latter, all these corres-

pond to the morphemes identified by Kempen 

(1969) and Combrink (1990). Linguistically speak-
ing, -ër is actually an extension of the [[…] [er]] 

construction, since the e-trema is used in Afrikaans 

orthography as a variant of the letter “e” to signify 
a syllable with a null onset, preceded by a syllable 

without a coda. However, our algorithm treated -er 

and -ër as two separate morphemes.  
We can also observe that the [[…] [er]] con-

structional schema can be considered the most pro-
totypical schema (based on frequency). Other 

prototypical constructional schemas include [[…a] 

[an]], [[…] [ner]] and [[…] [ër]] (with the latter 
two actually instantiations of [[…] [er]]). Within a 
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CG framework, it is assumed that these prototypi-

cal constructional schemas are more likely to be 
activated for the categorization of novel examples. 

This observation contradicts Kempen’s (1969) 

finding that there is no obvious systematicity in the 
distribution of personal name forming suffixes, as 

well as his finding that the -ees and -s morphemes 

are most frequently used. Conversely, we did not 
find in our data significant evidence for the promi-

nence that Kempen (1969) and Combrink (1990) 

give to morphemes/allomorphs such as -der, -lees, 
-naar, -aner, -een, -ein/-yn or -ioot; that does not 

mean that these do not exist – they are just not as 

prominent as these previous descriptions might 
have made us believe.  

Furthermore, if we look at allomorphs due to 

linking elements, we identified six, viz. -nees,        
-enaar, -iaan, -ner, -ter and -iër. With the excep-

tion of -nees, all these have also been identified by 

Kempen (1969) and Combrink (1990). If we look 
closely at the instantiations of [[…] [nees]], we see 

that all base-form examples end on the stressed 

syllables [an] or [on], with the exception of Bali 
and Mali. A standardization body could therefore 

investigate whether these two examples could not 

be classified better under the [[…] [ër]] construc-
tional schema, resulting in, for example, Bali·ër, as 

we also find in Dutch. If this could be the case, 

then it would make sense why -nees has not been 
identified by other morphologists, since it would 

then be a case of an allomorph due to consonant 

doubling, and not due to a linking element.  
A similar closer look at -ees vs. -nees shows that 

all instantiations of the base-forms of [[…] [nees]] 

end on a stressed syllable, while those for [[…] 
[ees]] are unstressed. In the data, there is only one 

exception to the latter schema, viz.  Gaboen·ees 
‘person from Gabon’. Since Gaboen ends on a 

stressed syllable, it would actually fit better under 

the [[…] [nees]] constructional schema. Support 
for this hypothesis comes from Donaldson (1993), 

where he indicates that it should be spelled Ga-

boen·nees. In the absence of usage data, and based 
on this categorization network, the TK could there-

fore reconsider the spelling of Gaboen·ees.   

Several similar observations can be made re-
garding inconsistencies in the data (e.g. inconsis-

tencies regarding base-forms ending on [stan]). In 

this sense, categorization networks like these could 
be a helpful descriptive tool for a standardization 

body in finding systematicity in data and rules. 

6.3 Supplementary Data: Adjectival Deriva-

tions 

In order to validate the generic process, the full 

process (as described in 4.1 and 4.2) is repeated 
using the supplementary data set of adjectival 

forms described in 5.1. Results are positive: a simi-

larly efficient learning curve is obtained (see Fig-
ure 2) and the categorization network, although 

quite different, is similarly interpretable (Figure 4). 

 
Figure 4: Categorization network for the adjective-4 

data set 

7 Conclusion and Future Work 

In this paper, we presented a methodology to au-

tomatically discover constructional schemas from 

highly irregular data, and to represent these in a 
way that is both interpretable by computers (pre-

dictive rule sets) and humans (categorization net-
works). The graphical representation is by and 

large compatible with one of the major Construc-

tion Grammar theories, viz. CG: we show proto-
typical examples (based on frequency), and also 

indicate relationships of elaboration. In future 

work, these representations could be further re-
fined, to also indicate relationships of extensions 

and correspondences. We have illustrated how 

these representations could provide insight in our 
knowledge of the morphology of Afrikaans, as 

well as providing practical language solutions for 

language standardization (such as the predictor and 
the tables with alternative suggestions).  

Other future work will continue in two direc-

tions: (1) refining the current tool for predicting 
derivational forms by taking additional features 
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into account, incorporating data that was left out in 

our current experiments (such as zero derivations), 
and benchmarking our results with regard to alter-

native approaches; and (2) applying our algorithm 

to describe other morphological constructions.  
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Figure 5: Categorization network for the person-4 

data set 
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