
Proceedings of the 2009 Workshop on Text and Citation Analysis for Scholarly Digital Libraries, ACL-IJCNLP 2009, pages 10–18,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Anchor Text Extraction for Academic Search

Shuming Shi
1
 Fei Xing

2*
 Mingjie Zhu

3*
 Zaiqing Nie

1
 Ji-Rong Wen

1

1
Microsoft Research Asia
2
Alibaba Group, China

3
University of Science and Technology of China

{shumings, znie, jrwen}@microsoft.com

fei_c_xing@yahoo.com; mjzhu@ustc.edu

Abstract*

Anchor text plays a special important role in

improving the performance of general Web

search, due to the fact that it is relatively ob-

jective description for a Web page by poten-

tially a large number of other Web pages.

Academic Search provides indexing and

search functionality for academic articles. It

may be desirable to utilize anchor text in aca-

demic search as well to improve the search re-

sults quality. The main challenge here is that

no explicit URLs and anchor text is available

for academic articles. In this paper we define

and automatically assign a pseudo-URL for

each academic article. And a machine learning

approach is adopted to extract pseudo-anchor

text for academic articles, by exploiting the ci-

tation relationship between them. The ex-

tracted pseudo-anchor text is then indexed and

involved in the relevance score computation of

academic articles. Experiments conducted on

0.9 million research papers show that our ap-

proach is able to dramatically improve search

performance.

1 Introduction

Anchor text is a piece of clickable text that links

to a target Web page. In general Web search,

anchor text plays an extremely important role in

improving the search quality. The main reason

for this is that anchor text actually aggregates the

opinion (which is more comprehensive, accurate,

and objective) of a potentially large number of

people for a Web page.

* This work was performed when Fei Xing and Mingjie Zhu

were interns at Microsoft Research Asia.

In recent years, academic search (Giles et al.,

1998; Lawrence et al., 1999; Nie et al., 2005;

Chakrabarti et al., 2006) has become an impor-

tant supplement to general web search for re-

trieving research articles. Several academic

search systems (including Google Scholar
†
, Cite-

seer
‡
, DBLP

§
, Libra

**
, ArnetMiner

††
, etc.) have

been deployed. In order to improve the results

quality of an academic search system, we may

consider exploiting the techniques which are

demonstrated to be quite useful and critical in

general Web search. In this paper, we study the

possibility of extracting anchor text for research

papers and using them to improve the search per-

formance of an academic search system.

Figure 1. An example of one paper citing other papers

The basic search unit in most academic search

systems is a research paper. Borrowing the con-

cepts of URL and anchor-text in general Web

search, we may need to assign a pseudo-URL for

one research paper as its identifier and to define

the pseudo-anchor text for it by the contextual

description when this paper is referenced (or

mentioned). The pseudo-URL of a research pa-

per could be the combination of its title, authors

and publication information. Figure-1 shows an

excerpt where one paper cites a couple of other

† http://scholar.google.com/
‡ http://citeseerx.ist.psu.edu/
§ http://www.informatik.uni-trier.de/~ley/db/
** http://libra.msra.cn/
†† http://www.arnetminer.org/

10

papers. The grayed text can be treated as the

pseudo-anchor text of the papers being refe-

renced. Once the pseudo-anchor text of research

papers is acquired, it can be indexed and utilized

to help ranking, just as in general web search.

However it remains a challenging task to cor-

rectly identify and extract these pseudo-URLs

and pseudo-anchor texts. First, unlike the situa-

tion in general web search where one unique

URL is assigned to each web page as a natural

identifier, the information of research papers

need to be extracted from web pages or PDF files.

As a result, in constructing pseudo-URLs for

research papers, we may face the problem of ex-

traction errors, typos, and the case of one re-

search paper having different expressions in dif-

ferent places. Second, in general Web search,

anchor text is always explicitly specified by

HTML tags (<a> and). It is however much

harder to perform anchor text extraction for re-

search papers. For example, human knowledge

may be required in Figure-1 to accurately identi-

fy the description of every cited paper.

To address the above challenges, we propose

an approach for extracting and utilizing pseudo-

anchor text information in academic search to

improve the search results quality. Our approach

is composed of three phases. In the first phase,

each time a paper is cited in another paper, we

construct a tentative pseudo-URL for the cited

paper and extract a candidate anchor block for it.

The tentative pseudo-URL and the candidate

anchor block are allowed to be inaccurate. In the

second phase, we merge the tentative pseudo-

URLs that should represent the same paper. All

candidate anchor blocks belong to the same pa-

per are grouped accordingly in this phase. In the

third phase, the final pseudo-anchor text of each

paper is generated from all its candidate blocks,

by adopting a SVM-based machine learning me-

thodology. We conduct experiments upon a data-

set containing 0.9 million research papers. The

experimental results show that lots of useful anc-

hor text can be successfully extracted and accu-

mulated using our approach, and the ultimate

search performance is dramatically improved

when anchor information is indexed and used for

paper ranking.

The remaining part of this paper is organized

as follows. In Section 2, we describe in detail our

approach for pseudo-anchor text extraction and

accumulation. Experimental results are reported

in Section 3. We discuss related work in Section

4 and finally conclude the paper in Section 5.

2 Our Approach

2.1 Overview

Before describing our approach in detail, we first

recall how anchor text is processed in general

Web search. Assume that there have been a col-

lection of documents being crawled and stored

on local disk. In the first step, each web page is

parsed and the out links (or forward links) within

the page are extracted. Each link is comprised of

a URL and its corresponding anchor text. In the

second step, all links are accumulated according

to their destination URLs (i.e. the anchor texts of

all links pointed to the same URL are merged).

Thus, we can get all anchor text corresponding to

each web page. Figure-2 (a) demonstrates this

process.

Figure 2. The main process of extracting (a) anchor

text in general web search and (b) pseudo-anchor text

in academic search

For academic search, we need to extract and

parse the text content of papers. When a paper A

mentions another paper B, it either explicitly or

implicitly displays the key information of B to let

the users know that it is referencing B instead of

other papers. Such information can be extracted

to construct the tentative pseudo-URL of B. The

pseudo-URLs constructed in this phase are tenta-

tive because different tentative pseudo-URLs

may be merged to generate the same final pseu-

do-URL. All information related to paper B in

different papers can be accumulated and treated

Web pages

HTML parsing

Links

Anchor text

for pages

Group by link

destination

Papers

Paper parsing

Tentative pseudo-URLs

Candidate anchor blocks

Anchor block accumulation

Papers with their

candidate anchor blocks

Papers with their

pseudo-anchor text

Anchor-text learning

11

as the potential anchor text of B. Our goal is to

get the anchor text related to each paper.

Our approach for pseudo-anchor text extrac-

tion is shown in Figure-2 (b). The key process is

similar to that in general Web search for accumu-

lating and utilizing page anchor text. One prima-

ry difference between Figure-2 (a) and (b) is the

latter accumulates candidate anchor blocks rather

than pieces of anchor text. A candidate anchor

block is a piece of text that contains the descrip-

tion of one paper. The basic idea is: Instead of

extracting the anchor text for a paper directly (a

difficult task because of the lack of enough in-

formation), we first construct a candidate anchor

block to contain the "possible" or "potential" de-

scription of the paper. After we accumulate all

candidate anchor blocks, we have more informa-

tion to provide a better estimation about which

pieces of texts are anchor texts. Following this

idea, our proposed approach adopts a three-phase

methodology to extract pseudo-anchor text. In

the first phase, each time a paper B appearing in

another paper A, a candidate anchor block is ex-

tracted for B. All candidate anchor blocks belong

to the same paper are grouped in the second

phase. In the third phase, the final pseudo-anchor

text of each paper is selected among all candidate

blocks.

Extracting tentative pseudo-URLs and can-

didate anchor blocks: When one paper cites

another paper, a piece of short text (e.g. "[1]" or

“(xxx et al., 2008)”) is commonly inserted to

represent the paper to be cited, and the detail in-

formation (key attributes) of it are typically put

at the end of the document (in the references sec-

tion). We call each paper listed in the references

section a reference item. The references section

can be located by searching for the last occur-

rence of term 'reference' or 'references' in larger

fonts. Then, we adopt a rule-based approach to

divide the text in the references section into ref-

erence items. Another rule-based approach is

used to extract paper attributes (title, authors,

year, etc) from a reference item. We observed

some errors in our resulting pseudo-URLs caused

by the quality of HTML files converted from

PDF format, reference item extraction errors,

paper attribute extraction errors, and other fac-

tors. We also observed different reference item

formats for the same paper. The pseudo-URL for

a paper is defined according to its title, authors,

publisher, and publication year, because these

four kinds of information can readily be used to

identify a paper.

For each citation of a paper, we treat the sen-

tence containing the reference point (or citation

point) as one candidate anchor block. When mul-

tiple papers are cited in one sentence, we treat

the sentence as the candidate anchor block of

every destination paper.

Candidate Anchor Block Accumulation:

This phase is in charge of merging all candidate

blocks of the same pseudo-URL. As has been

discussed, tentative pseudo-URLs are often inac-

curate; and different tentative pseudo-URLs may

correspond to the same paper. The primary chal-

lenge here is perform the task in an efficient way

and with high accuracy. We will address this

problem in Subsection 2.2.

Pseudo-Anchor Generation: In the previous

phase, all candidate blocks of each paper have

been accumulated. This phase is to generate the

final anchor text for each paper from all its can-

didate blocks. Please refer to Subsection 2.3 for

details.

2.2 Candidate Anchor Block Accumulation

via Multiple Feature-String Hashing

Consider this problem: Given a potentially huge

number of tentative pseudo-URLs for papers, we

need to identify and merge the tentative pseudo-

URLs that represent the same paper. This is like

the problems in the record linkage (Fellegi and

Sunter, 1969), entity matching, and data integra-

tion which have been extensively studied in da-

tabase, AI, and other areas. In this sub-section,

we will first show the major challenges and the

previous similar work on this kind of problem.

Then a possible approach is described to achieve

a trade-off between accuracy and efficiency.

Figure 3. Two tentative pseudo-URLs representing

the same paper

2.2.1 Challenges and candidate techniques

Two issues should be addressed for this problem:

similarity measurement, and the efficiency of the

algorithm. On one hand, a proper similarity func-

tion is needed to identify two tentative pseudo-

URLs representing the same paper. Second, the

12

integration process has to be accomplished effi-

ciently.

We choose to compute the similarity between

two papers to be a linear combination of the si-

milarities on the following fields: title, authors,

venue (conference/journal name), and year. The

similarity function on each field is carefully de-

signed. For paper title, we adopt a term-level edit

distance to compute similarity. And for paper

authors, person name abbreviation is considered.

The similarity function we adopted is fairly well

in accuracy (e.g., the similarity between the two

pseudo-URLs in Figure-3 is high according to

our function); but it is quite time-consuming to

compute the similarity for each pair of papers

(roughly 10
12

 similarity computation operations

are needed for 1 million different tentative pseu-

do-URLs).

Some existing methods are available for de-

creasing the times of similarity calculation opera-

tions. McCallum et al. (2000) addresses this high

dimensional data clustering problem by dividing

data into overlapping subsets called canopies

according to a cheap, approximate distance mea-

surement. Then the clustering process is per-

formed by measuring the exact distances only

between objects from the same canopy. There are

also other subspace methods (Parsons et al., 2004)

in data clustering areas, where data are divided

into subspaces of high dimensional spaces first

and then processing is done in these subspaces.

Also there are fast blocking approaches for

record linkage in Baxter et al. (2003). Though

they may have different names, they hold similar

ideas of dividing data into subsets to reduce the

candidate comparison records. The size of data-

set used in the above papers is typically quite

small (about thousands of data items). For effi-

ciency issue, Broder et al. (1997) proposed a

shingling approach to detect similar Web pages.

They noticed that it is infeasible to compare

sketches (which are generated by shingling) of

all pairs of documents. So they built an inverted

index that contains a list of shingle values and

the documents they appearing in. With the in-

verted index, they can effectively generate a list

of all the pairs of documents that share any shin-

gles, along with the number of shingles they

have in common. They did experiments on a da-

taset containing 30 million documents.

By adopting the main ideas of the above tech-

niques to our pseudo-URL matching problem, a

possible approach can be as follows.

Figure 4. The Multiple Feature-String Hashing algo-

rithm for candidate anchor block accumulation

2.2.2 Method adopted

The method utilized here for candidate anchor

block accumulation is shown in Figure 4. The

main idea is to construct a certain number of fea-

ture strings for a tentative pseudo-URL (abbre-

viated as TP-URL) and do hash for the feature

strings. A feature string of a paper is a small

piece of text which records a part of the paper’s

key information, satisfying the following condi-

tions: First, multiple feature strings can typically

be built from a TP-URL. Second, if two TP-

URLs are different representations of the same

paper, then the probability that they have at least

one common feature string is extremely high. We

can choose the term-level n-grams of paper titles

(referring to Section 3.4) as feature strings.

The algorithm maintains an in-memory hash-

table which contains a lot of slots each of which

is a list of TP-URLs belonging to this slot. For

each TP-URL, feature strings are generated and

hashed by a specified hash function. The TP-

URL is then added into some slots according to

the hash values of its feature strings. Any two

TP-URLs belonging to the same slot are further

compared by utilizing our similarity function. If

their similarity is larger than a threshold, the two

TP-URLs are treated as being the same and

therefore their corresponding candidate anchor

blocks are merged.

The above algorithm tries to achieve good bal-

ance between accuracy and performance. On one

hand, compared with the naïve algorithm of per-

forming one-one comparison between all pairs of

TP-URLs, the algorithm needs only to compute

Algorithm Multiple Feature-String Hashing for candidate anchor

block accumulation

Input: A list of papers (with their tentative pseudo-URLs

and candidate anchor blocks)

Output: Papers with all candidate anchor blocks of the

same paper aggregated

Initial: An empty hashtable h (each slot of h is a list of pa-

pers)

For each paper A in the input list {

For each feature-string of A {

Lookup by the feature-string in h to get a slot s;

Add A into s;

}
}

For each slot s with size smaller than a threshold {

For any two papers A1, A2 in s {

float fSim = Similarity(A1, A2);

if(fSim > the specified threshold) {

Merge A1 and A2;

}
}

}

13

the similarity for the TP-URLs that share a

common slot. On the other hand, because of the

special property of feature strings, most TP-

URLs representing the same paper can be de-

tected and merged.

The basic idea of dividing data into over-

lapped subsets is inherited from McCallum et al.

(2000), Broder et al. (1997), and some subspace

clustering approaches. Slightly different, we do

not count the number of common feature strings

between TP-URLs. Common bins (or inverted

indices) between data points are calculated in

McCallum et al. (2000) as a “cheap distance” for

creating canopies. The number of common Shin-

gles between two Web documents is calculated

(efficiently via inverted indices), such that Jac-

card similarity could be used to measure the si-

milarity between them. In our case, we simply

compare any two TP-URLs in the same slot by

using our similarity function directly.

The effective and efficiency of this algorithm

depend on the selection of feature strings. For a

fixed feature string generation method, the per-

formance of this algorithm is affected by the size

of each slot, especially the number and size of

big slots (slots with size larger than a threshold).

Big slots will be discarded in the algorithm to

improve performance, just like removing com-

mon Shingles in Broder et al. (1997). In Section

4, we conduct experiments to test the perfor-

mance of the above algorithm with different fea-

ture string functions and different slot size thre-

sholds.

2.3 Pseudo-Anchor Text Learning

In this subsection, we address the problem of

extracting the final pseudo-anchor text for a pa-

per, given all its candidate anchor blocks (see

Figure 5 for an example).

2.3.1 Problem definition

A candidate anchor block is a piece of text with

one or some reference points (a reference point is

one occurrence of citation in a paper) specified,

where a reference point is denoted by a

<start_pos, end_pos> pair (means start position

and end position respectively): ref = <start_pos,

end_pos>. We represent a candidate anchor

block to be the following format,

AnchorBlock = (Text, ref1, ref2, …)

We define a block set to be a set of candidate

anchor blocks for a paper,

BlockSet = {AnchorBlock1, AnchorBlock2, …}

Now the problem is: Given a block set con-

taining N elements, extract some text excerpts

from them as the anchor text of the paper.

2.3.2 Learn term weights

We adopt a machine-learning approach to assign,

for each term in the anchor blocks, a discrete de-

gree of being anchor text. The main reasons for

taking such an approach is twofold: First, we

believe that assigning each term a fuzzy degree

of being anchor text is more appropriate than a

binary judgment as either an anchor-term or non-

anchor-term. Second, since the importance of a

term for a “link” may be determined by many

factors in paper search, a machine-learning could

be more flexible and general than the approaches

that compute term degrees by a specially de-

signed formula.

Figure 5. The candidate pseudo-anchor blocks of a

paper

The features used for learning are listed in Ta-

ble-1.

We observed that it would be more effective if

some of the above features are normalized before

being used for learning. For a term in candidate

anchor block B, its TF are normalized by the

BM25 formula (Robertson et al., 1999),

TF

L

B
bbk

TFk
TFnorm

)
||

)1((

)1(

1

1

where L is average length of the candidate blocks,

|B| is the length of B, and k1, b are parameters.

DF is normalized by the following formula,

)1log(
DF

N
IDF

where N is the number of elements in the block

set (i.e. total number of candidate anchor blocks

for the current paper).

Features RefPos and Dist are normalized as,

RefPosnorm = RefPos / |B|

Distnorm = (Dist-RefPos) / |B|

And the feature BlockLen is normalized as,

14

 BlockLennorm = log(1+BlockLen)

Features Description

DF

Document frequency: Number of candidate blocks in

which the term appears, counted among all candidate

blocks of all papers. It is used to indicate whether the

term is a stop word or not.

BF
Block frequency: Number of candidate blocks in

which the term appears, counted among all candidate

blocks of this paper.

CTF
Collection term frequency: Total number of times the

term appearing in the blocks. For multiple times of

occurrences in one block, all of them are counted.

IsInURL
Specify whether the term appears in the pseudo-URL

of the paper.

TF
Term frequency: Number of times the terms appearing

in the candidate block.

Dist
Directed distance from the nearest reference point to

the term location

RefPos
Position of the nearest reference point in the candidate
pseudo-anchor block.

BlockLen Length of the candidate pseudo-anchor block

Table 1. Features for learning

We set four term importance levels, from 1

(unrelated terms or stop words) to 4 (words par-

ticipating in describing the main ideas of the pa-

per).

We choose support vector machine (SVM) for

learning term weights here, because of its power-

ful classification ability and well generalization

ability (Burges, 1998). We believe some other

machine learning techniques should also work

here. The input of the classifier is a feature vec-

tor of a term and the output is the importance

level of the term. Given a set of training data

 l

iii levelfeature
1

,

, a decision function f(x) can be

acquired after training. Using the decision func-

tion, we can assign an importance level for each

term automatically.

3 Experiments

3.1 Experimental Setup

Our experimental dataset contains 0.9 million

papers crawled from the web. All the papers are

processed according to the process in Figure-2

(b). We randomly select 300 queries from the

query log of Libra (libra.msra.cn) and retrieve

the results in our indexing and ranking system

with/without the pseudo-anchors generated by

our approach. Then the volunteer researchers and

students in our group are involved to judge the

search results. The top 30 results of different

ranking algorithms for each query are labeled

and assigned a relevance value from 1 (meaning

'poor match') to 5 (meaning 'perfect match'). The

search results quality is measured by NDCG

(Jarvelin and Kekalainen, 2000).

3.2 Overall Effect of our Approach

Figure 6 shows the performance comparison be-

tween the results of two baseline paper ranking

algorithms and the results of including pseudo-

anchor text in ranking.

0.466
0.426

0.388

0.597
0.619

0.689 0.673 0.672
0.627

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NDCG@1 NDCG@3 NDCG@10

Base(Without CitationCount)
Base
Pseudo-Anchor Included

Figure 6. Comparison between the baseline approach

and our approach (measure: nDCG)

The “Base” algorithm considers the title, ab-

stract, full-text and static-rank (which is a func-

tion of the citation count) of a paper. In a bit

more detail, for each paper, we adopt the BM25

formula (Robertson et al., 1999) over its title,

abstract, and full-text respectively. And then the

resulting score is linearly combined with the stat-

ic-rank to get its final score. The static-rank is

computed as follows,

 StaticRank = log(1+CitationCount) (3.1)

To test the performance of including pseudo-

anchor text in ranking, we compute an anchor

score for each paper and linearly combine it with

its baseline score (i.e. the score computed by the

baseline algorithm).

We tried two kinds of ways for anchor score

computation. The first is to merge all pieces of

anchor excerpts (extracted in the previous section)

into a larger piece of anchor text, and use BM25

to compute its relevance score. In another ap-

proach called homogeneous evidence combina-

tion (Shi et al., 2006), a relevance score is com-

puted for each anchor excerpt (still using BM25),

and all the scores for the excerpts are sorted des-

cending and then combined by the following

formula,

m

i

ianchor s
ic

S
1

2))1(1(

1
 (3.2)

where si (i=1, …, m) are scores for the m anchor

excerpts, and c is a parameter. The primary idea

15

here is to let larger scores to have relative greater

weights. Please refer to Shi et al. (2006) for a

justification of this approach. As we get slightly

better results with the latter way, we use it as our

final choice for computing anchor scores.

From Figure 6, we can see that the overall per-

formance is greatly improved by including pseu-

do-anchor information. Table 2 shows the t-test

results, where a “>” indicates that the algorithm

in the row outperforms that in the column with a

p-value of 0.05 or less, and a “>>” means a p-

value of 0.01 or less.

Base

Base (without

CitationCount)

Our approach > >>

Base >>
Base (without Cita-

tionCount)

Table 2. Statistical significance tests (t-test over

nDCG@3)

Table 3 shows the performance comparison by

using some traditional IR measures based on bi-

nary judgments. Since the results of not includ-

ing CitationCount are much worse than the other

two, we omit it in the table.

Measure

Approach
MAP MRR P@1 P@10

Base (including

CitationCount)
0.364 0.727 0.613 0.501

Our Approach 0.381 0.734 0.625 0.531

Table 3. Performance compassion using binary judg-

ment measures

3.3 Sample Query Analysis

Here we analyze some sample queries to get

some insights about why and how pseudo-anchor

improves search performance. Figure-7 and Fig-

ure-8 show the top-3 results of two sample que-

ries: {TF-IDF} and {Page Rank}.

For query "TF-IDF", the top results of the

baseline approach have keyword "TF-IDF" ap-

peared in the title as well as in other places of the

papers. Although the returned papers are relevant

to the query, they are not excellent because typi-

cally users may want to get the first TF-IDF pa-

per or some papers introducing TF-IDF. When

pseudo-anchor information is involved, some

excellent results (B1, B2, B3) are generated. The

main reason for getting the improved results is

that these papers (or books) are described with

"TF-IDF" when lots of other papers cite them.

Figure 7. Top-3 results for query TF-IDF

Figure 8. Top-3 results for query Page Rank

Figure-8 shows another example about how

pseudo-anchor helps to improve search results

quality. For query "Page Rank" (note that there is

a space in between), the results returned by the

baseline approach are not satisfactory. In the pa-

pers returned by our approach, at least B1 and B2

are very good results. Although they did not la-

bel themselves "Page Rank", other papers do so

in citing them. Interestingly, although the result

B3 is not about the "PageRank" algorithm, it de-

scribes another popular "Page Rank" algorithm

in addition to PageRank.

Another interesting observation from the two

figures is that our approach retrieves older papers

than the baseline method, because old papers

tend to have more anchor text (due to more cita-

tions). So our approach may not be suitable for

retrieve newer papers. To overcome this problem,

maybe publication year should be considered in

our ranking functions.

3.4 Anchor Accumulation Experiments

We conduct experiments to test the effectiveness

and efficiency of the multiple-feature-string-

hashing algorithm presented in Section 2.2. The

duplication detection quality of this algorithm is

determined by the appropriate selection of fea-

A1. V Safronov, M Parashar, Y Wang et al. Optimizing Web servers

using Page rank prefetching for clustered accesses. Information

Sciences. 2003.

A2. AO Mendelzon, D Rafiei. An autonomous page ranking method for

metasearch engines. WWW, 2002.

A3. FB Kalhoff. On formally real Division Algebras and Quasifields of

Rank two.

(a) Without anchor

B1. S Brin, L Page. The Anatomy of a Large-Scale Hypertextual Web

Search Engine. WWW, 1998

B2. L Page, S Brin, R Motwani, T Winograd. The pagerank citation

ranking: Bringing order to the web. 1998.

B3. JM Kleinberg. Authoritative sources in a hyperlinked environment.

Journal of the ACM, 1999.

(b) With anchor

A1. K Sugiyama, K Hatano, M Yoshikawa, S Uemura. Refinement of TF-

IDF schemes for web pages using their hyperlinked neighboring pages.

Hypertext’03

A2. A Aizawa. An information-theoretic perspective of tf-idf measures.

IPM’03.

A3. N Oren. Reexamining tf.idf based information retrieval with Genet-

ic Programming. SAICSIT’02.

(a) Without anchor

B1. G Salton, MJ McGill. Introduction to Modern Information Retriev-

al. McGraw-Hill, 1983.

B2. G Salton and C Buckley. Term weighting approaches in automatic

text retrieval. IPM’98.

B3. R Baeza-Yates, B Ribeiro-Neto. Modern Information Retrieval.

Addison-Wesley, 1999

(b) With anchor

16

ture strings. When feature strings are fixed, the

slot size threshold can be used to tune the tra-

deoff between accuracy and performance.

Feature Strings

Slot Distr.
Ungram Bigram Trigram 4-gram

of Slots 1.4*105 1.2*106 2.8*106 3.4*106
of Slots with

size > 100
5240 6806 1541 253

of Slots with

size > 1000
998 363 50 5

of Slots with

size > 10000
59 11 0 0

Table 4. Slot distribution with different feature strings

We take all the papers extracted from PDF

files as input to run the algorithm. Identical TP-

URLs are first eliminated (therefore their candi-

date anchor blocks are merged) by utilizing a

hash table. This pre-process step results in about

1.46 million distinct TP-URLs. The number is

larger than our collection size (0.9 million), be-

cause some cited papers are not in our paper col-

lection. We tested four kinds of feature strings all

of which are generated from paper title: uni-

grams, bigrams, trigrams, and 4-grams. Table-4

shows the slot size distribution corresponding to

each kind of feature strings. The performance

comparison among different feature strings and

slot size thresholds is shown in Table 5. It seems

that bigrams achieve a good trade-off between

accuracy and performance.

Feature

Strings

Slot Size

Threshold

Dup. papers

Detected

Processing

Time (sec)

Unigram
5000 529,717 119,739.0

500 327,357 7,552.7

Bigram 500 528,981 8,229.6

Trigram
Infinite 518,564 8,420.4

500 516,369 2,654.9

4-gram 500 482,299 1,138.2

Table 5. Performance comparison between different

feature strings and slot size thresholds

4 Related Work

There has been some work which uses anchor

text or their surrounding text for various Web

information retrieval tasks. It was known at the

very beginning era of internet that anchor text

was useful to Web search (McBryan, 1994).

Most Web search engines now use anchor text as

primary and power evidence for improving

search performance. The idea of using contextual

text in a certain vicinity of the anchor text was

proposed in Chakrabarti et al. (1998) to automat-

ically compile some lists of authoritative Web

resources on a range of topics. An anchor win-

dow approach is proposed in Chakrabarti et al

(1998) to extract implicit anchor text. Following

this work, anchor windows were considered in

some other tasks (Amitay et al., 1998; Haveli-

wala et al., 2002; Davison, 2002; Attardi et al.,

1999). Although we are inspired by these ideas,

our work is different because research papers

have many different properties from Web pages.

From the viewpoint of implicit anchor extraction

techniques, our approach is different from the

anchor window approach. The anchor window

approach is somewhat simpler and easy to im-

plement than ours. However, our method is more

general and flexible. In our approach, the anchor

text is not necessarily to be in a window.

Citeseer (Giles et al., 1998; Lawrence et al.,

1999) has been doing a lot of valuable work on

citation recognition, reference matching, and pa-

per indexing. It has been displaying contextual

information for cited papers. This feature has

been shown to be helpful and useful for re-

searchers. Differently, we are using context de-

scription for improving ranking rather than dis-

play purpose. In addition to Citeseer, some other

work (McCallum et al., 1999; Nanba and Oku-

mura, 1999; Nanba et al., 2004; Shi et al., 2006)

is also available for extracting and accumulating

reference information for research papers.

5 Conclusions and Future Work

In this paper, we propose to improve academic

search by utilizing pseudo-anchor information.

As pseudo-URL and pseudo-anchor text are not

as explicit as in general web search, more efforts

are needed for pseudo-anchor extraction. Our

machine-learning approach has proven success-

ful in automatically extracting implicit anchor

text. By using the pseudo-anchors in our academ-

ic search system, we see a significant perfor-

mance improvement over the basic approach.

Acknowledgments

We would like to thank Yunxiao Ma and Pu

Wang for converting paper full-text from PDF to

HTML format. Jian Shen has been helping us do

some reference extraction and matching work.

Special thanks are given to the researchers and

students taking part in data labeling.

17

References

E. Amitay. 1998. Using common hypertext links to

identify the best phrasal description of target web

documents. In Proc. of the SIGIR'98 Post Confe-

rence Workshop on Hypertext Information Re-

trieval for the Web, Melbourne, Australia.

G. Attardi, A. Gulli, and F. Sebastiani. 1999. Theseus:

categorization by context. In Proceedings of the 8th

International World Wide Web Conference.

A. Baxter, P. Christen, T. Churches. 2003. A compar-

ison of fast blocking methods for record linkage. In

ACM SIGKDD'03 Workshop on Data Cleaning,

Record Linkage and Object consolidation. Wash-

ington DC.

A. Broder, S. Glassman, M. Manasse, and G. Zweig.

1997. Syntactic clustering of the Web. In Proceed-

ings of the Sixth International World Wide Web

Conference, pp. 391-404.

C.J.C. Burges. 1998. A tutorial on support vector ma-

chines for pattern recognition. Data Mining and

Knowledge Discovery, 2, 121-167.

S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P.

Raghavan, and S. Rajagopalan. 1998. Automatic

resource list compilation by analyzing hyperlink

structure and associated text. In Proceedings of the

7th International World Wide Web Conference.

K. Chakrabarti, V. Ganti, J. Han, and D. Xin. 2006.

Ranking objects based on relationships. In SIG-

MOD ’06: Proceedings of the 2006 ACM SIG-

MOD international conference on Management of

data, pages 371–382, New York, NY, USA. ACM.

B. Davison. 2000. Topical locality in the web. In SI-

GIR'00: Proceedings of the 23rd annual interna-

tional ACM SIGIR conference on Research and

development in information retrieval, pages 272-

279, New York, NY, USA. ACM.

I.P. Fellegi, and A.B. Sunter. A Theory for Record

Linkage, Journal of the American Statistical Asso-

ciation, 64, (1969), 1183-1210.

C. L. Giles, K. Bollacker, and S. Lawrence. 1998.

CiteSeer: An automatic citation indexing system.

In IanWitten, Rob Akscyn, and Frank M. Shipman

III, editors, Digital Libraries 98 - The Third ACM

Conference on Digital Libraries, pages 89–98,

Pittsburgh, PA, June 23–26. ACM Press.

T.H. Haveliwala, A. Gionis, D. Klein, and P. Indyk.

2002. Evaluating strategies for similarity search on

the web. In WWW ’02: Proceedings of the 11th in-

ternational conference on World Wide Web, pages

432–442, New York, NY, USA. ACM.

K. Jarvelin, and J. Kekalainen. 2000. IR Evaluation

Methods for Retrieving Highly Relevant Docu-

ments. In Proceedings of the 23rd Annual Interna-

tional ACM SIGIR Conference on Research and

Development in Information Retrieval (SI-

GIR2000).

S. Lawrence, C.L. Giles, and K. Bollacker. 1999. Dig-

ital libraries and Autonomous Citation Indexing.

IEEE Computer, 32(6):67–71.

A. McCallum, K. Nigam, J. Rennie, and K. Seymore.

1999. Building Domain-specific Search Engines

with Machine Learning Techniques. In Proceed-

ings of the AAAI-99 Spring Symposium on Intelli-

gent Agents in Cyberspace.

A. McCallum, K. Nigam, and L. Ungar. 2000. Effi-

cient clustering of high-dimensional data sets with

application to reference matching. In Proc. 6th

ACM SIGKDD Int. Conf. on Knowledge Discov-

ery and Data Mining.

O.A. McBryan. 1994. Genvl and wwww: Tools for

taming the web. In In Proceedings of the First In-

ternational World Wide Web Conference, pages

79-90.

H. Nanba, M. Okumura. 1999. Towards Multi-paper

Summarization Using Reference Information. In

Proc. of the 16
th

 International Joint Conference on

Artificial Intelligence, pp.926-931.

H. Nanba, T. Abekawa, M. Okumura, and S. Saito.

2004. Bilingual PRESRI: Integration of Multiple

Research Paper Databases. In Proc. of RIAO 2004,

195-211.

L. Parsons, E. Haque, H. Liu. 2004. Subspace cluster-

ing for high dimensional data: a review. SIGKDD

Explorations 6(1): 90-105.

S.E. Robertson, S. Walker, and M. Beaulieu. 1999.

Okapi at TREC-7: automatic ad hoc, filtering, VLC

and filtering tracks. In Proceedings of TREC’99.

S. Shi, R. Song, and J-R Wen. 2006. Latent Additivity:

Combining Homogeneous Evidence. Technique

report, MSR-TR-2006-110, Microsoft Research,

August 2006.

S. Shi, F. Xing, M. Zhu, Z.Nie, and J.-R. Wen. 2006.

Pseudo-Anchor Extraction for Search Vertical Ob-

jects. In Proc. of the 2006 ACM 15th Conference

on Information and Knowledge Management. Ar-

lington, USA.

Z. Nie, Y. Zhang, J.-R. Wen, and W.-Y. Ma. 2005.

Object-level ranking: bringing order to web objects.

InWWW’05: Proceedings of the 14th international

conference on World Wide Web, pages 567–574,

New York, NY, USA. ACM.

18

