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Abstract* 

 

Anchor text plays a special important role in 

improving the performance of general Web 

search, due to the fact that it is relatively ob-

jective description for a Web page by poten-

tially a large number of other Web pages. 

Academic Search provides indexing and 

search functionality for academic articles. It 

may be desirable to utilize anchor text in aca-

demic search as well to improve the search re-

sults quality. The main challenge here is that 

no explicit URLs and anchor text is available 

for academic articles. In this paper we define 

and automatically assign a pseudo-URL for 

each academic article. And a machine learning 

approach is adopted to extract pseudo-anchor 

text for academic articles, by exploiting the ci-

tation relationship between them. The ex-

tracted pseudo-anchor text is then indexed and 

involved in the relevance score computation of 

academic articles. Experiments conducted on 

0.9 million research papers show that our ap-

proach is able to dramatically improve search 

performance. 

1 Introduction 

Anchor text is a piece of clickable text that links 

to a target Web page. In general Web search, 

anchor text plays an extremely important role in 

improving the search quality. The main reason 

for this is that anchor text actually aggregates the 

opinion (which is more comprehensive, accurate, 

and objective) of a potentially large number of 

people for a Web page. 

                                                 
* This work was performed when Fei Xing and Mingjie Zhu 

were interns at Microsoft Research Asia. 

In recent years, academic search (Giles et al., 

1998; Lawrence et al., 1999; Nie et al., 2005; 

Chakrabarti et al., 2006) has become an impor-

tant supplement to general web search for re-

trieving research articles. Several academic 

search systems (including Google Scholar
†
, Cite-

seer
‡
, DBLP

§
, Libra

**
, ArnetMiner

††
, etc.) have 

been deployed. In order to improve the results 

quality of an academic search system, we may 

consider exploiting the techniques which are 

demonstrated to be quite useful and critical in 

general Web search. In this paper, we study the 

possibility of extracting anchor text for research 

papers and using them to improve the search per-

formance of an academic search system. 
 

 

Figure 1. An example of one paper citing other papers 

 

The basic search unit in most academic search 

systems is a research paper. Borrowing the con-

cepts of URL and anchor-text in general Web 

search, we may need to assign a pseudo-URL for 

one research paper as its identifier and to define 

the pseudo-anchor text for it by the contextual 

description when this paper is referenced (or 

mentioned). The pseudo-URL of a research pa-

per could be the combination of its title, authors 

and publication information. Figure-1 shows an 

excerpt where one paper cites a couple of other 

                                                 
† http://scholar.google.com/ 
‡ http://citeseerx.ist.psu.edu/ 
§ http://www.informatik.uni-trier.de/~ley/db/ 
** http://libra.msra.cn/ 
†† http://www.arnetminer.org/ 
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papers. The grayed text can be treated as the 

pseudo-anchor text of the papers being refe-

renced. Once the pseudo-anchor text of research 

papers is acquired, it can be indexed and utilized 

to help ranking, just as in general web search. 

However it remains a challenging task to cor-

rectly identify and extract these pseudo-URLs 

and pseudo-anchor texts. First, unlike the situa-

tion in general web search where one unique 

URL is assigned to each web page as a natural 

identifier, the information of research papers 

need to be extracted from web pages or PDF files. 

As a result, in constructing pseudo-URLs for 

research papers, we may face the problem of ex-

traction errors, typos, and the case of one re-

search paper having different expressions in dif-

ferent places. Second, in general Web search, 

anchor text is always explicitly specified by 

HTML tags (<a> and </a>). It is however much 

harder to perform anchor text extraction for re-

search papers. For example, human knowledge 

may be required in Figure-1 to accurately identi-

fy the description of every cited paper. 

To address the above challenges, we propose 

an approach for extracting and utilizing pseudo-

anchor text information in academic search to 

improve the search results quality. Our approach 

is composed of three phases. In the first phase, 

each time a paper is cited in another paper, we 

construct a tentative pseudo-URL for the cited 

paper and extract a candidate anchor block for it. 

The tentative pseudo-URL and the candidate 

anchor block are allowed to be inaccurate. In the 

second phase, we merge the tentative pseudo-

URLs that should represent the same paper. All 

candidate anchor blocks belong to the same pa-

per are grouped accordingly in this phase. In the 

third phase, the final pseudo-anchor text of each 

paper is generated from all its candidate blocks, 

by adopting a SVM-based machine learning me-

thodology. We conduct experiments upon a data-

set containing 0.9 million research papers. The 

experimental results show that lots of useful anc-

hor text can be successfully extracted and accu-

mulated using our approach, and the ultimate 

search performance is dramatically improved 

when anchor information is indexed and used for 

paper ranking. 

The remaining part of this paper is organized 

as follows. In Section 2, we describe in detail our 

approach for pseudo-anchor text extraction and 

accumulation. Experimental results are reported 

in Section 3. We discuss related work in Section 

4 and finally conclude the paper in Section 5. 

2 Our Approach 

2.1 Overview 

Before describing our approach in detail, we first 

recall how anchor text is processed in general 

Web search. Assume that there have been a col-

lection of documents being crawled and stored 

on local disk. In the first step, each web page is 

parsed and the out links (or forward links) within 

the page are extracted. Each link is comprised of 

a URL and its corresponding anchor text. In the 

second step, all links are accumulated according 

to their destination URLs (i.e. the anchor texts of 

all links pointed to the same URL are merged). 

Thus, we can get all anchor text corresponding to 

each web page. Figure-2 (a) demonstrates this 

process. 
 

 

Figure 2. The main process of extracting (a) anchor 

text in general web search and (b) pseudo-anchor text 

in academic search 

 

For academic search, we need to extract and 

parse the text content of papers. When a paper A 

mentions another paper B, it either explicitly or 

implicitly displays the key information of B to let 

the users know that it is referencing B instead of 

other papers. Such information can be extracted 

to construct the tentative pseudo-URL of B. The 

pseudo-URLs constructed in this phase are tenta-

tive because different tentative pseudo-URLs 

may be merged to generate the same final pseu-

do-URL. All information related to paper B in 

different papers can be accumulated and treated 

Web pages 

HTML parsing 

Links 

Anchor text 

for pages 

 

Group by link 

destination 

Papers 

Paper parsing 

Tentative pseudo-URLs 

Candidate anchor blocks 

Anchor block accumulation 

Papers with their  

candidate anchor blocks 

Papers with their  
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as the potential anchor text of B. Our goal is to 

get the anchor text related to each paper. 

Our approach for pseudo-anchor text extrac-

tion is shown in Figure-2 (b). The key process is 

similar to that in general Web search for accumu-

lating and utilizing page anchor text. One prima-

ry difference between Figure-2 (a) and (b) is the 

latter accumulates candidate anchor blocks rather 

than pieces of anchor text. A candidate anchor 

block is a piece of text that contains the descrip-

tion of one paper. The basic idea is: Instead of 

extracting the anchor text for a paper directly (a 

difficult task because of the lack of enough in-

formation), we first construct a candidate anchor 

block to contain the "possible" or "potential" de-

scription of the paper. After we accumulate all 

candidate anchor blocks, we have more informa-

tion to provide a better estimation about which 

pieces of texts are anchor texts. Following this 

idea, our proposed approach adopts a three-phase 

methodology to extract pseudo-anchor text. In 

the first phase, each time a paper B appearing in 

another paper A, a candidate anchor block is ex-

tracted for B. All candidate anchor blocks belong 

to the same paper are grouped in the second 

phase. In the third phase, the final pseudo-anchor 

text of each paper is selected among all candidate 

blocks. 

Extracting tentative pseudo-URLs and can-

didate anchor blocks: When one paper cites 

another paper, a piece of short text (e.g. "[1]" or 

“(xxx et al., 2008)”) is commonly inserted to 

represent the paper to be cited, and the detail in-

formation (key attributes) of it are typically put 

at the end of the document (in the references sec-

tion). We call each paper listed in the references 

section a reference item. The references section 

can be located by searching for the last occur-

rence of term 'reference' or 'references' in larger 

fonts. Then, we adopt a rule-based approach to 

divide the text in the references section into ref-

erence items. Another rule-based approach is 

used to extract paper attributes (title, authors, 

year, etc) from a reference item. We observed 

some errors in our resulting pseudo-URLs caused 

by the quality of HTML files converted from 

PDF format, reference item extraction errors, 

paper attribute extraction errors, and other fac-

tors. We also observed different reference item 

formats for the same paper. The pseudo-URL for 

a paper is defined according to its title, authors, 

publisher, and publication year, because these 

four kinds of information can readily be used to 

identify a paper. 

For each citation of a paper, we treat the sen-

tence containing the reference point (or citation 

point) as one candidate anchor block. When mul-

tiple papers are cited in one sentence, we treat 

the sentence as the candidate anchor block of 

every destination paper. 

Candidate Anchor Block Accumulation: 

This phase is in charge of merging all candidate 

blocks of the same pseudo-URL. As has been 

discussed, tentative pseudo-URLs are often inac-

curate; and different tentative pseudo-URLs may 

correspond to the same paper. The primary chal-

lenge here is perform the task in an efficient way 

and with high accuracy. We will address this 

problem in Subsection 2.2. 

Pseudo-Anchor Generation: In the previous 

phase, all candidate blocks of each paper have 

been accumulated. This phase is to generate the 

final anchor text for each paper from all its can-

didate blocks. Please refer to Subsection 2.3 for 

details. 

2.2 Candidate Anchor Block Accumulation 

via Multiple Feature-String Hashing 

Consider this problem: Given a potentially huge 

number of tentative pseudo-URLs for papers, we 

need to identify and merge the tentative pseudo-

URLs that represent the same paper. This is like 

the problems in the record linkage (Fellegi and 

Sunter, 1969), entity matching, and data integra-

tion which have been extensively studied in da-

tabase, AI, and other areas. In this sub-section, 

we will first show the major challenges and the 

previous similar work on this kind of problem. 

Then a possible approach is described to achieve 

a trade-off between accuracy and efficiency. 
 

 

Figure 3. Two tentative pseudo-URLs representing 

the same paper 

 

2.2.1 Challenges and candidate techniques 

Two issues should be addressed for this problem: 

similarity measurement, and the efficiency of the 

algorithm. On one hand, a proper similarity func-

tion is needed to identify two tentative pseudo-

URLs representing the same paper. Second, the 
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integration process has to be accomplished effi-

ciently. 

We choose to compute the similarity between 

two papers to be a linear combination of the si-

milarities on the following fields: title, authors, 

venue (conference/journal name), and year. The 

similarity function on each field is carefully de-

signed. For paper title, we adopt a term-level edit 

distance to compute similarity. And for paper 

authors, person name abbreviation is considered. 

The similarity function we adopted is fairly well 

in accuracy (e.g., the similarity between the two 

pseudo-URLs in Figure-3 is high according to 

our function); but it is quite time-consuming to 

compute the similarity for each pair of papers 

(roughly 10
12

 similarity computation operations 

are needed for 1 million different tentative pseu-

do-URLs). 

Some existing methods are available for de-

creasing the times of similarity calculation opera-

tions. McCallum et al. (2000) addresses this high 

dimensional data clustering problem by dividing 

data into overlapping subsets called canopies 

according to a cheap, approximate distance mea-

surement. Then the clustering process is per-

formed by measuring the exact distances only 

between objects from the same canopy. There are 

also other subspace methods (Parsons et al., 2004) 

in data clustering areas, where data are divided 

into subspaces of high dimensional spaces first 

and then processing is done in these subspaces. 

Also there are fast blocking approaches for 

record linkage in Baxter et al. (2003). Though 

they may have different names, they hold similar 

ideas of dividing data into subsets to reduce the 

candidate comparison records. The size of data-

set used in the above papers is typically quite 

small (about thousands of data items). For effi-

ciency issue, Broder et al. (1997) proposed a 

shingling approach to detect similar Web pages. 

They noticed that it is infeasible to compare 

sketches (which are generated by shingling) of 

all pairs of documents. So they built an inverted 

index that contains a list of shingle values and 

the documents they appearing in. With the in-

verted index, they can effectively generate a list 

of all the pairs of documents that share any shin-

gles, along with the number of shingles they 

have in common. They did experiments on a da-

taset containing 30 million documents. 

By adopting the main ideas of the above tech-

niques to our pseudo-URL matching problem, a 

possible approach can be as follows. 
 

 

Figure 4. The Multiple Feature-String Hashing algo-

rithm for candidate anchor block accumulation 

 

2.2.2 Method adopted 

The method utilized here for candidate anchor 

block accumulation is shown in Figure 4. The 

main idea is to construct a certain number of fea-

ture strings for a tentative pseudo-URL (abbre-

viated as TP-URL) and do hash for the feature 

strings. A feature string of a paper is a small 

piece of text which records a part of the paper’s 

key information, satisfying the following condi-

tions: First, multiple feature strings can typically 

be built from a TP-URL. Second, if two TP-

URLs are different representations of the same 

paper, then the probability that they have at least 

one common feature string is extremely high. We 

can choose the term-level n-grams of paper titles 

(referring to Section 3.4) as feature strings. 

The algorithm maintains an in-memory hash-

table which contains a lot of slots each of which 

is a list of TP-URLs belonging to this slot. For 

each TP-URL, feature strings are generated and 

hashed by a specified hash function. The TP-

URL is then added into some slots according to 

the hash values of its feature strings. Any two 

TP-URLs belonging to the same slot are further 

compared by utilizing our similarity function. If 

their similarity is larger than a threshold, the two 

TP-URLs are treated as being the same and 

therefore their corresponding candidate anchor 

blocks are merged. 

The above algorithm tries to achieve good bal-

ance between accuracy and performance. On one 

hand, compared with the naïve algorithm of per-

forming one-one comparison between all pairs of 

TP-URLs, the algorithm needs only to compute 

Algorithm Multiple Feature-String Hashing for candidate anchor 

block accumulation 

Input: A list of papers (with their tentative pseudo-URLs 

and candidate anchor blocks) 

Output: Papers with all candidate anchor blocks of the 

same paper aggregated 
 

Initial: An empty hashtable h (each slot of h is a list of pa-

pers) 

For each paper A in the input list { 

For each feature-string of A { 

Lookup by the feature-string in h to get a slot s; 

Add A into s; 

} 
} 

For each slot s with size smaller than a threshold { 

For any two papers A1, A2 in s { 

float fSim = Similarity(A1, A2); 

if(fSim > the specified threshold) { 

Merge A1 and A2; 

} 
} 

} 
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the similarity for the TP-URLs that share a 

common slot. On the other hand, because of the 

special property of feature strings, most TP-

URLs representing the same paper can be de-

tected and merged. 

The basic idea of dividing data into over-

lapped subsets is inherited from McCallum et al. 

(2000), Broder et al. (1997), and some subspace 

clustering approaches. Slightly different, we do 

not count the number of common feature strings 

between TP-URLs. Common bins (or inverted 

indices) between data points are calculated in 

McCallum et al. (2000) as a “cheap distance” for 

creating canopies. The number of common Shin-

gles between two Web documents is calculated 

(efficiently via inverted indices), such that Jac-

card similarity could be used to measure the si-

milarity between them. In our case, we simply 

compare any two TP-URLs in the same slot by 

using our similarity function directly. 

The effective and efficiency of this algorithm 

depend on the selection of feature strings. For a 

fixed feature string generation method, the per-

formance of this algorithm is affected by the size 

of each slot, especially the number and size of 

big slots (slots with size larger than a threshold). 

Big slots will be discarded in the algorithm to 

improve performance, just like removing com-

mon Shingles in Broder et al. (1997). In Section 

4, we conduct experiments to test the perfor-

mance of the above algorithm with different fea-

ture string functions and different slot size thre-

sholds. 

2.3 Pseudo-Anchor Text Learning 

In this subsection, we address the problem of 

extracting the final pseudo-anchor text for a pa-

per, given all its candidate anchor blocks (see 

Figure 5 for an example). 

2.3.1 Problem definition 

A candidate anchor block is a piece of text with 

one or some reference points (a reference point is 

one occurrence of citation in a paper) specified, 

where a reference point is denoted by a 

<start_pos, end_pos> pair (means start position 

and end position respectively): ref = <start_pos, 

end_pos>. We represent a candidate anchor 

block to be the following format, 

AnchorBlock = (Text, ref1, ref2, …) 

We define a block set to be a set of candidate 

anchor blocks for a paper, 

BlockSet = {AnchorBlock1, AnchorBlock2, …} 

Now the problem is: Given a block set con-

taining N elements, extract some text excerpts 

from them as the anchor text of the paper. 

2.3.2 Learn term weights 

We adopt a machine-learning approach to assign, 

for each term in the anchor blocks, a discrete de-

gree of being anchor text. The main reasons for 

taking such an approach is twofold: First, we 

believe that assigning each term a fuzzy degree 

of being anchor text is more appropriate than a 

binary judgment as either an anchor-term or non-

anchor-term. Second, since the importance of a 

term for a “link” may be determined by many 

factors in paper search, a machine-learning could 

be more flexible and general than the approaches 

that compute term degrees by a specially de-

signed formula. 
 

 

Figure 5. The candidate pseudo-anchor blocks of a 

paper 

 

The features used for learning are listed in Ta-

ble-1. 

We observed that it would be more effective if 

some of the above features are normalized before 

being used for learning. For a term in candidate 

anchor block B, its TF are normalized by the 

BM25 formula (Robertson et al., 1999), 

 
TF

L

B
bbk

TFk
TFnorm






)
||

)1((

)1(

1

1
 

 

where L is average length of the candidate blocks, 

|B| is the length of B, and k1, b are parameters. 

DF is normalized by the following formula, 

 )1log(
DF

N
IDF    

where N is the number of elements in the block 

set (i.e. total number of candidate anchor blocks 

for the current paper). 

Features RefPos and Dist are normalized as, 

 
RefPosnorm = RefPos / |B| 

Distnorm = (Dist-RefPos) / |B| 
 

And the feature BlockLen is normalized as, 
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 BlockLennorm = log(1+BlockLen)  

 

Features Description 

DF 

Document frequency: Number of candidate blocks in 

which the term appears, counted among all candidate 

blocks of all papers. It is used to indicate whether the 

term is a stop word or not. 

BF 
Block frequency: Number of candidate blocks in 

which the term appears, counted among all candidate 

blocks of this paper. 

CTF 
Collection term frequency: Total number of times the 

term appearing in the blocks. For multiple times of 

occurrences in one block, all of them are counted. 

IsInURL 
Specify whether the term appears in the pseudo-URL 

of the paper. 

TF 
Term frequency: Number of times the terms appearing 

in the candidate block. 

Dist 
Directed distance from the nearest reference point to 

the term location 

RefPos 
Position of the nearest reference point in the candidate 
pseudo-anchor block. 

BlockLen Length of the candidate pseudo-anchor block 

Table 1. Features for learning 

 

We set four term importance levels, from 1 

(unrelated terms or stop words) to 4 (words par-

ticipating in describing the main ideas of the pa-

per). 

We choose support vector machine (SVM) for 

learning term weights here, because of its power-

ful classification ability and well generalization 

ability (Burges, 1998). We believe some other 

machine learning techniques should also work 

here. The input of the classifier is a feature vec-

tor of a term and the output is the importance 

level of the term. Given a set of training data 

 l

iii levelfeature
1

,


, a decision function f(x) can be 

acquired after training. Using the decision func-

tion, we can assign an importance level for each 

term automatically. 

 

3 Experiments 

3.1 Experimental Setup 

Our experimental dataset contains 0.9 million 

papers crawled from the web. All the papers are 

processed according to the process in Figure-2 

(b). We randomly select 300 queries from the 

query log of Libra (libra.msra.cn) and retrieve 

the results in our indexing and ranking system 

with/without the pseudo-anchors generated by 

our approach. Then the volunteer researchers and 

students in our group are involved to judge the 

search results. The top 30 results of different 

ranking algorithms for each query are labeled 

and assigned a relevance value from 1 (meaning 

'poor match') to 5 (meaning 'perfect match'). The 

search results quality is measured by NDCG 

(Jarvelin and Kekalainen, 2000). 

3.2 Overall Effect of our Approach 

Figure 6 shows the performance comparison be-

tween the results of two baseline paper ranking 

algorithms and the results of including pseudo-

anchor text in ranking. 
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Figure 6. Comparison between the baseline approach 

and our approach (measure: nDCG) 

 

The “Base” algorithm considers the title, ab-

stract, full-text and static-rank (which is a func-

tion of the citation count) of a paper. In a bit 

more detail, for each paper, we adopt the BM25 

formula (Robertson et al., 1999) over its title, 

abstract, and full-text respectively. And then the 

resulting score is linearly combined with the stat-

ic-rank to get its final score. The static-rank is 

computed as follows, 

 StaticRank = log(1+CitationCount) (3.1) 

To test the performance of including pseudo-

anchor text in ranking, we compute an anchor 

score for each paper and linearly combine it with 

its baseline score (i.e. the score computed by the 

baseline algorithm). 

We tried two kinds of ways for anchor score 

computation. The first is to merge all pieces of 

anchor excerpts (extracted in the previous section) 

into a larger piece of anchor text, and use BM25 

to compute its relevance score. In another ap-

proach called homogeneous evidence combina-

tion (Shi et al., 2006), a relevance score is com-

puted for each anchor excerpt (still using BM25), 

and all the scores for the excerpts are sorted des-

cending and then combined by the following 

formula, 

 






m

i

ianchor s
ic

S
1

2))1(1(

1
 (3.2) 

where si (i=1, …, m) are scores for the m anchor 

excerpts, and c is a parameter. The primary idea 
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here is to let larger scores to have relative greater 

weights. Please refer to Shi et al. (2006) for a 

justification of this approach. As we get slightly 

better results with the latter way, we use it as our 

final choice for computing anchor scores. 

From Figure 6, we can see that the overall per-

formance is greatly improved by including pseu-

do-anchor information. Table 2 shows the t-test 

results, where a “>” indicates that the algorithm 

in the row outperforms that in the column with a 

p-value of 0.05 or less, and a “>>” means a p-

value of 0.01 or less. 

 
 

 
Base 

Base (without 

CitationCount) 

Our approach > >> 

Base  >> 
Base (without Cita-

tionCount) 
  

Table 2. Statistical significance tests (t-test over 

nDCG@3) 

 

Table 3 shows the performance comparison by 

using some traditional IR measures based on bi-

nary judgments. Since the results of not includ-

ing CitationCount are much worse than the other 

two, we omit it in the table. 

 
Measure 

Approach 
MAP MRR P@1 P@10 

Base (including 

CitationCount) 
0.364 0.727 0.613 0.501 

Our Approach 0.381 0.734 0.625 0.531 

Table 3. Performance compassion using binary judg-

ment measures 

 

3.3 Sample Query Analysis 

Here we analyze some sample queries to get 

some insights about why and how pseudo-anchor 

improves search performance. Figure-7 and Fig-

ure-8 show the top-3 results of two sample que-

ries: {TF-IDF} and {Page Rank}. 

For query "TF-IDF", the top results of the 

baseline approach have keyword "TF-IDF" ap-

peared in the title as well as in other places of the 

papers. Although the returned papers are relevant 

to the query, they are not excellent because typi-

cally users may want to get the first TF-IDF pa-

per or some papers introducing TF-IDF. When 

pseudo-anchor information is involved, some 

excellent results (B1, B2, B3) are generated. The 

main reason for getting the improved results is 

that these papers (or books) are described with 

"TF-IDF" when lots of other papers cite them. 

 

 

Figure 7. Top-3 results for query TF-IDF 

 

 

Figure 8. Top-3 results for query Page Rank 

 

Figure-8 shows another example about how 

pseudo-anchor helps to improve search results 

quality. For query "Page Rank" (note that there is 

a space in between), the results returned by the 

baseline approach are not satisfactory. In the pa-

pers returned by our approach, at least B1 and B2 

are very good results. Although they did not la-

bel themselves "Page Rank", other papers do so 

in citing them. Interestingly, although the result 

B3 is not about the "PageRank" algorithm, it de-

scribes another popular "Page Rank" algorithm 

in addition to PageRank. 

Another interesting observation from the two 

figures is that our approach retrieves older papers 

than the baseline method, because old papers 

tend to have more anchor text (due to more cita-

tions). So our approach may not be suitable for 

retrieve newer papers. To overcome this problem, 

maybe publication year should be considered in 

our ranking functions. 

3.4 Anchor Accumulation Experiments 

We conduct experiments to test the effectiveness 

and efficiency of the multiple-feature-string-

hashing algorithm presented in Section 2.2. The 

duplication detection quality of this algorithm is 

determined by the appropriate selection of fea-

A1. V Safronov, M Parashar, Y Wang et al. Optimizing Web servers 

using Page rank prefetching for clustered accesses. Information 

Sciences. 2003. 

A2. AO Mendelzon, D Rafiei. An autonomous page ranking method for 

metasearch engines. WWW, 2002. 

A3. FB Kalhoff. On formally real Division Algebras and Quasifields of 

Rank two. 

(a) Without anchor 

B1. S Brin, L Page. The Anatomy of a Large-Scale Hypertextual Web 

Search Engine. WWW, 1998 

B2. L Page, S Brin, R Motwani, T Winograd. The pagerank citation 

ranking: Bringing order to the web. 1998. 

B3. JM Kleinberg. Authoritative sources in a hyperlinked environment. 

Journal of the ACM, 1999. 

(b) With anchor 

 

A1. K Sugiyama, K Hatano, M Yoshikawa, S Uemura. Refinement of TF-

IDF schemes for web pages using their hyperlinked neighboring pages. 

Hypertext’03 

A2. A Aizawa. An information-theoretic perspective of tf-idf measures. 

IPM’03. 

A3. N Oren. Reexamining tf.idf based information retrieval with Genet-

ic Programming. SAICSIT’02. 

(a) Without anchor 

B1. G Salton, MJ McGill. Introduction to Modern Information Retriev-

al. McGraw-Hill, 1983. 

B2. G Salton and C Buckley. Term weighting approaches in automatic 

text retrieval. IPM’98. 

B3. R Baeza-Yates, B Ribeiro-Neto. Modern Information Retrieval. 

Addison-Wesley, 1999 

(b) With anchor 
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ture strings. When feature strings are fixed, the 

slot size threshold can be used to tune the tra-

deoff between accuracy and performance. 

 
Feature Strings 

Slot Distr. 
Ungram Bigram Trigram 4-gram 

# of Slots 1.4*105 1.2*106 2.8*106 3.4*106 
# of Slots with 

size > 100 
5240 6806 1541 253 

# of Slots with 

size > 1000 
998 363 50 5 

# of Slots with 

size > 10000 
59 11 0 0 

Table 4. Slot distribution with different feature strings 

 

We take all the papers extracted from PDF 

files as input to run the algorithm. Identical TP-

URLs are first eliminated (therefore their candi-

date anchor blocks are merged) by utilizing a 

hash table. This pre-process step results in about 

1.46 million distinct TP-URLs. The number is 

larger than our collection size (0.9 million), be-

cause some cited papers are not in our paper col-

lection. We tested four kinds of feature strings all 

of which are generated from paper title: uni-

grams, bigrams, trigrams, and 4-grams. Table-4 

shows the slot size distribution corresponding to 

each kind of feature strings. The performance 

comparison among different feature strings and 

slot size thresholds is shown in Table 5. It seems 

that bigrams achieve a good trade-off between 

accuracy and performance. 

 
Feature 

Strings 

Slot Size 

Threshold 

Dup. papers 

Detected 

Processing 

Time (sec) 

Unigram 
5000 529,717  119,739.0  

500 327,357 7,552.7  

Bigram 500 528,981 8,229.6  

Trigram 
Infinite 518,564 8,420.4  

500 516,369 2,654.9  

4-gram 500 482,299 1,138.2  

Table 5. Performance comparison between different 

feature strings and slot size thresholds 

 

4 Related Work 

There has been some work which uses anchor 

text or their surrounding text for various Web 

information retrieval tasks. It was known at the 

very beginning era of internet that anchor text 

was useful to Web search (McBryan, 1994). 

Most Web search engines now use anchor text as 

primary and power evidence for improving 

search performance. The idea of using contextual 

text in a certain vicinity of the anchor text was 

proposed in Chakrabarti et al. (1998) to automat-

ically compile some lists of authoritative Web 

resources on a range of topics. An anchor win-

dow approach is proposed in Chakrabarti et al 

(1998) to extract implicit anchor text. Following 

this work, anchor windows were considered in 

some other tasks (Amitay  et al., 1998; Haveli-

wala et al., 2002; Davison, 2002; Attardi et al., 

1999). Although we are inspired by these ideas, 

our work is different because research papers 

have many different properties from Web pages. 

From the viewpoint of implicit anchor extraction 

techniques, our approach is different from the 

anchor window approach. The anchor window 

approach is somewhat simpler and easy to im-

plement than ours. However, our method is more 

general and flexible. In our approach, the anchor 

text is not necessarily to be in a window. 

Citeseer (Giles et al., 1998; Lawrence  et al., 

1999) has been doing a lot of valuable work on 

citation recognition, reference matching, and pa-

per indexing. It has been displaying contextual 

information for cited papers. This feature has 

been shown to be helpful and useful for re-

searchers. Differently, we are using context de-

scription for improving ranking rather than dis-

play purpose. In addition to Citeseer, some other 

work (McCallum et al., 1999; Nanba and Oku-

mura, 1999; Nanba et al., 2004; Shi et al., 2006) 

is also available for extracting and accumulating 

reference information for research papers. 

5 Conclusions and Future Work 

In this paper, we propose to improve academic 

search by utilizing pseudo-anchor information. 

As pseudo-URL and pseudo-anchor text are not 

as explicit as in general web search, more efforts 

are needed for pseudo-anchor extraction. Our 

machine-learning approach has proven success-

ful in automatically extracting implicit anchor 

text. By using the pseudo-anchors in our academ-

ic search system, we see a significant perfor-

mance improvement over the basic approach. 
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