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Abstract
Clinical named entities convey great deal of
knowledge in clinical notes. This paper inves-
tigates named entity recognition from clinical
notes using machine learning approaches. We
present a cascading system that uses a Condi-
tional Random Fields model, a Support Vector
Machine and a Maximum Entropy to reclassify
the identified entities in order to reduce misclas-
sification. Voting strategy was employed to de-
termine the class of the recognised entities be-
tween the three classifiers. The experiments were
conducted on a corpus of 311 manually anno-
tated admission summaries form an Intensive
Care Unit. The recognition of 10 types of clini-
cal named entities using 10 fold cross-validation
achieved an overall results of 83.3 F-score. The
reclassifier effectively increased the performance
over stand-alone CRF models by 3.35 F-score.
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1 Introduction

With the rapid growth of clinical data produced by
health organisations, efficient information extraction
from these free text clinical notes will be valuable
for improving the work of clinical wards and gaining
greater understanding of patient care as well as pro-
gression of disease. Recognising named entities is a
key to unlocking the information stored in unstruc-
tured clinical text. Named entity recognition is an
important subtask of Information Extraction. It in-
volves the recognition of named entity (NE) phrases,
and usually the classification of these NEs into par-
ticular categories. In the clinical domain, important
entity categories are clinical findings, procedures and
drugs.

In recent years, the recognition of named entities in
the biomedical scientific literature has become the fo-
cus of much research. A large number of systems have
been built to recognise, classify and map biomedical
entities to ontologies. On the other side, only a lit-
tle work have been reported in clinical named entity
recognition [14, 8, 17]. NER has achieved high perfor-
mance in scientific articles and newswire text, whereas

the clinical notes written by clinicians are in a less
structured and often minimal grammatical form with
idosyncratic and cryptic shorthand, which poses chal-
lenges in NER. Principally, the clinical named entity
recognition systems are rule or pattern based. The
rules or patterns may not be generalisable due to the
specific writing style of individual clinicians. However,
a machine learning approach is not fully advanced in
clinical named entity recognition due to a lack of avail-
able training data. We have investigated the issues of
clinical named entity recognition, by constructing a
set of annotation guidelines and manually annotating
311 clinical notes from an Intensive Care Unit (ICU),
with inter-annotator agreement of 88%. In this paper
we present a named entity recogniser using a cascade
of classifiers to find entities. The named entities will
serve as a prerequisite for clinical relation extraction,
clinical notes indexing and question answering from
the ICU database.

There have been many approaches to NER in
biomedical literature. They roughly fall into three
approaches: rule-based approaches, dictionary-based
approaches and machine learning based approaches.
The state-of-art machine learning based systems fo-
cus on selecting effective features for building classi-
fiers. Many machine learners have been used for ex-
perimentation, for example, Support Vector Machines
(SVMs)[9], Hidden Markov Model (HMM)[16], Maxi-
mum Entropy Model (ME) [2] and Conditional Ran-
dom Fields (CRFs) [12]. Conditional Random Fields
have been proven to be the best performing learner
for the NER task [3]. The benefit of using a machine
learner is that it can utilise both the information form
of the entity themselves and the contextual informa-
tion surrounding the entity. It has better generalis-
ability over pattern based approach as it is able to
perform prediction without seeing the entire length of
the entity.

Nevertheless the performance of biomedical NER
systems still trails behind newswire NER systems. It
suggests that individual NER system may not cover
entity representations with sufficiently rich features
due to the great variety and ambiguity in biomedi-
cal named entities. This problem also exists in clinical
text as it has characteristic of both formal and infor-
mal linguistic styles, with many unseen named entities,
spelling variations and abbreviations. To overcome
these difficulties, we propose a classifier cascade ap-
proach to clinical NER. We firstly build a CRF based
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classifier to identify the boundary and class of the
named entities, then we trained a SVM and an ME
model to reclassify the class of the named entities us-
ing the output of the CRF models and different fea-
tures. The final class of the entity was determined by
a majority voting [18] among the output of the CRF,
SVM and ME models. The overall system achieved
best performance of 83.26 F-score. The cascading clas-
sifiers improved 3.35 F-sore over the stand-alone CRF
system.

This paper is organised as follows: Section 2 gives
an overview of related work in biomedical named en-
tity recognition. Section 3 introduces the data used in
our experiments. Section 4 to Section 6 describes the
cascading named entity recogniser in detail. Section 7
presents the evaluation of the proposed system as well
as discussion of the results.

2 Related Work

The early research in biomedical named entity recog-
niton was dictionary based. The Unified Medical Lan-
guage System Metathesaurus (UMLS) is the word’s
largest medical knowledge source and it has been
widely used as the dictionary for identification of med-
ical named entities in clinical reports. Systems such as
[23, 22, 7] use string matching methods to find UMLS
concepts in clinical notes. These systems suffer low re-
call due to the great variety in medical terminology. A
more sophisticated approach is to make use of shallow
parsing to identify all noun phrases in a given text.
The advantage of this approach is that the named en-
tities that do not exist in the dictionary can be found.
For example, MedLEE [6] and MetaMap [1] program
utilised parsers to parse text into noun phrases then
map these phases to standard medical vocabularies.
However, accurate identification of noun phrases is it-
self a problem. Most parsers trained on formal medical
text or newswire articles may not be directly applica-
ble to ungrammatical clinical text.

Among the state-of-art systems for biomedical
named entity recognition are those that utilise ma-
chine learning approach [19, 5, 21]. Machine learning
approaches have been successfully applied in biomed-
ical named entity recognition and outperformed rule-
based systems. With an annotated corpus, the ma-
chine learner is able to learn models to make prediction
on unseen data. Recent research has found that using
stand alone machine learners may not be enough for
biomedical named entity recognition due to the com-
plex structure of the named entity. Most of the learn-
ers only use local information about the current word,
while correct identification of many named entities re-
quires global information over the entire entity. To
employ global information into the learner, rule based
post-processing or using multiple classifiers is required.

Cascading of classifiers has become a new research
direction in machine learning recently. It can effec-
tively improve performance of individual classifiers.
The combination of the results of different classifiers
is able to overcome possible local weakness of individ-
ual classifiers and produce more reliable recognition
results. Many of the current named entity recognition
systems use a classifier combination strategy such as

Entity Class Example n
finding lung cancer ; SOB ; 4741
procedure chest X Ray ;laparotomy 2353
substance Ceftriaxone; CO2; platelet 2449
qualifier left ; right ; elective; mild 2353
body renal artery ; liver 735
behavior smoker ; heavy drinker 399
organism HCV ; proteus 36
object pump; larnygoscope 179
occupation cardiologist ; psychiatrist 139
observable GCS ; blood pressure 192

Table 1: Named Entity classes with examples and
number of instances in the corpus.

[13, 11, 20, 3, 4]. For example, Lee et al. [13] divide
NER into recognition and classification, and employed
two SVMs for recognition and classification. Kim et
al [11], uses a similar two phase approach to separate
recognition from classification. In their system, CRF
was used to identify the named entity boundaries and
SVMs are used for assigning entity categories. Chan
et al. [3] further extended the two phase model using
CRFs for both boundary identification and entity clas-
sification. On the other hand, cascading systems also
achieved promising results. Yoshida et al. [20] uses an
ME classifier to produce the n-best tag sequences for
the input text and uses a ME-based log-linear classifier
to find the best sequence. The combination of models
effectively increased the performance by 1.55 F-score
on the GENIA corpus [10]. Similarly, Corbett and
Copestake [4] use an ME classifier and an ME rescorer
in recognising chemical named entities from chemistry
papers, the cascading approach gives about a 3 point
increase in F-score over the stand alone system.

3 The Data

We have developed a set of annotation guidelines for
clinical named entities and manually annotated 311
admission summaries from an hospital’s Intensive Care
Unit (ICU). The clinical notes were drawn from pa-
tients who have stayed in ICU for more than 3 days,
with the most frequent causes of admission such as car-
diac disease, liver disease, respiratory disease, cancer
patient, patient underwent surgery and so on. Notes
vary in size, from 100 words to 500 words. Most of the
notes consist of content such as chief complaint, pa-
tient background, current condition, history of present
illness, laboratory test reports, medications, social his-
tory, impression, and further plans. Notes are de-
identified before annotation.

The guidelines were developed using an iterative ap-
proach. The clinicians and linguists jointly defined
the annotation schema. The entity classes are mainly
based on the SNOMED CT concept categories, and
SNOMED CT user development guide1. The guide-
lines defined 10 entity types, which are detailed in
Table 1. Firstly, the clinicians and linguists jointly
annotated 10 notes and produced initial guidelines.
The guidelines were then refined using five iterations
1 http://www.ihtsdo.org/publications/
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Class P R F
overall 89.22 87.05 88.12
body 87.40 82.48 84.87
observable 84.77 79.52 82.06
qualifier 89.89 81.80 85.66
object 78.35 80.00 79.17
substance 95.01 94.03 94.52
behaviour 80.49 78.57 79.52
occupations 78.95 77.92 78.43
finding 91.72 91.17 91.44
organism 75.00 70.59 72.73
procedure 87.43 87.82 87.63

Table 2: The inter-annotator agreement measured by
F-score for 10 Entity Classes.

of annotation and analysis. Five notes were used in
each iteration, at the end of each cycle, the clinicians
and linguists discussed the disagreements and made
amendment to the guidelines if necessary. Finally the
development annotation agreement reached a stable
state and the guidelines were finalised.

The remainder of the annotation was completed by
2 computational linguists with medical knowledge and
experience in biomedical NLP. During annotation, the
annotators constantly consulted the domain experts
from the hospital. Most of the clinical text can be un-
derstood by the linguists even though they do not have
a clinical background. The meaning of most terms can
be determined by the linguistic constructs of the text.
Some difficult terms require a dictionary lookup to re-
solve the meaning. A few abbreviations are not easily
understood by the clinicians either, so they needed to
check the abbreviation lists to identify the terms. The
polysemous abbreviations sometimes cause mistakes in
annotations, but for most of the cases their meaning
can be resolved by looking at the context.

The inter-annotator agreement was found to be 88%
F-score and the agreement of each individual cate-
gory is presented in Table 2, which indicates the upper
bound of the NER performance. The two annotators
have similar backgrounds, therefore their annotation
is relatively consistent when applying the guidelines.
Most of the entities were annotated using their linguis-
tic knowledge rather than clinical knowledge. However
the annotation guidelines also specified some clinical
information that required domain knowledge. For ex-
ample, the causation of a clinical symptom or a par-
ticular drug used to treat a certain disease. It was not
easy for computational linguists to discover this knowl-
edge as there are no explicit rules to define them. Thus
the true recall of the annotation will be lower than the
annotation created by clinicians.

4 Methods

We built a named entity recognition system using a
cascade of classifiers. The first component in the sys-
tem is a CRF based model. It is similar to most of the
stand-alone named entity recognition systems, that in-
tegrated a set of features to produce a sequence of
named entity labels. Then a reclassifier is built us-
ing different feature sets with the output of the CRF

model aimed at reclassifying misclassified named en-
tities produced by CRF model. The system architec-
ture is illustrated in Figure 1. We experimented with
two different machine learning models ME and SVMs
in the reclassification stage. The output of these two
models are then combined with the output of the CRF
model to produce a final class for the named entity.

CRF

SVM

ME

Vote NE w
Class

Training 
Data

Fig. 1: System architecture of CRF model with reclas-
sifiers.

The named entity recognition task has been formu-
lated as a sequence labeling task. The named entities
are represented in BIO notation, where B denotes the
beginning of an entity, I denotes inside, but not at be-
ginning of an entity and O denotes not in any part of a
entity. Each word is a token in an input sequence to be
assigned a label. The output is a sequence of BIO tags.
for example, b-finding, i-finding, b-procedure, i-
procedure and so on. Figure 2 presents a sentence
annotated with BIO tags.

Head b-procedure CT i-procedure revealed O pituitary
b-finding macroadenoma i-finding in O suprasellar b-body

cisterns i-body . O

Fig. 2: An example sentence with BIO tags.

5 CRF-based Named Entity
Recogniser

Conditional Random Field (CRF) is a discriminative
probabilistic model that is useful for the labeling se-
quential data. It aims to maximize the conditional
probability of the output given an input sequence.
The CRFs have several advantages over ME, SVM
and HMM in sequential labeling tasks. It can use the
sequential information where the output is the most
likely tag sequence over the entire input sequence,
whereas SVMs and ME don’t consider sequence infor-
mation. Modeling conditional probability rather than
joint probability does not suffer from strong Markov
assumptions on the input and output sequence distri-
butions of HMMs. Because of these two properties,
CRFs have an advantage over other learners and have
been shown to be useful in biomedical named entity
recognition in previous work [3].

5.1 Features for CRF Learner

Word Features: Every token in the training data
was used as a feature. Alphabetic words in the train-
ing data were converted to lowercase in order to in-
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crease recall. The left and right lexical bigrams were
also used as a feature, however it only yielded a slight
improvement in performance.

Orthographic Features: Word formation was
genaralised into orthographic classes. The present
model uses 7 orthographic features to indicate whether
the words are captialised or upper case, for example
many findings consist of captialised words and whether
they are alphanumeric or contain any slashes.

Affixes: prefixes and suffixes of character length 4
were also used as features, because some procedures,
substances and findings have special affixes, which are
quite distinguishable from ordinary words.

Context Features: To utilise the context informa-
tion, neighboring words within a context window size
of 5 are added as features, i.e. two previous tokens and
two next tokens. Window size of 5 is chosen because it
yields the best performance. The target and previous
entity class labels are also used as features, and had
been shown to be very effective.

Dictionary Features: We constructed two dif-
ferent features to capture the existence of an entity
in a closed dictionary and an open dictionary. The
closed dictionary is constructed by extracting all entity
names from the training data in each fold. The open
dictionary was constructed from SNOMED CT termi-
nology. Single word concepts and the rightmost head
nouns of multi-word concepts were extracted. The cat-
egory was assigned to the word when it is used as a fea-
ture. For words belonging to more than one class, all
the classes were represented in the feature. For exam-
ple the word aspiration was found in both the finding
and procedure dictionaries, the feature is represent as
Open/Procedure/Finding. The open dictionary con-
sists of 25468 entries.

Abbreviations and Acronyms: The abbrevia-
tion lists were constructed from 3 resources: abbrevi-
ations from SNOMED CT terminology, abbreviations
& acronyms from the hospital and manually resolved
abbreviations in the larger corpus. We constructed
the SNOMED CT lists using rules to extract abbrevi-
ations and acronyms from the gloss of SNOMED con-
cepts, for example, AAA - Abdominal aortic aneurysm
(disorder) is extracted as a pair of abbreviations and
expanded. We also obtained a list of commonly used
abbreviations from the intensive care unit’s database.
The corpus abbreviation list was obtained by first us-
ing orphographical and lexical patterns to extract a
list of candidate abbreviations from a larger collection
of notes that the training data were drawn from. The
extracted candidates were then manually verified by
two human experts.

When a word is matched to an abbreviation, the
class of the abbreviation is assigned to the word as a
feature. Moreover, the two rightmost words in the ex-
pansion are used as a feature. The abbreviation lists
consists of 9757 entries. However, building abbrevia-
tion lists requires a great deal of manual work.

POS Features: The POS tags of 3 words surround-
ing the target words (1 preceding and 2 following) are
considered. The POS features is able to generalise the
low frequency words. The use of POS helps to deter-
mine the boundaries of named entities. The experi-
ments conducted by Zhou and Su [21] discovered POS
features are very useful in biomedical NER. The POS

tagger used to generate POS tags is the GENIA tag-
ger2. This is a tagger trained on biomedical abstracts.
It is not expected the tagger will produce high accu-
racy tagging results on our corpus, but the POS is
relatively simple syntactic processing, and might be
useful.

6 Reclassifier

The re-classifier aims to reclassify the semantic cat-
egories of the named entities recognised by the CRF
learner. As we observed there are many misclassifica-
tions produced by the CRFs because the local context
of different named entity classes are similar.

6.1 The Learning Algorithms

We experimented with MEs and SVMs for reclassifi-
cation. SVM is a supervised machine learner based on
the theory of structural risk minimization, which aims
to find an optimal hyperplan to separate the training
example into two classes, and make predictions based
on these support vectors. SVMs have been successfully
applied to many NLP tasks such as document classifi-
cation. It can use large numbers of features and dose
not make the feature independence assumption. The
SVMs are binary classifiers so we use one-vs-the-rest
approach for multi-label classification and choose the
final prediction based on the smallest margin to the
hyperplane.

The Maximum Entropy (ME) model is a probabilis-
tic machine learner that models the conditional prob-
ability of output o for given inputs history h. The
conditional probability is defined as:

P (o|h) =
1

Zλ(h)
exp

(
k∑

i=1

λifi(h, o)

)

where fi(h, o) is a binary-valued feature function, λi

is the weighting parameter of fi(h, o), k is the num-
ber of features and Zλ(h) is a normalisation factor for∑

0 p(o|h) = 1.

6.2 Features for Reclassifier

Word Unigram: Words described in CRF features
were mainly adapted in reclassifier. The words inside
the entity were used as bag of words features, i.e. we
didn’t consider the order and position of the word.
However, the position of words are important. The
class of the entities are usually determined by the head
noun of the phrase, for example the head noun pain
in chest pain and abdominal pain determines the class
of these entities. These head nouns are usually at the
right most position of a named entity. We also consider
words at the rightmost position of the entity and the
second rightmost word as entity context features.

Word Bigram: The word bigrams inside the en-
tities were used as features. For example, the bigram
of the entity ”chronic renal failure” is ”chronic renal”
and ”renal failure”.
2 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/

45



Word Trigram: The word trigrams inside the en-
tities were used as a feature.

Orthography: Orthographic features described in
Section 5.1 were used.

Context Words: The 2 words to the left boundary
of the entities and the 2 words to the right boundary
of the entities were used as context features.

Character n-grams: The character n-grams of
each word in the entity were used as features. charac-
ter 3-grams and character 4-grams were used as fea-
tures. It is observed that some of the clinical named
entities are derived from latin, that have special pre-
fix, suffixes or substrings. For example procedures of-
ten end with -tomy, some diseases end with -itis, and
some drug names have special substrings.

Dictionary Features: We use the same dictionary
list, but we made 2 different feature types: The non-
positional words, which is the same as Dictionary Fea-
tures used in CRF model; and Positional, where only
the last word in the entities were matched to the dic-
tionary.

Abbreviation Features: The abbreviation list is
the same as that used in CRF features. The class of the
abbreviation for the matched word is used as a feature,
however we also expand the matched abbreviation and
use the words in expansion as the bag of word features.
For example, the entity CRF is expanded to Chronic
Renal Failure and all three words in the expansion are
used as features. All the words in an abbreviation with
more than one expansion were used as a bag-of-words,
such as LAD is expanded into “left axis deviation” and
“left anterior descending artery”. All seven words are
used as bag-of-word features. A binary feature is used
to indicate if the expansion is unique, the value set to
0 if there is only one expansion for the abbreviation.

CRF Output Class: The class predicted by the
CRF model was used as a feature in reclassifiers.

6.3 Training the Reclassifier

We divided the training set into 5 folds and use 4 folds
to train a CRF model and make prediction on the re-
maining fold. The remaining fold is used to generate
training data for reclassifiers. We repeat the process 5
times, each time holding out a different fold as test set,
until all instances in the training set have the the CRF
predicted class value. The reclassifiers were trained
using all data generated by this procedure. This pro-
cedure makes sure the reclassifier is not trained on the
output of the CRFs that is trained on the data need
to be classified by the reclassifier.

6.4 Voting for Reclassification

We use a voting method for the re-classifier ensemble.
This ensemble strategy uses heuristic rules to judge
which results to be selected if the individual learners
cannot reach a consensus decision. We use a major-
ity vote strategy to decide the final class. The class
prediction produced by the CRF model was used in
voting between the output of CRF, ME and SVMs.
The final class is assigned if two of the learners agree.
If the three classifiers produce three different outputs,
the results were ranked by the probability produced
by the CRF, ME and SVM models. The probability

of SVMs were obtained by converting the distance be-
tween the instance and hyper-plane produced by the
SVM using an sigmoid function [15]. The probability
of CRFs were obtained by the highest probability of
the tag in the entity tag sequence. Although the prob-
abilities are all between 0 and 1, however, one flaw in
the probability ranking is that different classifiers use
different weight functions, so some probabilities may
not be directly comparable. An adjusted probability
function should be learnt from the corpus.

6.5 Separating Recognition from Clas-
sification

We separate the entity recognition from entity classifi-
cation. The system structure is illustrated in Figure 3.
The CRF model was used to identify the boundaries of
the named entities. The entity labels were converted
to B-ENT and I-ENT if the phrase is an entity. After
the recognition stage, the identified entities were sent
to the ME and SVMs reclassifiers for identification of
the class of the entity. The outputs of ME and SVMs
were used for voting using the method described in
Section 6.4.

CRF
NE w/o
Class

SVM

ME

Vote NE w
Class

Fig. 3: System architecture for separating recognition
from classification.

7 Experimental Results

7.1 Experimental Setup

The data consists of a total of 45953 tokens, 17544
tokens are annotated with entity tags. The tag den-
sity is 38.18%. There are in total 12882 named enti-
ties results with an average of 1.36 tokens per named
entity. The results were evaluated by 10-fold cross-
validation. Each fold was stratified on a sentence level,
so that for the rare classes such as organism had
some instances in each fold. We adapted the evalua-
tion scripts provided by the jnlpba 2004 shared task
to evaluate the system performance3. The standard
Recall/Precision/F-score are used as evaluation met-
rics.

We use CRF++4 package for CRF learning.
CRF++ takes the standard CoNLL NER shared task
input. We converted the data and features into the ac-
cepted format and trained the model using the pack-
age’s default parameter configuration. We did no fea-
ture selection and all folds use the same parameter
setting. CRF++ can produce output tags along with

3 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/ERtask/report.html
4 http://crfpp.sourceforge.net/
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the tag’s probability, these probabilities are used for
reclassification.

We use LibSVM5 and Maxent6 for reclassification.
We use the polynomial kernel with degree 2 in SVM
learning, and set the C values to 8, i.e. approxi-
mately the ratio of the number of negative instances
to the number of positive instances in the training
data. The other parameters are obtained by a 10-fold
cross-validation on the training data. The probabil-
ity of SVM tags are obtained by setting appropriate
software options to enable probability output during
training and prediction. To train the Maxent model,
we use Maxent package’s default parameters and ter-
minate the learning process when the training model
converges.

7.2 CRF Classifier Performance

Table 3 shows the performance of the CRF classifier.
Features were added to the model progressively to un-
derstand the contribution of each feature. The overall
performance is very promising, with a score F-score
of 79.91. All experiments used window size of 5 and
previously predicted labels. The baseline model was
built using only word features. The dictionary fea-
tures are very useful, the use of a dictionary allows for
the identification of unseen words in the test set. The
dictionary entries also act as trigger words described
in some biomedical NER systems, and can help iden-
tify the boundary of entity. POS tag is not as effective
as expected, this may be due to the inaccurate POS
tagging by the GENIA tagger and that the sentences
are poorly structured. Other features all make moder-
ate contribution to the performance. Different context
window sizes were investigated and a window size 5
produced the best performance.

Feature Sets P R F
Word 79.82 66.28 72.41
+Orthographic 77.96 71.37 74.52
+Affix 78.24 72.59 75.31
+Dictionary 82.77 75.76 79.11
+Abbreviation 83.19 76.38 79.64
+POS 83.30 76.78 79.91
window size 0 69.82 56.28 63.32
window size 3 82.74 75.23 78.80
window size 5 83.30 76.78 79.91
window size 7 83.63 74.57 78.84

Table 3: Contribution of features by adding features
progressively (using window size of 5). Different win-
dow sizes were investigated.

7.3 Reclassifier Performance

We built the reclassifiers using the output of the 5-
fold cross trained CRF output. Table 4 shows the
performance of the reclassifiers on the test data. We
compared SVM reclassifier performance with ME re-
classifier performance. The SVM and ME have the
same level of performance on classification, with SVM

5 http://www.csie.ntu.edu.tw/ cjlin/libsvm/
6 http://homepages.inf.ed.ac.uk/lzhang10/maxent toolkit.html

slightly outperforming ME by about 0.4 F-score. The
classification performance is high, which suggests that
if the boundary of a named entity is correctly iden-
tified, the performance of the NER will go above 90
F-score, and identifying boundaries is more difficult
than assigning named entity classes.

Class SVM P/R/F ME P/R/F

overall 93.20/93.20/93.20 92.81/92.81/92.81
body 86.85/75.35/80.60 85.78/76.73/80.92
finding 91.30/95.62/93.41 90.62/95.73/93.10
hprofile 94.39/88.22/90.96 95.87/86.84/90.98
object 92.50/55.36/68.43 88.00/47.82/60.91
obs. 94.32/80.17/86.16 91.87/80.79/85.36
organism 55.56/22.22/31.48 50.00/19.00/27.38
procedure 93.82/91.24/92.49 93.91/90.42/92.12
qualifier 99.62/97.83/98.72 99.68/97.91/98.79
social 94.33/81.90/86.50 96.33/74.04/83.03
substance 93.58/96.48/95.00 93.15/95.60/94.36

Table 4: Results of reclassification for correctly iden-
tified named entities.

7.4 Cascading System Performance

The reclassifiers were run on the CRF output to cor-
rect misclassified labels. The overall performance of
the cascade system were evaluated. We also evaluated
the performance of separating recognition from classi-
fication. In recognition, the CRF models only predict
whether or not a phrase is an entity.

Table 5 shows the performance of the cascading clas-
sifiers. CRF only is the baseline model without reclas-
sification. CRF recognition reports the entity bound-
ary performance by CRF. The rest are reclassification
results with SVM, ME and Voting respectively. In
general the cascading systems outperform the stand
alone CRF system. The performances vary from 2.03
to 3.35. This suggests that selecting different features
for classification can further utilise the discriminative
power of individual classifiers. The best combined sys-
tem was obtained by using cascading classifiers with
voting, which gives in total 3.35 F-score increase over
the baseline CRF model. Cascading classifiers per-
form slightly better than recognition with reclassifica-
tion, because recognition with reclassification cannot
use the class information produced by the CRF model.

We trained two CRF models: the first one only uses
3 entity labels, B-ENT, I-ENT and O, and the sec-

System P R F
CRF only 83.30 76.78 79.91
cascading SVM 85.42 80.69 82.99
cascading ME 85.02 80.31 82.60
cascading Voting 85.87 80.81 83.26
recognition + SVM 82.75 82.16 82.45
recognition + ME 82.28 81.69 81.98
recognition + Voting 84.65 80.99 82.78
CRF recognition 1 86.70 86.08 86.39
CRF recognition 2 88.89 83.90 86.32

Table 5: Performance of combined systems using re-
classification.
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Class CRF P/R/F Cascading P/R/F

overall 83.30/76.78/79.91 85.87/80.81/83.26
body 74.67/59.57/66.21 75.89/66.39/70.83
finding 79.74/80.14/79.94 84.22/82.49/83.35
hprofile 86.85/67.15/75.73 86.34/74.44/79.95
object 81.67/23.82/35.60 71.70/42.46/53.33
obs. 82.04/57.77/67.78 79.61/63.02/70.35
organism 00.00/0.00/0.00 85.00/47.22/60.71
procedure 83.69/71.93/77.36 85.81/79.13/82.33
qualifier 88.19/85.34/86.72 87.62/86.62/87.12
social 74.83/26.55/39.01 73.61/38.13/50.24
substance 88.94/85.71/87.25 92.11/87.71/89.86

Table 6: The performance of the best cascading sys-
tem and baseline CRF systems with detailed informa-
tion for each class.

ond one uses all 21 entity tags. The first model pro-
duced a recognition performance of 86.70/86.08/86.39
in P/R/F. The recognition performance of the sec-
ond model was obtained by changing all entity tags
to B-ENT and I-ENT on the prediction output, which
is 88.89/83.90/86.32 in P/R/F. The first model has
higher recall than the second model, which results in
higher recall in the Recognition with Reclassification
model.

We use a different feature set in the Reclassifier from
the CRF model because some features are not very
informative in the CRF model, for example, adding
the abbreviation expansion gives about 0.3 drop in F-
score, and incorporating character-n gram features re-
sults in huge amount of features, which slows down
the CRF learning process but results in insignificant 7

performance change.

7.5 Individual Class Performance

Table 6 shows the performance of overall cascading
classifiers. We compared the best performing cascad-
ing system with the baseline CRF system. Overall,
there is a consistent gap between precision and re-
call, with recall value 5 points F-score behind preci-
sion. The best-performing classes are among the most
frequent classes. Substance, Finding and Proce-
dure are the best three categories due to their high
frequency in the corpus. This is an indication that
sufficient training data is a crucial factor in achieving
both high precision and recall. Body achieved the
least accuracy among frequent classes. It is mainly
caused by nested construction of the entities. Body
entities can appear inside a nested entity at different
positions for example, chest in chest pain and ventricle
in dilated ventricle.

The low recall is caused by a lack of lexical informa-
tion for named entities. In the corpus, about one third
of the entities has a frequency of only one. To recog-
nise these low frequency entities, generalised features
are required to predict unseen examples. POS features
and context features can partially cure this problem,
but the lexical information is still being missed dur-
ing the classification. The medical terminology has a
great variety in its spelling plus clinicians invent new

7 t-test 95% confidence interval

terms by combining morphologies during writing, such
as inventing the term rehaperisation. It is difficult to
capture unseen examples in test data for this small size
corpus. Utilisation of external resources such as dictio-
nary and abbreviation lists has shown its effectiveness
in tackling this problem, but the external resources are
not exhaustive and may not cover the dialect language
used in different hospitals and clinical specialisations.

Reclassifiers use a great deal of word level features
such as character n-grams that are focused on predict-
ing labels of named entities, which effectively increased
the performance by 3.5 point F-score. Reclassification
increases the recall of infrequent classes. The CRF is
likely to bias to the majority classes. Most of these
rare class instances were classified as finding. Using
more discriminative features Reclassifiers are able to
separate these rare classes from majority classes. It
has been shown that the SVM outperformed ME re-
classifier. Combining the classification results of ME,
SVMs and CRFs via voting has some positive influ-
ence on results, but not significant. The features used
in the models are the same, which may cause corre-
lation in misclassifications produced by the classifiers.
The results might be improved using different feature
sets for each learner, but the space for improvement is
small. There is still around 3 points F-score in misclas-
sification which maybe caused by human annotation
errors.

Named Entity CRF RC GS
frontal cavernoma Body Finding Finding
E/O lesion Proc. Finding Proc.
ST elevation Proc. Finding Finding
smoker Finding H.profile H.profile
CT Surg Reg Proc. Occup. Occup.
Mac. larnygoscope Finding Proc. Object
subclavian CVC Finding Object Object
hilum Body Finding Body
Tonsilectomy Substa. Proc. Proc.

Table 7: Some examples of classification disagree-
ments between CRFs and Reclassifiers.

We present some classification disagreements be-
tween the three classifiers in Table 7. RC indicates
the reclassification results and GS is the gold-standard
class. It is observed that the misclassifications appear
more frequently in entities involved in abbreviations,
ostensibly due to a lack of knowledge to resolve them.
The reclassifiers make false correction at the rate of
about 15%. The CRF is more likely to classify un-
seen entities into major categories whereas reclassi-
fiers tend to classify the names according the the head
nouns. The reclassifiers are biased to SVM and ME
classifiers as the two learners used similar features for
learning. There are about 20% entities assigned to
different classes by each of the three classifiers.

The boundary detection achieved an F-score of
86.39. This performance is lower than the classifica-
tion performance of 92 ∼ 93 F-score. Table 8 lists the
partial matching performance of the system. As sug-
gested by the results, many mistakes occurred at the
boundary of the entities. Many of them are caused
by the ambiguous modifiers at the boundaries of the
phrase. Misrecognition in coordination structure is
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Matching Criteria P R F
Exact Matching 85.87 80.81 83.26
Left Boundary 88.07 82.88 85.40
Right Boundary 89.77 84.48 87.05
Partial Matching 91.97 86.55 89.18

Table 8: Results of different partial matching criteria.

also a source of boundary error. This was demon-
strated by the lower performance of body class, as
they usually appear at the boundary of coordinated
phases such as in LAD and LCX stenosis. Further
investigation of recognition errors revealed several an-
notation errors. Inconsistent annotation of modifiers
is a common mistake, for examples medial defect was
annotated as massive medial defect, where the former
is the correct annotation.

The overall result of the named entity recognition
is promising, with only 5 points F-score behind the
annotation agreement. Even with such noisy clinical
text the system still reached an F-score of 83.26. The
clinical named entities are relatively shorter in com-
parison to the biological named entity. Clinicians tend
to use short terms and dense terminology in keeping
with their principle of brevity. With the average length
of only 1.36 tokens per entity, CRFs using contextual
information are able to capture a significant portion
of entity boundaries. The reclassifier uses global in-
formation about the entire term effectively to make
corrections to misclassified entities.

8 Conclusion

We have presented a machine learning approach to
clinical named entity recognition using a combination
of machine learners. The system incorporated various
features, and experimented with different strategies
for combining machine learners. The cascading ap-
proach with voting among different classifier outputs
produced the best results. With an improvement of
3.35 F-score from the baseline stand alone CRF clas-
sifier, the system achieved an overall result of 83.26
F-score. The performance gain is due to utilisation
of global information of the entire entity to make cor-
rect predictions about misclassified entities. The fu-
ture work will be focused on improving the boundary
identification performance and injecting more domain
knowledge into the named entity recognition system.
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