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Abstract

LTAG-spinal is a novel variant of tradi-
tional Lexicalized Tree Adjoining Gram-
mar (LTAG) introduced by (Shen, 2006).
The LTAG-spinal Treebank (Shen et al.,
2008) combines elementary trees ex-
tracted from the Penn Treebank with Prop-
bank annotation. In this paper, we present
a semantic role labeling (SRL) system
based on this new resource and provide an
experimental comparison with CCGBank
and a state-of-the-art SRL system based
on Treebank phrase-structure trees. Deep
linguistic information such as predicate-
argument relationships that are either im-
plicit or absent from the original Penn
Treebank are made explicit and accessible
in the LTAG-spinal Treebank, which we
show to be a useful resource for semantic
role labeling.

1 Introduction

Semantic Role Labeling (SRL) aims to identify
and label all the arguments for each predicate in
a sentence. Specifically, it involves identifying
portions of the sentence that represent the pred-
icate’s arguments and assigning pre-specified se-
mantic roles to them.

[A0seller Ports of Call Inc.] reached agreements to
[Vverb sell] [A1thing its remaining seven aircraft]
[A2buyer to buyers that weren’t disclosed] .

is an example of SRL annotation from the Prop-
Bank corpus (Palmer et al., 2005), where the sub-
scripted information maps the semantic roles A0,
A1 and A2 to arguments for the predicate sell as
defined in the PropBank Frame Scheme.

The availability of annotated corpora like Prop-
Bank and FrameNet (Fillmore et al., 2001) have
provided rapid development of research into
SRL (Gildea and Jurafsky, 2002; Gildea and
Palmer, 2002; Surdeanu et al., 2003; Chen and
Rambow, 2003; Gildea and Hockenmaier, 2003;

Xue and Palmer, 2004; Pradhan et al., 2004; Prad-
han et al., 2005). The shared tasks in CoNLL-
2004 (Carreras and Màrquez, 2004), CoNLL-
2005 (Carreras and Màrquez, 2005) and CoNLL-
2008 (Surdeanu et al., 2008) were all focused on
SRL.

SRL systems (Gildea and Jurafsky, 2002;
Gildea and Palmer, 2002) have extensively used
features defined over Penn Treebank phrase-
structure trees. Other syntactic representations
such as CCG derivations (Gildea and Hocken-
maier, 2003) and dependency trees (Hacioglu,
2004; Surdeanu et al., 2008) have also been ex-
plored. It has been previously noted that LTAG,
which has the useful property of extended domain
of locality (EDL), is well-suited to address the
SRL task, c.f. (Chen and Rambow, 2003; Liu and
Sarkar, 2007). However, LTAG elementary trees
were extracted from the derived parse trees by
using Magerman-Collins style head-percolation
based heuristic rules (Liu and Sarkar, 2007). The
LTAG-spinal Treebank (Shen et al., 2008) pro-
vided a corpus of derivation trees where elemen-
tary trees were extracted from the Penn Tree-
bank in combination with the Propbank predicate-
argument annotation. The LTAG-spinal Treebank
can be used to overcome some of the limitations of
the previous work on SRL using LTAG: (Liu and
Sarkar, 2007) uses LTAG-based features extracted
from phrase-structure trees as an additional source
of features and combined them with features from
a phrase-structure based SRL framework; (Chen
and Rambow, 2003) only considers those comple-
ment/adjunct semantic roles that can be localized
in LTAG elementary trees, which leads to a loss
of over 17% instances of semantic roles even from
gold-standard trees.

The LTAG-spinal formalism was initially pro-
posed for automatic treebank extraction and sta-
tistical parsing (Shen and Joshi, 2005). However,
its Propbank-guided treebank extraction process
further strengthens the connection between the
LTAG-spinal and semantic role labeling. In this
paper, we present an SRL system that was built to
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explore the utility of this new formalism, its Tree-
bank and the output of its statistical parser. Ex-
periments show that our LTAG-spinal based SRL
system achieves very high precision on both gold-
standard and automatic parses, and significantly
outperforms the one using CCGbank. More im-
portantly, it shows that LTAG-spinal is an useful
resource for semantic role labeling, with the po-
tential for further improvement.

2 LTAG-spinal, its Treebank and Parsers
This section gives a brief introduction of LTAG-
spinal formalism, its Treebank that is extracted
with the help of Propbank annotation, and its two
statistical parsers that are trained on the Tree-
bank. Predicate-argument relations encoded in the
LTAG-spinal treebank will also be discussed to il-
lustrate its compatibility with Propbank and their
potential utility for the SRL task.

2.1 LTAG-spinal

The LTAG-spinal formalism (Shen et al., 2008)
is a variant of Lexicalized Tree Adjoining Gram-
mar (LTAG) (Abeillé and Rambow, 2001). Com-
pared to traditional LTAG, the two types of ele-
mentary trees (e-tree for short), initial and auxil-
iary trees, are in spinal form with no substitution
nodes for arguments appearing in the predicate e-
tree: a spinal initial tree is composed of a lexi-
cal spine from the root to the anchor, and noth-
ing else; a spinal auxiliary tree is composed of a
lexical spine and a recursive spine from the root
to the foot node. For example, in Figure 1 (from
(Shen et al., 2008)), the lexical spine for the auxil-
iary tree is B1, .., Bi, .., Bn, the recursive spine is
B1, .., Bi, .., B

∗
1 . Two operations attachment and

adjunction are defined in LTAG-spinal where ad-
junction is the same as adjunction in the traditional
LTAG; attachment stems from sister adjunction as
defined in Tree Insertion Grammar (TIG) (Schabes
and Shieber, 1994), which corresponds to the case
where the root of an initial tree is taken as a child
of another spinal e-tree. The two operations are
applied to LTAG-spinal e-tree pairs resulting in an
LTAG derivation tree which is similar to a depen-
dency tree (see Figure 2). In Figure 2, e-tree an-
chored with continue is the only auxiliary tree; all
other e-trees are initial trees. The arrow is directed
from parent to child, with the type of operation
labeled on the arc. The operation types are: att
denotes attachment operation; adj denotes adjunc-
tion operation. The sibling nodes may have differ-

An

B1A1

Bn

initial: auxiliary:

B1*

Bi

Figure 1: Spinal elementary trees

ent landing site along the parent spine. For ex-
ample, among the child nodes of stabilize e-tree,
to e-tree has VP as landing site; while even has S
as landing site. Such information, on some level,
turns out to be helpful to differentiate the semantic
role played by the different child nodes.

So far, we can see that in contrast with tradi-
tional LTAG where arguments refer to obligatory
constituents only, subcategorization frames and
argument-adjunct distinction are underspecified
in LTAG-spinal. Since argument-adjunct disam-
biguation is one of the major challenges faced by
LTAG treebank construction, LTAG-spinal works
around this issue by leaving the disambiguation
task for further deep processing, such as seman-
tic role labeling.

LTAG-spinal is weakly equivalent to traditional
LTAG with adjunction constraints1 (Shen, 2006).

The Propbank (Palmer et al., 2005) is an an-
notated corpus of verb subcategorization and al-
ternations which was created by adding a layer
of predicate-argument annotation over the phrase
structure trees in the Penn Treebank. The LTAG-
spinal Treebank is extracted from the Penn Tree-
bank by exploiting Propbank annotation. Specif-
ically, as described in (Shen et al., 2008), a Penn
Treebank syntax tree is taken as an LTAG-spinal
derived tree; then information from the Penn Tree-
bank and Propbank is merged using tree transfor-
mations. For instance, LTAG predicate coordina-
tion and instances of adjunction are recognized
using Propbank annotation. LTAG elementary
trees are then extracted from the transformed Penn
Treebank trees recursively, using the Propbank an-
notation and a Magerman-Collins style head per-
colation table.

This guided extraction process allows syntax
and semantic role information to be combined in
LTAG-spinal derivation trees. For example, the

1null adjunction (NA), obligatory adjunction (OA) and se-
lective adjunction (SA)
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Figure 2: An example of LTAG-spinal sub-derivation tree, from LTAG-spinal Treebank Section 22

Figure 3: Three examples of LTAG-spinal derivation trees where predicates and their Propbank style
argument labels are given. These examples are from LTAG-spinal Treebank Section 22.

Penn Treebank does not differentiate raising verbs
and control verbs, however, based on the Propbank
information, LTAG-spinal makes this distinction
explicit. Thus, the error of taking a subject ar-
gument which is not semantically an argument of
the raising verb can be avoided. Another prop-
erty of LTAG-spinal Treebank extraction lies in the
flexibility and simplicity of the treatment of pred-
icate coordination (see (Shen et al., 2008)). Fig-
ure 3 shows three examples of Propbank annota-
tion as decorations over the LTAG-spinal deriva-
tion trees. In each derivation tree, each node is
associated with LTAG-spinal e-trees. Each argu-
ment (A0, A1, etc.) is referred to as A and the
predicate is called P . In most cases, the argument
is found locally in the derivation tree due to the
extended domain of locality in e-trees. Thus, most
arguments are identified by the pattern P → A or
P ← A. The next section contains a discussion of
such patterns in more detail.

Two statistical parsers have been developed
by Libin Shen specifically for training on the
LTAG-spinal treebank: a left-to-right incremental
parser (Shen and Joshi, 2005) and a bidirectional
incremental parser (Shen and Joshi, 2008). If one
compares the output of these two parsers, the left-
to-right parser produces full LTAG-spinal deriva-
tion trees (including all the information about
specific elementary trees used in the derivation
and the attachment information within the e-trees)
while the bidirectional parser produces derivation
trees without information about elementary trees
or attachment points (similar to output from a de-
pendency parser). In this paper, we use the left-

to-right incremental parser for its richer output
because our SRL system uses feature functions
that use information about the elementary trees in
the derivation tree and the attachment points be-
tween e-trees. The landing site of child node along
the parent spine is useful for identifying different
types of arguments in SRL. For example, assume
the parent spine is “S-VP-VB-anchor” (the root la-
bel is S, and “anchor” is where the lexical item is
inserted). Along with direction information, the
landing site label “S” is likely to be a good indi-
cator for argument A0 (subject) while the landing
site label “VP” could be a good indicator for “A1”
(object). In this sense, the incremental left-to-
right parser is preferable for semantic role label-
ing. However, having been developed earlier than
the bidirectional parser, the incremental parser ob-
tains 1.2% less in dependency accuracy compared
to the bidirectional parser (Shen and Joshi, 2008).

2.2 Predicate-argument relations in the
LTAG-spinal Treebank

The Propbank-guided extraction process for
LTAG-spinal treebank naturally creates a close
connection between these two resources. To ex-
amine the compatibility of the LTAG-spinal Tree-
bank with Propbank, (Shen et al., 2008) provides
the frequency for specific types of paths from
the predicate to the argument in the LTAG-spinal
derivation trees from the LTAG-spinal Treebank.
The 8 most frequent patterns account for 95.5%
of the total predicate-argument pairs of the LTAG-
spinal Treebank, of which 88.4% are directly con-
nected pairs. These statistics not only provide em-

3



Path Pattern Number Percent
1 P→A 8294 81.3
2 P←A, V←A 720 7.1
3 P←Px→A 437 4.3
4 P←Coord→Px→A 216 2.1
5 P←Ax←Py→A 84 0.82
6 P←Coord←Px→A 40 0.39
7 P←Px←Py→A 13 0.13
total recovered w/ patterns 9804 96.1

total 10206 100.0
Table 1: Distribution of the 7 most frequent
predicate-argument pair patterns in LTAG-spinal
Treebank Section 22. P : predicate, A: argument,
V : modifying verb, Coord: predicate coordina-
tion.

pirical justification for the notion of the extended
domain of locality (EDL) in LTAG-spinal (Shen et
al., 2008), they also provide motivation to explore
this Treebank for the SRL task.

We collected similar statistics from Treebank
Section 22 for the SRL task, shown in Table 1,
where 7 instead of 8 patterns suffice in our setting.
Each pattern describes one type of P(redicate)-
A(rgument) pair with respect to their dependency
relation and distance in the LTAG-spinal deriva-
tion tree. The reason that we combine the two pat-
terns P←A and V←A into one is that from SRL
perspective, they are equivalent in terms of the de-
pendency relation and distance between the pred-
icate. Each token present in the patterns, such as
P, Px, Py, V, A, Ax and Coord, denotes a spinal
e-tree in the LTAG-spinal derivation tree.

To explain the patterns more specifically, take
the LTAG-spinal sub-derivation tree in Figure 2
as an example, Assume P(redicate) in question is
stabilize then (stabilize → even), (stabilize →
if), (stabilize → Street), (stabilize → continue),
(stabilize → to) all belong to pattern 1; but only
(stabilize → Street) is actual predicate-argument
pair. Similarly, when take continue as P, the
predicate-argument pair (continue ← stabilize)
belongs to pattern 2, where stabilize corresponds
to A(rgument) in the pattern; (continue, Street) in
(Street ← stabilize → continue) is an example of
pattern 3, where stabilize corresponds to Px and
Street corresponds to A in the pattern 3 schema.
Pattern 4 denotes the case where argument (A) is
shared between coordinated predicates (P and Px);
The main difference of pattern 5-7 exists where
the sibling node of A(rgument) is categorized into:

predicate (Px) in pattern 7, predicate coordination
node (Coord) in pattern 6 and others (Ax) in pat-
tern 5. We will retain this difference instead of
merging it since the semantic relation between P
and A varies based on these differences. Example
sentences for other (rarer) patterns can be found
in (Shen et al., 2008).

3 LTAG-spinal based SRL System De-
scription

In this section, we describe our LTAG-spinal based
SRL system. So far, we have studied LTAG-spinal
formalism, its treebank and parsers. In particular,
the frequency distribution of the seven most seen
predicate-argument pair patterns in LTAG-spinal
Treebank tells us that predicate-argument relation-
ships typical to semantic role labeling are often lo-
cal in LTAG-spinal derivation trees.

Pruning, argument identification and argument
classification – the 3-stage architecture now stan-
dard in SRL systems is also used in this paper.
Specifically, for the sake of efficiency, nodes with
high probability of being NULL (non-argument)
should be filtered at the beginning; usually filter-
ing is done based on some heuristic rules; after the
pruning stage, argument identification takes place
with the goal of classifying the pruning-survival
nodes into argument and non-argument; for those
nodes that have been classified as arguments, ar-
gument classification component will further label
them with different argument types, such as A0,
A1, etc. Argument identification and classifica-
tion are highly ambiguous tasks and are usually
accomplished using a machine learning method.

For our LTAG-spinal based SRL system, we
first collect the argument candidates for each pred-
icate from the LTAG-spinal derivation tree. For
each candidate, features are extracted to capture
the predicate-argument relations. Binary classi-
fiers for identification and classification are trained
using SVMs and combined in a one-vs-all model.
The results are evaluated using precision/recall/f-
score.

3.1 Candidate Locations for Arguments

In SRL systems that perform role labeling of con-
stituents in a phrase-structure tree, statistics show
that after pruning, ∼98% of the SRL argument
nodes are retained in the gold-standard trees in
the Penn Treebank, which provides a high upper-
bound for the recall of the SRL system. Pruning
away unnecessary nodes using a heuristic makes
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learning easier as well, as many of the false posi-
tives are pruned away leading to a more balanced
binary classification problem during the seman-
tic role identification and classification steps. We
need a similar heuristic over LTAG-spinal nodes
that will have high coverage with respect to SRL
arguments and provide a high upper-bound for re-
call.

As previously shown that the seven most fre-
quent predicate-argument pair patterns that are
used to describe the specific types of paths from
the predicate to the argument account for∼96% of
the total number of predicate-argument pairs in the
LTAG-spinal Treebank. These patterns provide a
natural candidate selection strategy for our SRL.

Table 2 shows a similar oracle test applied to the
output of the LTAG-spinal parser on Section 22.
The total drop in oracle predicate-argument iden-
tifiation drops 10.5% compared to gold-standard
trees. 9.8% is lost from patterns 1 and 2. If ex-
clude those pairs that belong to pattern i in tree-
bank but belong to pattern j (i 6= j) in automatic
parses (so the pattern exists but is the wrong one
for that constituent), the number drops to 81.6%
from 85.6%. This indicates that in terms of the
impact of the syntactic parser errors for SRL, the
LTAG-spinal parser will suffer even more than the
phase structure parser. An alternative is to exhaus-
tively search for predicate-argument pairs without
considering patterns, which we found introduces
too much noise in the learner to be feasible. Thus,
the predicate-argument pairs selected through this
phase are considered as argument candidates for
our SRL system.

3.2 Features

Based on the patterns, features are defined on
predicate-argument pairs from LTAG derivation

Path Pattern Number Percent
1 P→A 7441 72.9
2 P←A, V←A 583 5.7
3 P←Px→A 384 3.8
4 P←Coord→Px→A 180 1.76
5 P←Ax←Py→A 75 0.73
6 P←Coord←Px→A 48 0.47
7 P←Px←Py→A 22 0.21
total recovered w/ patterns 8733 85.6

total 10206 100.0
Table 2: Distribution of the 7 patterns in LTAG-
spinal parser output for Section 22.

tree, mainly including predicate e-trees, argument
e-trees, intermediate e-trees and their “topological
relationships” such as operation, spine node, rel-
ative position and distance. The following are the
specific features used in our classifiers:
Features from predicate e-tree and its variants
predicate lemma, POS tag of predicate, predicate
voice, spine of the predicate e-tree, 2 variants of
predicate e-tree: replacing anchor in the spine
with predicate lemma, replacing anchor POS in
the spine with voice. In Figure 2, if take stabi-
lize as predicate, these two variants are S-VP-VB-
stabilize and S-VP-VB-active respectively.
Features from argument e-tree and its variants
argument lemma, POS tag of argument, Named
Entity (NE) label of the argument, spine of the ar-
gument e-tree, 2 variants of argument e-tree: re-
placing anchor in the spine with argument lemma,
replacing anchor POS with NE label if any, label
of root node of the argument spine. In Figure 2,
if take stabilize as predicate, and Street as argu-
ment, the two variants are XP-NNP-street and XP-
ORGANIZATION2 respectively.
PP content word of argument e-tree if the root
label of the argument e-tree is PP, anchor of the
last daughter node. NE variant of this feature: re-
place its POS with the NE label if any.
Features from the spine node (SP1) spine node is
the landing site between predicate e-tree and argu-
ment e-tree. Features include the index along the
host spine3, label of the node, operation involved
(att or adj).
Relative position of predicate and argument in the
sentence: before/after.
Order of current child node among its siblings.
In pattern 1, predicate e-tree is parent, and argu-
ment e-tree is child. This feature refers to the order
of argument e-tree among its siblings nodes (with
predicate e-tree as parent).
Distance of predicate e-tree and argument tree in
the LTAG derivation tree: For example, for pattern
1 and 2, the distance has value 0; for pattern 3, the
distance has value 1.
Pattern ID valued 1-7. (see Table 1 and Table 2)
Combination of position and pattern ID, combi-
nation of distance and pattern ID, combination of

2XP-NNP is a normalized e-tree form used in (Shen et
al., 2008) for efficiency and to avoid the problem of sparse
data over too many e-trees.

3it can either be predicate e-tree or argument e-tree. For
example, for pattern P←A, the A(rgument) e-tree is the host
spine.
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position and order.
Features from intermediate predicate e-tree
same features as predicate e-tree features.
Features from spine node of intermediate pred-
icate e-tree and argument e-tree (SP2) for
predicate-argument pairs of pattern 3-7. These
features are similar to the SP1 features but instead
between intermediate predicate e-tree and argu-
ment e-tree.
Relative position between predicate e-tree and in-
termediate e-tree.
Combination relative positions of argument e-tree
and intermediate predicate e-tree + relative posi-
tion of argument e-tree and predicate e-tree.

The features listed above are used to represent
each candidate constituent (or node) in the LTAG-
spinal derivation tree in training and test data. In
both cases, we identify SRLs for nodes for each
predicate. In training each node comes with the
appropriate semantic role label, or NULL if it does
not have any (for the predicate). In test data,
we first identify nodes as arguments using these
features (ARG v.s. NULL classification) and then
classify a node identified as an argument with the
particular SRL using one-vs-all binary classifica-
tion.

4 Experiments

4.1 Data Set

Following the usual convention for parsing and
SRL experiments, LTAG-spinal Treebank Section
2-21 is used for training and Section 23 for test-
ing. Propbank argument set is used which includes
numbered arguments A0 to A5 and 13 adjunct-like
arguments. 454 sentences in the Penn Treebank
are skipped from the LTAG-spinal Treebank (Shen
et al., 2008)4, which results in 115 predicate-
argument pairs ignored in the test set.

We applied SVM-light (Joachims, 1999) with
default linear kernel to feature vectors. 30% of
the training samples are used to fine tune the reg-
ularization parameter c and the loss-function cost
parameter j for both argument identification and
classification. With parameter validation experi-
ments, we set c = 0.1 and j = 1 for {A0, AM-

4Based on (Shen et al., 2008), the skipped 454 sentences
amount to less than 1% of the total sentences. 314 of these
454 sentences have gapping structures. Since PTB does not
annotate the trace of deleted predicates, additional manual
annotation is required to handle these sentences. For the rest
of the 146 sentences, abnormal structures are generated due
to tagging errors.

NEG}, c = 0.1, j = 2 for {A1, A2, A4, AM-
EXT} and c = 0.1 and j = 4 for the rest.

For comparison, we also built up a standard 3-
stage phrase-structure based SRL system, where
exactly the same data set5 is used from 2004
February release of the Propbank. SVM-light with
linear kernel is used to train on a standard fea-
ture set (Xue and Palmer, 2004). The Charniak
and Johnson parser (2006) is used to produce the
automatic parses. Note that this phrase-structure
based SRL system is state-of-the-art and we have
included all the features proposed in the litera-
ture that use phrase-structure trees. This system
obtains a higher SRL accuracy which can be im-
proved only by using global inference and other
ways (such as using multiple parsers) to improve
the accuracy on automatic parses.

4.2 Results

We compared our LTAG-spinal based SRL system
with phrase-structure based one (see the descrip-
tion in earlier sections), for argument identifica-
tion and classification. In order to analyze the im-
pact of errors in syntactic parsers, results are pre-
sented on both gold-standard trees and automatic
parses. Based on the fact that nearly 97% e-trees
that correspond to the core arguments6 belong to
pattern 1 and 2, which accounts for the largest por-
tion of argument loss in automatic parses, the clas-
sification results are also given for these core argu-
ments. We also compare with the CCG-based SRL
presented in (Gildea and Hockenmaier, 2003)7,
which has a similar motivation as this paper, ex-
cept they use the Combinatory Categorial Gram-
mar formalism and the CCGBank syntactic Tree-
bank which was converted from the Penn Tree-
bank.
Scoring strategy To have a fair evaluation of argu-
ments between the LTAG-spinal dependency parse
and the Penn Treebank phrase structure, we report
the root/head-word based scoring strategy for per-
formance comparison, where a case is counted as
positive as long as the root of the argument e-tree
is correctly identified in LTAG-spinal and the head
word of the argument constituent is correctly iden-
tified in phrase structure. In contrast, boundary-

5The same 454 sentences are ignored.
6A0, A1, A2, A3, A4, A5
7Their data includes the 454 sentences. However, the

missing 115 predicate-argument pairs account for less than
1% of the total number of predicate-argument pairs in the test
data, so even if we award these cases to the CCGBank system
the system performance gap still remains.
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based scoring is more strict in that the string span
of the argument must be correctly identified in
identification and classification.
Results from using gold standard trees Ta-
ble 3 shows the results when gold standard trees
are used. We can see that with gold-standard
derivations, LTAG-spinal obtains the highest pre-
cision on identification and classification; it also
achieves a competitive f-score (highest f-score for
identification) with the recall upper-bound lower
by 2-3% than phrase-structure based SRL. How-
ever, the recall gap between the two SRL systems
gets larger for classification compared to identifi-
cation8, which is due to the low recall that is ob-
served with our LTAG-spinal based SRL based on
our current set of features. If compare the differ-
ence between the root/head-word based score and
the boundary based score in the 3 scenarios, we
notice that the difference reflects the discrepancy
between the argument boundaries. It is not sur-
prising to see that phrase-structure based one has
the best match. However, CCGBank appears to
have a large degree of mismatch. In this sense,
root/head word based scoring provides fair com-
parison between LTAG-spinal SRL system and the
CCGBank SRL system.

Recent work (Boxwell and White, 2008)
changes some structures in the CCGBank to cor-
respond more closely with the Probbank annota-
tions. They also resolve split arguments that occur
in Propbank and add these annotations into a re-
vised version of the CCGBank. As a result they
show that the oracle f-score improves by over 2
points over the (Gildea and Hockenmaier, 2003)
oracle results for the numbered arguments only
(A0, . . ., A5). It remains an open question whether
a full SRL system based on a CCG parser trained
on this new version of the CCGBank will be com-
petitive against the LTAG-spinal based and phrase-
structure based SRL systems.
Results from using automatic parses Table 4
shows the results when automatic parses are used.
With automatic parses, the advantage of LTAG-
spinal in the precision scores still exists: giving
a higher score in both identification and core argu-
ment classification; only 0.5% lower for full argu-
ment classification. However, with over 6% dif-
ference in upper-bound of recall (≤85.6% from
LTAG-spinal; ∼91.7% from Charniak’s parser),

8no NULL examples are involved when training for argu-
ment classification.

the gap in recall becomes larger: increased to
∼10% in automatic parses from ∼6% in gold-
standard trees.

The identification result is not available for
CCG-based SRL. In terms of argument classifica-
tion, it is significantly outperformed by the LTAG-
spinal based SRL. In particular, it can be seen that
the LTAG-spinal parser performs much better on
argument boundaries than CCG-based one.

One thing worth mentioning is that since neither
the LTAG-spinal parser nor Charniak’s parser pro-
vides trace (empty category) information in their
output, no trace information is used for LTAG-
spinal based SRL or the phrase-structure based
SRL even though it is available in their gold-
standard trees.

5 Conclusion and Future Work
With a small feature set, the LTAG-spinal based
SRL system described in this paper provides the
highest precision in almost all the scenarios, which
indicates that the shallow semantic relations, e.g.,
the predicate-argument relations that are encoded
in the LTAG-spinal Treebank are useful for SRL,
especially when compared to the phrase structure
Penn Treebank. (Shen et al., 2008) achieves an f-
score of 91.6% for non-trace SRL identification on
the entire Treebank by employing a simple rule-
based system, which also suggested this conclu-
sion. In other words, there is a tighter connection
between the syntax and semantic role labels in the
LTAG-spinal representation.

However, in contrast to the high precision, the
recall performance of LTAG-spinal based SRL
needs a further improvement, especially for the ar-
gument classification task. From SRL perspective,
on one hand, this may be due to the pattern-based
candidate selection, which upper-bounds the num-
ber of predicate-argument pairs that can be re-
covered for SRL; on the other hand, it suggests
that the features for argument classification need
to be looked at more carefully, compared to the
feature selection for argument identification, es-
pecially for A2 and A3 (as indicated by our error
analysis on the results on the development set). A
possible solution is to customize a different fea-
ture set for each argument type during classifica-
tion, especially for contextual information.

Experiments show that when following the
pipelined architecture, the performance of LTAG-
based SRL is more severely degraded by the syn-
tactic parser, compared to the SRL using phrase
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Identification gold-standard trees (p/r/f%)
Scoring LTAG phrase CCG

Root/head-word 96.0/92.1/94.0 93.0/94.0/93.5 n/a
classification (core) gold-standard trees (p/r/f%)

Scoring LTAG phrase CCG
Root/head-word 90.6/83.4/86.9 87.2/88.4/87.8 82.4/78.6/80.4

classification (full) gold-standard trees (p/r/f%)
Scoring LTAG phrase CCG

Root/head-word 88.2/81.7/84.8 86.1/87.1/86.6 76.3/67.8/71.8
Boundary 87.4/81.0/84.1 86.0/87.0/86.5 67.5/60.0/63.5

Table 3: Using gold standard trees: comparison of the three SRL systems for argument identification,
core and full argument classification

Identification automatic parses (p/r/f%)
Scoring LTAG phrase CCG

Root/head-word 85.8/80.0/82.8 85.8/87.7/86.7 n/a
classification (core) automatic parses (p/r/f%)

Scoring LTAG phrase CCG
Root/head-word 81.0/71.5/76.0 80.1/82.8/81.4 76.1/73.5/74.8

classification (full) automatic parses (p/r/f%)
Scoring LTAG phrase CCG

Root/head-word 78.0/70.0/73.7 78.5/80.3/79.4 71.0/63.1/66.8
Boundary 72.3/65.0/68.5 73.8/75.5/74.7 55.7/49.5/52.4

Table 4: Using automatic parses: comparison of the three SRL systems for argument identification, core
and full argument classification

structure and CCG formalism. Even though the
left-to-right statistical parser that was trained and
evaluated on the LTAG-spinal Treebank achieves
an f-score of 89.3% for dependencies on Section
23 of this treebank (Shen and Joshi, 2005), the
SRL that used this output is worse than expected.
An oracle test shows that via the same 7 patterns,
only 81.6% predicate-argument pairs can be re-
covered from the automatic parses, which is a big
drop from 96.1% when we use the LTAG-spinal
Treebank trees. Parser accuracy is high overall,
but needs to be more accurate in recovering the
dependencies between predicate and argument.

Based on the observation that the low recall
occurs not only to the SRL when the automatic
parses are used but also when the gold trees are
used, we would expect that a thorough error analy-
sis and feature calibrating can give us a better idea
in terms of how to increase the recall in both cases.

In on-going work, we also plan to improve
the dependency accuracy for predicate and argu-
ment dependencies by using the SRL predictions
as feedback for the syntactic parser. Our hypoth-
esis is that this approach combined with features

that would improve the recall numbers would lead
to a highly accurate SRL system.

As a final note, we believe that our effort on us-
ing LTAG-spinal for SRL is a valuable exploration
of the LTAG-spinal formalism and its Treebank re-
source. We hope our work will provide useful in-
formation on how to better utilize this formalism
and the Treebank resource for semantic role label-
ing.

Acknowledgements
We would like to thank Aravind Joshi and Lu-
cas Champollion for their useful comments and
for providing us access to the LTAG-spinal Tree-
bank. We would especially like to thank Libin
Shen for providing us with the LTAG-spinal sta-
tistical parser for our experiments and for many
helpful comments.

8



References
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Abstract

This paper reports on the develop-
ment of a core semantics for German
which was implemented on the ba-
sis of an English semantics that con-
verts LFG f-structures to flat meaning
representations in a Neo-Davidsonian
style. Thanks to the parallel design
of the broad-coverage LFG grammars
written in the context of the ParGram
project (Butt et al., 2002) and the
general surface independence of LFG
f-structure analyses, the development
process was substantially facilitated.
We also discuss the overall architec-
ture of the semantic conversion sys-
tem from a crosslinguistic, theoretical
perspective.

1 Introduction

This paper reports on the development of a
core semantics for German which was imple-
mented on the basis of an English semantics
that converts LFG f-structures to flat mean-
ing representations in a Neo-Davidsonian
style. The development strategy relies on the
parallel design of the broad-coverage LFG
grammars written in the context of the Par-
Gram project (Butt et al., 2002). We will
first describe the overall architecture of the
semantic conversion system as well as the
basic properties of the semantic representa-
tion. Section 3 discusses the development
strategy and the core semantic phenomena
covered by the German semantics. In sec-
tion 3.4, we will discuss the benefits and the

limitations of the presented architecture for
crosslingual semantics by means of an ex-
ample phenomenon, the semantics of clause-
embedding verbs. The rest of this introduc-
tion will be devoted to the broader theoreti-
cal context of this work.

Recently, the state of the art in wide-
coverage parsing has made wide-coverage se-
mantic processing come into the reach of re-
search in computational semantics (Bos et
al., 2004). This shift from the theoret-
ical conception of semantic formalisms to
wide-coverage semantic analysis raises many
questions about appropriate meaning repre-
sentations as well as engineering problems
concerning the development and evaluation
strategies of semantic processing systems.
The general aim of this work is to explore
wide-coverage LFG syntax as a backbone for
linguistically motivated semantic processing.

Research in the framework of LFG has tra-
ditionally adopted a crosslingual perspective
on linguistic theory (Bresnan, 2000). In the
context of the ParGram project, a number
of high quality, broad-coverage grammars for
several languages have been produced over
the years (Butt et al., 2002; Butt and King,
2007).1 The project’s research methodology
particularly focusses on parallelism which
means that the researchers rely on a com-
mon syntactic theory as well as development
tools, but which also concerns parallelism on
the level of syntactic analyses. As the LFG
formalism assumes a two-level syntax that di-

1Also see the webpage for a nice project overview:
http://www2.parc.com/isl/groups/nltt/pargram/
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vides the analysis into a more language and
surface dependent constituent structure and
a functional structure which basically repre-
sents the surface independent grammatical
relations of a sentence, it constitutes a partic-
ularly appropriate basis for large-scale, mul-
tilingual syntax.

Parallel grammar development bears the
practical advantage that the resources de-
velopped for a particular language can of-
ten easily be ported to related languages.
Kim et al. (2003) report that the Korean
ParGram grammar was constructed in two
months by adapting the Japanese grammar
for Korean. Moreover, parallel grammars
have a straightforward application in multi-
lingual NLP tasks like machine translation
(Frank, 1999).

A general motivation for multilingual, deep
grammars are higher-level NLP tasks which
involve some kind of semantic or meaning-
sensititive processing (Butt and King, 2007).
The work presented in this paper shows that
parallel grammar development not only fa-
cilitates porting of grammars, but substan-
tially facilitates the development of resources
and applications that involve such a par-
allel grammar. We rely on the semantic
conversion system presented in (Crouch and
King, 2006) to implement a system that de-
rives semantic representations from LFG f-
structures for German. Due to the paral-
lelism of syntactic f-structure input, the Ger-
man core semantics could be implemented
within a single month.

2 F-Structure Rewriting as an

LFG Semantics

Since the early days of LFG, there has
been research on interfacing LFG syntax
with various semantic formalisms (Dalrym-
ple, 1999). For the English and Japanese
ParGram grammar, a broad-coverage, glue
semantic construction has been implemented
by (Crouch, 1995; Umemoto, 2006). In con-
trast to these approaches, the semantic con-

version described in (Crouch and King, 2006)
is not driven by a specific semantic theory
about meaning representation, nor by a the-
oretically motivated apparatus of meaning
construction. Therefore, we will talk about
“semantic conversion” instead of “construc-
tion” in this paper.

The main idea of the system is to convert
the surface-independent, syntactic relations
and features encoded in an f-structure to nor-
malized semantic relations. The representa-
tion simplifies many phenomena usually dis-
cussed in the formal semantic literature (see
the next section), but is tailored for use in
Question Answering (Bobrow et al., 2007a)
or Textual Entailment (Bobrow et al., 2007b)
applications.

The semantic conversion was implemented
by means of the XLE platform, used
for grammar development in the ParGram
project. It makes use of the built-in trans-
fer module to convert LFG f-structures to
semantic representations. The idea to use
transfer rules to model a semantic concstruc-
tion has also been pursued by (Spreyer and
Frank, 2005) who use the transfer module to
model a RMRS semantic construction for the
German treebank TIGER .

2.1 The Semantic Representation

As a first example, a simplified f-structure
analysis for the following sentence and the
corresponding semantic representation are
given in figure 1.

(1) In the afternoon, John was seen in the park.

The basic idea of the representation exem-
plified in figure 1 is to represent the syntactic
arguments and adjuncts of the main predi-
cate in terms of semantic roles of the context
introduced by the main predicate or some
higher semantic operator. Thus, the gram-
matical roles of the main verb in sentence
(1) are semantically normalized such that the
subject of the passive becomes a theme and
an unspecified agent is introduced, see fig-
ure 1. The role of the modifiers are speci-
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fied in terms of their head preposition. This
type of semantic representation is inspired by
Neo-Davidsonian event semantics (Parsons,
1990). Other semantic properties of the event
introduced by the main verb such as tense or
nominal properties such as quantification and
cardinality are explicitely encoded as conven-
tionalized predications.

The contexts can be tought of as propo-
sitions or possible worlds. They are headed
by an operator that can recursively embed
further contexts. Context embeddings can
be induced by lexical items or syntactic con-
structions and include the following opera-
tors: (i) negation (ii) sentential modifiers
(possibly) (iii) coordination with or (iv) con-
ditionals (v) some subordinating conjunc-
tions (without) (vi) clause-embedding verbs
(doubt).

The representation avoids many formal se-
mantic complexities typically discussed in
the literature, for instance the interpreta-
tion of quantifiers by encoding them as con-
ventionalized semantic predications. Given
this skolemized first-order language, the
task of textual entailment can be conceived
as matching the hypothesis representation
against the semantic representation of the
text where higher-order reasonning is ap-
proximated by explicit entailment rules (e.g.
all entails some, past does not entail present),
see (Bobrow et al., 2007b) for a presentation
of an RTE system based on this semantic rep-
resentation.

2.2 The Semantic Conversion

The XLE transfer module, which we use for
the implementation of the conversion of f-
structures to semantic representations, is a
term rewrite system that applies an ordered
list of rewrite rules to a given f-structure
input and yields, depending on the rewrite
rules, new f-structures (e.g. translated f-
structures) or semantic representations. The
technical features of the XLE transfer mod-
ule are described in (Crouch et al., 2006).
An important feature for large-scale develop-

+VTYPE(%V, %%), +PASSIVE(%V,+),
OBL-AG(%V, %LogicalSUBJ), PTYPE(%LogicalSUBJ,%%),
OBJ(%LogicalSUBJ,%P)
==> SUBJ(%V, %P), arg(%V,%N,%P).

Figure 2: Example rewrite rule for passive
normalization

ment is for instance the mechanism of packed

rewriting that allows for an efficient represen-
tation and processing of ambigous f-structure
analyses.

The semantic conversion, as described in
(Crouch and King, 2006), is not a priori con-
strained by a formal apparatus of meaning
assembly. The main intuition of the con-
version is that the embeddings encoded in
the syntactic analysis have to be normalized
or reencoded in a way such that they cor-
respond to a semantic embedding. An ex-
ample rewrite rule which applies to passive
f-structure analyses and converts them to an
active analysis is given in figure refpassive-
fig.

In order to be maintainable and extensible,
the set of transfer rules producing the seman-
tic representations are organized in a modu-
lar way. The main steps of the semantic con-
version are given in the following: (i) Flat-
tening of syntax specific f-structure embed-
dings that don’t correspond to semantic em-
beddings (ii) Canonicalization of grammati-
cal relations (e.g. depassivization) (iii) Mark-
ing of items that induce a semantic embed-
ding (which is not encoded in the f-structure)
(iv) Linking of f-structure scopes and context
of the semantic representation. (v) Remov-
ing of f-structure specific features.

An explicitely modular conception of the
transfer procedure also facilitates its port-
ing to other languages. Thus, steps 1 and
2 (and partly 3) may be dependent on the
language specific f-structure encoding, while
the general steps from 3 and 5 don’t have to
be changed at all when porting the transfer
rules to another language.
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Figure 1: LFG f-structure analysis and corresponding semantic representation

3 From English to German

Semantics

3.1 Semantic Grammar Development

In contrast to the various gold standard tree-
banks available for the development and eval-
uation of parsers, gold standards for seman-
tic representations are hardly available. This
has a number of methodological implications
for “semantic grammar” development. For
instance, the authors in (de Paiva and King,
2008) argue for large-scale development of a
semantics that is based on an application-
oriented testsuite of entailment pairs instead
of sentences and their theoretically correct
representations. However, in the context of
this work, we didn’t focus on a semantic ap-
plication, but we wanted to assess the porta-
bility of the semantic representations to other
languages directly. Adopting such a theory-
driven perspective on semantic grammar de-
velopment, the only possibility to account for
the accuracy of the semantic construction is
to manually inspect the output of the system
for a necessarily small set of input sentences.

Moreover, the transfer scenario compli-
cates the assessment of the system’s cover-
age. While in (Bos et al., 2004), the coverage
of the meaning construction can be quanti-

fied by the number of syntactic analysis that
the construction algorithm can process, the
transfer conversion will never fail on a given
syntactic input. Since the transfer rules just
try to match the input, the unmatched fea-
tures just pass unchanged to the output and
will be probably deleted by some of the catch-
all rules which remove remaining syntactic
features in the final step of the conversion.
Therefore, manual inspection is necessary to
see whether the conversion has processed all
the input it was supposed to process.

This limited evaluation scenario entails
that the semantics developer has to think
hard about defining the set of phenomena he
wants to cover and document precisely which
type of syntactic phenomena his semantics
intends to assign an interpretation to. There-
fore, in the rest of this section, we will try
to give a concrete overview of the type of
phenomena that is covered by the English-
German semantics.

3.2 A Parallel Testsuite

In consequence to these considerations on
evaluation, a central aspect of our develop-
ment metholodogy is a testsuite of German
sentences which represents the “core seman-
tics” that our systems covers. The multi-
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lingual perspective provided a major orien-
tation for the composition of this testsuite.
As our base English semantics implicitely de-
fines a set of core phenomena interpreted by
the syntax-semantic interface, we dispose of a
set of grammatical f-structure relations that
receive a particular semantic representation.
Fortunately, the developers of the English se-
mantics had documented many “core” trans-
fer rules (assuring the normalization and con-
text embedding) with example phrases or
sentences such that one could easily recon-
struct the type of phenomenon each transfer
rule was intended to analyze.

On the basis of this system documenta-
tion, we first conceived an English testsuite
where each sentence contained a construc-
tion related to the application of a specific
transfer rule. For each of the sentences we
selected a German sentence which exhibited
the German counterpart of the phenomenon
targeted in the English sentence. For in-
stance, if a transfer rule for relative clauses
fired on a given English sentence we trans-
lated the German sentence such that it con-
tained a relative clause. As most of the test
sentences target fairly general phenomena at
the syntax-semantic interface (see the next
section), there was a parallel German realiza-
tion of the construction in most of the cases.

In cases where no straightforward parallel
realization could be found, we recur to a se-
mantically parallel translation. For instance,
the English cleft construction exemplified by
the following sentence of our testsuite, does
not have a syntactically parallel realization
in German. In this case, the sentence was
translated by a “semantic” equivalent that
emphasizes the oblique argument.

(2) a. It is to the store that they went.
b. Zum Markt sind sie gegangen.

During the development process, the test-
set was further extended. These extensions
were due to cases where the English gram-
mar assigns a uniform analysis to some con-
structions that the German gramamr dis-

tinguishes. For instance, while the En-
glish grammar encodes oblique arguments
the same way it encodes direct objects, the
German grammar has a formally slightly dif-
ferent analysis such that rules which fire on
obliques in English, don’t fire for German in-
put. Now, the final parallel testsuite com-
prises 200 sentence pairs.

The following enumeration lists the basic
morpho-syntactic phenomena covered by our
core semantics testsuite.

1. Sentence types (declaratives, interroga-
tives, quotations etc.)

2. Coordination (of various phrase types)

3. Argument - semantic role mapping, in-
cluding argument realization normaliza-
tion (depassivization etc.)

4. Sentential and verbal modification (dis-
cursive, propositional, temporal, etc.)

5. Nominal modification (measures, quan-
tifiers, comparatives, etc.)

6. Tense and aspect

7. Appositions and titles

8. Clause-embeddings, relative clauses,
gerunds, etc.

9. Predicative and copula constructions

10. Topicalization

It turns out that the abstract conception
of LFG f-structure analysis already assumes
a major step towards semantic interpreta-
tion. Many global syntactic properties are
explicitely represented as feature-value pairs,
e.g. features for sentence type, mood, tense
and aspect. Moreover, the f-structure al-
ready contains many information about e.g.
the type of nominal phrases (proper names,
quantified phrases etc.) or types of modifiers
(e.g. adverb types). Finally, this also jus-
tifies our testsuite approach since the range
of syntactic variation on this abstract level is
much smaller than on the level of word-order.
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3.3 Parallel Core Semantics

The English core semantics developped by
(Crouch and King, 2006) comprises 798 (or-
dered!) rewrite rules. As we hypothesized
that a major part of the English rules will
also apply to German f-structure input, we
first copied all English transfer rules to the
German semantics and then proceeded by
manual error correction: For each German
test sentence, we manually checked whether
the transfer semantics produce an interpre-
tation of the sentence which is parallel to the
English analysis. In case a mismatch was de-
tected, the respective rules where changed or
added in the German transfer rule set.

To cover the 200 sentences in our parallel
testsuite, 47 rewrite rules had to be changed
out of the 798 rules which constitute the core
English semantics. Out of these 47 rules, 23
rules relate to real structural differences in
the f-structure encoding for German and En-
glish. The rest of the modifications is mainly
due to renamings of the features or lexical
items that are hard-coded in the transfer
grammar.

While in a more surface-oriented syntax,
it would be hardly possible to design largely
parallel syntax-semantic interfaces for the
range of phenomena listed in the last section,
the surface-independence (and the resulting
relative crosslingual generality) of LFG f-
structures ensures that a major part of the
English core semantics straightforward-ly ap-
plies to the German input.

An impressive illustration of the language
independence of LFG f-structure analyses in
the ParGram grammars is the pair of anal-
yses presented in figure 3, produced by the
semantic conversion for the example pair in
(3).

(3) a. Wo hat Tom gestern geschlafen?
b. Where did Tom sleep yesterday?

The representation for the German sen-
tence was produced by running the English
transfer semantics on German syntactic in-

put. Although the word-order of English
and German questions is governed by dis-
tinct syntactic principles, the semantic rep-
resentation of the German sentence is almost
entirely correct since the f-structure analy-
ses abstract from the word-order differences.
The only fault in the German representation
in 3 is the interpretation of the temporal ad-
verb yesterday - gestern. The transfer rule
for temporal verb modification didn’t fire be-
cause the adverb type features for English
and German differ.

3.4 Discussion: Clause-embeddings

and Semantic Fine-graininess

The crosslinguistic parallelism of the seman-
tics presented in this paper is also due to the
relative coarse-grained level of representation
that interprets many phenomena prone to
subtle crosslingual divergences (e.g. the in-
terpretation of quantifiers or tense and as-
pect) in terms of conventionalized predica-
tions, e.g. the interpretation of tense as
past(see) in figure 1. Thus, the real se-
mantic interpretation of these phenomena is
deferred to later representation or processing
layers, as in this framework, to the defini-
tion of entailment relations (Bobrow et al.,
2007b). A meaning representation that de-
fers much of the semantic interpretation to
the formulation of entailment rules runs the
obvious risk of making to few theoretical gen-
eralizations which results in very complex en-
tailment rules. This section will briefly illus-
trate this problem by discussing the represen-
tation of clause-embeddings in our semantics.

The various semantic operators defined by
the semantic conversion to induce an em-
bedding (see section 2.1) embed a seman-
tic entity of the type context which can be
roughly considered as the common semantic
type of “proposition”. An example for the se-
mantic representation of a clause-embedding
verb is given in figure 4.

For many semantic applications, such em-
bedded contexts are of particular interest
since they often express propositions to
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ctx_head(ctx(s),schlafen),
ctx_index(t,schlafen),
in_ctx(t,interrogative(ctx(s))),
in_ctx(ctx(s),perf(schlafen)),
in_ctx(ctx(s),pres(schlafen)),
in_ctx(ctx(s),query_term(wo)),
in_ctx(ctx(s),cardinality(’Tom’,sg)),
in_ctx(ctx(s),proper_name(’Tom’,name,’Tom’)),
in_ctx(ctx(s),role(’Agent’,schlafen,’Tom’)),
in_ctx(ctx(s),role(adeg,gestern,normal)),
in_ctx(ctx(s),role(adeg,wo,normal)),
in_ctx(ctx(s),role(amod,schlafen,gestern)),
in_ctx(ctx(s),role(amod,schlafen,wo))

ctx_head(ctx(s),sleep),
ctx_index(t,sleep),
in_ctx(t,interrogative(ctx(s))),
in_ctx(ctx(s),past(sleep)),
in_ctx(ctx(s),query_term(where)),
in_ctx(ctx(s),cardinality(’Tom’,sg)),
in_ctx(ctx(s),time_expr(yesterday,’+’)),
in_ctx(ctx(s),proper_name(’Tom’,name,’Tom’)),
in_ctx(ctx(s),role(’Agent’,sleep,’Tom’)),
in_ctx(ctx(s),role(occurs_during,sleep,yesterday)),
in_ctx(ctx(s),role(prep(where),sleep,where))

Figure 3: Parallel semantic analyses for the sentence pair given in example (3)

whom the speaker is not committed to, i.e.
which aren’t veridical. In our system, the
veridicality inferences that these embeddings
exhibit are computed by further knowledge
representation modules that explicitely rep-
resent the speaker commitment of a context
(Bobrow et al., 2007b). Concerning the com-
plements of clause-embedding verbs, these
inferences are modelled via a lexical verb
classification that basically distinguishes im-
plicatives (manage to TRUE - don’t manage

to FALSE ) and factives (know that TRUE -
don’t know that TRUE ) (Nairn et al., 2006).
Veridicality entailments of sentential comple-
ments are treated as a interaction of the lex-
ical class of the subordinating verb and the
polarity of the context.

(4) Tom glaubt, dass der Nachbar ihn nicht
erkannt hat.
‘Tom believes that the neighbour didn’t rec-
ognize him.’

This account of clause-embeddings - a uni-
fied semantic representation and a lexical en-
tailment classification - generalizes and prob-
ably simplifies too much the various theoret-
ical insights into the semantics of comple-
mentation. In the formal semantics litera-
ture, various theories opt for a semantic rep-
resentation that assumes several types of ab-
stract semantic entities (e.g. events (Parsons,
1990), situations (Barwise and Perry, 1999)
or other, very fine-grained categories (Asher,

1993) ). In terms of entailment, the typologi-
cal literature reports crosslingually relatively
stable distinctions of types of complements
according to the semantic relations the ma-
trix verbs have to their complement (Givon,
1990). For instance, while in example (5),
the infinite complement has causal, tempo-
ral and spatial relations to the matrix event,
there is no such inferential relation between
matrix and complement in example (4) .

(5) Seine Freundin brachte ihn dazu, ein Haus zu
bauen.
His girlfriend made him build a house.

Moreover, the semantics of clause-
embedding verbs shows subtle distinctions
with resepct to other linguistic features
(apart from the polarity of the context) that
can trigger a particular speaker commit-
ment. For instance, in languages that have a
morphological aspect marking (like Frensh,
in the following example), the following
aspectually motivated entailments can be
observed (see (Bhatt, 2006)):

(6) Jean pouvait soulever cette table, mais il ne
l’a pas fait.
‘Jean was able.IMP to lift this table, but he
didn’t do it.’

(7) Jean a pu soulever cette table, #mais il ne l’a
pas fait.
‘Jean was able.PERF to lift this table,#but
he didn’t do it.’

In sentence (6), the imperfect aspect
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causes the modality of the complement such
that it is not necessarily true, while in sen-
tence (7), the embedded clause is neces-
sarily true due to the perfective aspect of
the clause-embedding verb. This aspectual
matrix-com-plement relation is however only
observable for certain types of modality or
clause-embedding verbs and has no clear se-
mantic parallel in other languages that don’t
have aspectual marking.

For another type of clause-embedding
verbs, called epistemic verbs, the recent for-
mal semantics literature discusses many ex-
amples where the lexical neutral entailment
class is overriden by pragmatic interpretation
constraints that cause the embedded com-
plement to be interpreted as true although
the embedding operator does not entail the
veridicality of its complement (Simons, 2006;
von Fintel and Gillies, 2007). As an exam-
ple, consider the following text - hypothe-
sis pair annotated as a valid entailment in
the Pascal RTE 3 set altough the hypothesis
clearly refers to an embedded proposition in
the given text.

(8) Between March and June, scientific observers
say, up to 300,000 seals are killed. In Canada,
seal-hunting means jobs, but opponents say
it is vicious and endangers the species, also
threatened by global warming.

(9) Hunting endangers seal species. FOLLOWS
(RTE3 ID:225)

Such examples suggest that entailments
concern various aspects of the meaning of
a sentence or proposition, thus, not only its
veridicality but also its temporal properties,
informations about involved agents, space
and time. These properties are clearly re-
lated to the semantic type of the embedded
clause.

Purely lexical entailment rules for clause-
em-bedding operators will be very hard to
formulate in the light of the complex in-
teraction of the various linguistic parame-
ters. These considerations reveal a general
trade-off between a representation that gen-

ctx_head(t,glauben),
ctx_head(ctx(kennen),kennen)),
ctx_head(ctx(nicht,nicht),
in_ctx(t,role(sem_comp,glauben,ctx(nicht))),
in_ctx(t,role(sem_subj,glauben,’Andreas’)),
in_ctx(ctx(kennen),role(sem_obj,kennen,pro)),
in_ctx(ctx(nicht),role(adeg,nicht,normal)),
in_ctx(ctx(nicht),role(amod,ctx(kennen),nicht)

Figure 4: Example representation for context
embeddings, sentence (4)

eralizes over many (purely) theoretical and
crosslingual subtleties and a representation
that does not capture certain generalizations
which would lead to a more linguistically in-
formed account of entailment relations. Fu-
ture work on the semantics presented in this
paper will have to take such tensions into ac-
count and think about the general goals and
applications of the semantic representation.

4 Conclusion

This work amply illustrates the positive
implications of crosslinguistic, parallely de-
signed resources for large-scale linguistic en-
gineering. Due to the abstract f-structure
layer in LFG syntax and its parallel imple-
mentation in the ParGram project, further
resources that build on f-structure represen-
tations can be very easily ported to other lan-
guages. Future research will have to investi-
gate to what extent this also applies to more
distant languages, like Urdu and English for
instance.

The paper also discussed some problematic
aspects of the development of a large-scale
semantic system. The crosslingual develop-
ment perspective allowed us to define a set
of core semantic phenomena covered by the
representation. However, from a formal se-
mantic view point, the simplifying represen-
tation obstructs potential crosslingual differ-
ences in semantic interpretation. Future re-
search still has to be conducted to develop
a more general development and evaluation
methodology for the representation of mean-
ing.
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Abstract
The availability of large parsed corpora
and improved computing resources now
make it possible to extract vast amounts
of lexical data. We describe the pro-
cess of extracting structured data and sev-
eral methods of deriving argument struc-
ture mappings for deverbal nouns that sig-
nificantly improves upon non-lexicalized
rule-based methods. For a typical model,
the F-measure of performance improves
from a baseline of about 0.72 to 0.81.

1 Introduction

There is a long-standing division in natural lan-
guage processing between symbolic, rule-based
approaches and data-driven, statistical ones. Rule-
based, human-curated approaches are thought to
be more accurate for linguistic constructions ex-
plicitly covered by the rules. However, such
approaches often have trouble scaling up to a
wider range of phenomena or different genres of
text. There have been repeated moves towards hy-
bridized approaches, in which rules created with
human linguistic intuitions are supplemented by
automatically derived corpus data (cf. (Klavans
and Resnik, 1996)).

Unstructured corpus data for English can eas-
ily be found on the Internet. Large corpora of
text annotated with part of speech information are
also available (such as the British National Cor-
pus). However, it is much harder to find widely
available, large corpora annotated for syntactic or
semantic structure. The Penn Treebank (Marcus
et al., 1993) has until recently been the only such
corpus, covering 4.5M words in a single genre of
financial reporting. At the same time, the accuracy
and speed of syntactic parsers has been improving
greatly, so that in recent years it has become possi-
ble to automatically create parsed corpora of rea-
sonable quality, using much larger amounts of text

with greater genre variation. For many NLP tasks,
having more training data greatly improves the
quality of the resulting models (Banko and Brill,
2001), even if the training data are not perfect.

We have access to the entire English-language
text of Wikipedia (about 2M pages) that was
parsed using the XLE parser (Riezler et al., 2002),
as well as an architecture for distributed data-
mining within this corpus, called Oceanography
(Waterman, 2009). Using the parsed corpus, we
extract a large volume of dependency relations and
derive lexical models that significantly improve
a rule-based system for determining the underly-
ing argument structure of deverbal noun construc-
tions.

2 Deverbal Argument Mapping

Deverbal nouns, or nominalizations, are nouns
that designate some aspect of the event referred
to by the verb from which they are morphologi-
cally derived (Quirk et al., 1985). For example,
the noun destruction refers to the action described
by the verb destroy, and destroyer may refer to the
agent of that event. Deverbal nouns are very com-
mon in English texts: by one count, about half of
all sentences in written text contain at least one
deverbal noun (Gurevich et al., 2008). Thus, a
computational system that aims to match multi-
ple ways of expressing the same underlying events
(such as question answering or search) must be
able to deal with deverbal nouns.

To interpret deverbal constructions, one must be
able to map nominal and prepositional modifiers to
the various roles in the verbal frame. For intran-
sitive verbs, almost any argument of the deverbal
noun is mapped to the verb’s subject, e.g. abun-
dance of food gives rise to subj(abound, food).
If the underlying verb is transitive, and the de-
verbal noun has two arguments, the mappings
are also fairly straightforward. For example, the
phrase Carthage’s defeat by Rome gives rise to
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the arguments subj(defeat, Rome) and obj(defeat,
Carthage), based on knowledge that a “by” argu-
ment usually maps to the subject, and the posses-
sive in the presence of a “by” argument usually
maps to the object (Nunes, 1993).

However, in many cases a deverbal noun has
only one argument, even though the underlying
verb may be transitive. In such cases, our system
has to decide whether to map the lone argument
of the deverbal onto the subject or object of the
verb. This mapping is in many cases obvious to a
human: e.g., the king’s abdication corresponds to
subj(abdicate, king), whereas the room’s adorn-
ment corresponds to obj(adorn, room). In some
cases, the mapping is truly ambiguous, e.g., They
enjoyed the support of the Queen vs. They jumped
to the support of the Queen. Yet in other cases, the
lone argument of the deverbal noun is neither the
subject nor the object of the underlying verb, but it
may correspond to a different (e.g. prepositional)
argument of the verb, as in the travels of 1996 (cor-
responding to someone traveled in 1996). Finally,
in some cases the deverbal noun is being used in
a truly nominal sense, without an underlying map-
ping to a verb, as in Bill Gates’ foundation, and
the possessive is not a verbal argument.

The predictive models in this paper focus on this
case of single arguments of deverbal nouns with
transitive underlying verbs. To constrain the scope
of the task, we focus on possessive arguments, like
the room’s adornment, and ‘of’ arguments, like
the support of the Queen. Our goal is to improve
the accuracy of verbal roles assigned in such cases
by creating lexically-specific preferences for indi-
vidual deverbal noun / verb pairs. Some of our
experiments also take into account some lexical
properties of the deverbal noun’s arguments. The
lexical preferences are derived by comparing ar-
gument preferences of verbs with those of related
deverbal nouns, derived from a large parsed cor-
pus using Oceanography.

2.1 Current Deverbal Mapping System

We have a list of approximately 4000 deverbal
noun / verb pairs, constructed from a combina-
tion of WordNet’s derivational links (Fellbaum,
1998), NomLex (Macleod et al., 1998), NomL-
exPlus (Meyers et al., 2004b) and some indepen-
dent curation. In the current system implementa-
tion, we attempt to map deverbal nouns onto cor-
responding verbs using a small set of heuristics

described in (Gurevich et al., 2008). We distin-
guish between event nouns like destruction, agen-
tive nouns like destroyer, and patient-like nouns
like employee.

If a deverbal noun maps onto a transitive verb
and has only one argument, the heuristics are as
follows. Arguments of agentive nouns become ob-
jects while the nouns themselves become subjects,
so the ship’s destroyer maps to subj(destroy, de-
stroyer); obj(destroy, ship). Arguments of patient-
like nouns become subjects while the nouns them-
selves become objects, so the company’s employee
becomes subj(employ, company); obj(employ, em-
ployee).

The difficult case of event nouns is currently
handled through default mappings: possessive ar-
guments become subjects (e.g., his confession 7→
subj(confess, he)), and ‘of’ arguments become ob-
jects (e.g., confession of sin 7→ obj(confess, sin)).
However, as we have seen from examples above,
these defaults are not always correct. The correct
mapping depends on the lexical nature of the de-
verbal noun and its corresponding verb, and pos-
sibly on properties of the possessive or ‘of’ argu-
ment as well.

2.2 System Background

The deverbal argument mapping occurs in the con-
text of a larger semantic search application, where
the goal is to match alternate forms expressing
similar concepts. We are currently processing
the entire text of the English-language Wikipedia,
consisting of about 2M unique pages.

Parsing in this system is done using the XLE
parser (Kaplan and Maxwell, 1995) and a broad-
coverage grammar of English (Riezler et al., 2002;
Crouch et al., 2009), which produces constituent
structures and functional structures in accordance
with the theory of Lexical-Functional Grammar
(Dalrymple, 2001).

Parsing is followed by a semantic processing
phase, producing a more abstract argument struc-
ture. Semantic representations are created using
the Transfer system of successive rewrite rules
(Crouch and King, 2006). Numerous construc-
tions are normalized and rewritten (e.g., passives,
relative clauses, etc.) to maximize matching be-
tween alternate surface forms. This is the step in
which deverbal argument mapping occurs.
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2.3 Evaluation Data
To evaluate the performance of the current and
experimental argument mappings, we extracted a
random set of 1000 sentences from the parsed
Wikipedia corpus in which a deverbal noun had
a single possessive argument. Each sentence was
manually annotated with the verb role mapping
between the deverbal and the possessive argu-
ments. One of six labels were assigned:

• Subject, e.g. John’s attention
• Object, e.g. arrangement of flowers
• Other: there is an underlying verb, but the

relationship between the verb and the argu-
ment is neither subject nor object; these rela-
tions often appear as prepositional arguments
in the verbal form, e.g. Declaration of Delhi

• Noun modifier: the argument modifies the
nominal sense of the deverbal noun, rather
than the underlying verb, although there is
still an underlying event, as in director of 25
years

• Not deverbal: the deverbal noun is not used
to designate an event in this context, e.g. the
rest of them

• Error: the parser incorrectly identified the ar-
gument as modifying the deverbal, or as be-
ing the only argument of the deverbal

Similarly, we extracted a sample of 750 sentences
in which a deverbal noun had a single ‘of’ argu-
ment, and annotated those manually.

The distribution of annotations is summarized
in Table 1. For possessive arguments, the preva-
lent role was subject, and for ‘of’ arguments it was
object.

The defaults will correctly assign the majority
of arguments roles.

Possessive ‘Of’
total 1000 750
unique deverbals 423 338
subj 511 (51%) 158 (21%)
obj 335 (34%) 411 (55%)
other 28 (3%) 50 (7%)
noun mod 23 (2%) 18 (2%)
not deverbal 21 (2%) 40 (5%)
error 82 (8%) 73 (10%)

Table 1: Evaluation Role Judgements, with de-
faults in bold

2.4 Lexicalizing Role Mappings
Our basic premise is that knowledge about role-
mapping behavior of particular verbs will inform

the role-mapping behavior of their corresponding
deverbal nouns. For example, if a particular argu-
ment of a given verb surfaces as the verb’s sub-
ject more often than as object, we might also pre-
fer the subject role when the same argument oc-
curs as a modifier of the corresponding deverbal
noun. However, as nominal modification con-
structions impose their own role-mapping pref-
erences (e.g., possessives are more likely to be
subjects than objects), we expect different dis-
tributions of arguments to appear in the various
deverbal modification patterns. Making use of
this intuition requires collecting sufficient infor-
mation about corresponding arguments of verbs
and deverbal nouns. This is available, given a
large parsed corpus, a reasonably accurate and fast
parser, and enough computing capacity. The re-
mainder of the paper details our data extraction,
model-building methods, and the results of some
experiments.

3 Data Collection

Oceanography is a pattern extraction and statistics
language for analyzing structural relationships in
corpora parsed using XLE (Waterman, 2009). It
simplifies the task of programming for NL analy-
sis over large corpora, and the sorting, counting,
and distributional analysis that often characterizes
statistical NLP. This corpus processing language is
accompanied by a distributed runtime, which uses
cluster computing to match patterns and collect
statistics simultaneously across many machines.
This is implemented in a specialized distributed
framework for parsing and text analysis built on
top of Hadoop (D. Cutting et al., ). Oceanography
programs compile down to distributed programs
which run in this cluster environment, allowing the
NL researcher to state declaratively the data gath-
ering and analysis tasks.

A typical program consists of two declarative
parts, a pattern matching specification, and a set
of statistics declarations. The pattern matching
section is written using Transfer, a specialized lan-
guage for identifying subgraphs in the dependency
structures used in XLE (Crouch and King, 2006).
Transfer rules use a declarative syntax for spec-
ifying elements and their relations; in this way,
it is much like a very specialized awk or grep
for matching within parse trees and dependency
graphs.

Statistics over these matched structures are
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also stated declaratively. The researcher states
which sub-elements or tuples are to be counted,
and the resulting compiled program will output
counts. Conditional distributions and comparisons
between distributions are available as well.

3.1 Training Data

Using Oceanography, we extracted two sets of re-
lations from the parsed Wikipedia corpus, Full-
Wiki, with approximately 2 million documents. A
smaller 10,000-document subset, the 10K set, was
used in initial experiments. Some comparative re-
sults are shown to indicate effects of corpus size
on results. Summary corpus statistics are shown
in table 2. The two sets were:

1. All verb-argument pairs, using verb and ar-
gument lemmas. We recorded the verb, the
argument, the kind of relation between them
(e.g., subject, object, etc.), and part of speech
of the argument, distinguishing also among
pronouns, names, and common nouns. For
each combination, we record its frequency of
occurrence.

2. All deverbal-argument pairs, using deverbal
noun and argument lemmas. We recorded the
deverbal noun, the argument, the kind of rela-
tion (e.g., possessive, ‘of’, prenominal modi-
fier, etc.) and part of speech of the argument.
We record the frequency of occurrence for
each combination.

Some summary statistics about the extracted
data are in Table 2.

FullWiki training data
Documents 2 million
Sentences 121,428,873
Deverbal nouns with arguments 4,596
Unique verbs with deverbals 3,280
Verbs with arguments 7,682
Deverbal - role - argument sets 21,924,405
Deverbal - argument pairs 12,773,621
Deverbals with any poss argument 3,802
Possessive deverbal - argument pairs 611,192
Most frequent: poss(work, he) 75,343
Deverbals with any ‘of’ argument 4,075
‘Of’ deverbal- argument pairs 2,108,082
Most frequent: of(end, season) 15,282
Verb - role - argument sets 72,150,246
Verb - argument pairs 40,895,810
Overlapping pairs 5,069,479
Deverbals with overlapping arguments 3,211

Table 2: Training Data

4 Assigning Roles

The present method is based on projecting argu-
ment type preferences from the verbal usage to the
deverbal. The intuition is that if an argument X is
preferred as the subject (object) of verb V, then it
will also be preferred in the semantic frame of an
occurrence (N, X) with the corresponding dever-
bal noun N.

We model these preferences directly using the
relative frequency of subject and object occur-
rences of each possible argument with each verb.
Even with an extremely large corpus, it is unlikely
that one will find direct evidence for all such com-
binations, and one will need to generalize the pre-
diction.

4.1 Deverbal-only Model
The first model, all-arg, specializes only for the
deverbal, and generalizes over all arguments, re-
lying on the overall preference of subject v. ob-
ject for the set of arguments that appear with both
verb and deverbal forms. Take as an example
deverbal nouns with possessive arguments (e.g.,
the city’s destruction). Given the phrase (X’s N),
where N is a deverbal noun related to verb V,
Fd(N, V, X) is a function that assigns one of the
roles subj, obj, unknown to the pair (V, X). In
this deverbal only model, the function depends on
N and V only, and not on the argument X. Fd for
a any pair (N, V) is calculated as follows:

1. Find all arguments X that occur in the con-
struction “N’s X” as well as either subj(V, X)
or obj(V, X). X, N, and V have all been lem-
matized. For example, poss(city, destruction)
occurs 10 times in the corpus; subj(destroy,
city) occurs 3 times, and obj(destroy, city) oc-
curs 12 times. This approach conflates in-
stances of the city’s destruction, the cities’
destruction, the city’s destructions, etc.

2. For each argument X, calculate the ratio be-
tween the number of occurrences of subj(V,
X) and obj(V, X). If the argument occurs
as subject more than 1.5 times as often as
the object, increment the count of subject-
preferring arguments of N by 1. If the ar-
gument occurs as object more than 1.5 times
as often as subject (as would be the case with
(destroy, city)), increment the count of object-
preferring arguments. If the ratio in frequen-
cies of occurrence is less than the cutoff ratio
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of 1.5, neither count is incremented. In ad-
dition to the number of arguments with each
preference, we keep track of the total num-
ber of instances for each argument prefer-
ence, summed up over all individual argu-
ments with that preference.

3. Compare the number of subject-preferring ar-
guments of N with the number of object-
preferring arguments. If one is greater than
the other by more than 1.5 times, state that the
deverbal noun N has a preference for map-
ping its possessive arguments to the appro-
priate verbal role. We ignore cases where the
total number of occurrences of the winning
arguments is too small to be informative (in
the current model, we require it to be greater
than 1).

If there is insufficient evidence for a deverbal
N, we fall back to the default preference across all
deverbals. Subject and object co-occurrences with
the verb forms are always counted, regardless of
other arguments the verb may have in each sen-
tence, on the intuition that the semantic role pref-
erence of the argument is relatively unaffected and
that this will map to the deverbal construction even
when the possessive is the only argument. Sum-
mary preferences for all-args are shown in Ta-
ble 3.

The same algorithm was applied to detect ar-
gument preferences for deverbals with ‘of’ argu-
ments (such as destruction of the city). Summary
preferences are shown in Table 4.

4.2 Deverbal + Argument Animacy Model
The second model tries to capture the intuition that
animate arguments often behave differently than
inanimate ones: in particular, animate arguments
are more often agents, encoded syntactically as
subjects.

We calculated argument preferences separately
for two classes of arguments: (1) animate pro-
nouns such as he, she, I; and (2) nouns that were
not identified as names by our name tagger. We
assumed that arguments in the first group were
animate, whereas arguments in the second group
were not. In these experiments, we did not try to
classify named entities as animate or inanimate,
resulting in less training data for both classes of
arguments. This strategy also incorrectly classifies
common nouns that refer to people (e.g., occupa-
tion names such as teacher).

The results of running both models on the 10K
and FullWiki training sets are in Table 3 for pos-
sessive arguments and Table 4 for ‘of’ arguments.

For possessives, animate arguments preferred
subject role mappings much more than the average
across all arguments. Inanimate arguments also on
the whole preferred subject mappings, but much
less strongly.

For ‘of’ arguments, in most cases there were
more object-preferring verbs, except for verbs
with animate arguments, which overwhelmingly
preferred subjects. We might therefore expect
there to be a difference in performance between
the model that treats all arguments equally and the
model that takes argument animacy into account.

Model: all-arg
10K FullWiki

Subj-preferring 391 (65%) 1786 (67%)
Obj-preferring 207 (35%) 884 (33%)
Total 598 (100%) 2670 (100%)

Model: animacy
Subj-pref animate 370 (78%) 1941 (79%)
Obj-pref animate 106 (22%) 511 (21%)
Total animate 476 (100%) 2452 (100%)
Subj-pref inanimate 45 (47%) 990 (57%)
Obj-pref inanimate 51 (53%) 748 (43%)
Total inanimate 96 (100%) 1738 (100%)

Table 3: Possessive argument preferences

Model: all-arg
10K FullWiki

Subj-preferring 143 (30%) 839 (29%)
Obj-preferring 328 (70%) 2036 (71%)
Total 471 (100%) 2875 (100%)

Model: animacy
Subj-pref animate 70 (83%) 1196 (74%)
Obj-pref animate 14 (17%) 423 (26%)
Total animate 84 (100 %) 1619 (100%)
Subj-pref inanimate 83 (23%) 699 (25%)
Obj-pref inanimate 272 (77%) 2068 (75%)
Total inanimate 355 (100%) 2767 (100%)

Table 4: ‘Of’ argument preferences

5 Experiments

The base system against which we compare these
models uses the output of the parser, identifies de-
verbal nouns and their arguments, and applies the
heuristics described in Section 2.1 to obtain verb
roles. Recall that possessive arguments of transi-
tive deverbals map to the subject role, and ‘of’ ar-
guments map to object. Also recall that these rules
apply only to eventive deverbals; mapping rules
for known agentive and patient-like deverbals re-
main as before.
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In the evaluation, the experimental models take
precedence: if the model predicts an outcome, it
is used. The default system behavior is used as a
fallback when the model does not have sufficient
evidence to make a prediction. This stacking of
models allows the use of corpus evidence when
available, and generalized defaults otherwise.

For the animacy model, we used our full sys-
tem to detect whether the argument of a deverbal
was animate (more precisely, human). In addi-
tion to the animate pronouns used to generate the
model, we also considered person names, as well
as common nouns that had the hypernym ‘person’
in WordNet. If the argument was animate and the
model had a prediction, that was used. If no pre-
diction was available for animate arguments, then
the inanimate prediction was used. Failing that,
the prediction falls back to the general defaults.

5.1 Possessive Arguments of Deverbal Nouns
Model predictions were compared against the
hand-annotated evaluation set described in Sec-
tion 2.3. For each sentence in the evaluation set,
we used the models to make a two-way prediction
with respect to the default mapping: is the posses-
sive argument of the deverbal noun an underlying
subject or not. We ignored test sentences marked
as having erroneous parses, leaving 918 (of 1000
annotated). Since we were evaluating the accuracy
of the ‘subject’ label, all non-subject roles (object,
“other”, “not a deverbal”, and “nominal modifier”)
were in the same class. The baseline for compari-
son is the default ‘subject’ role.

The possible outcomes for each sentence
were:

• True Positive: Expected role and role pro-
duced by the system are “subject”

• True Negative: Expected role is not subject,
and the model did not produce the label sub-
ject. Expected role and produced role may
differ (e.g. expected role may be “other”, and
the model may produce “object”, but since
neither one is “subject”, this counts as correct

• False Positive: Expected role is not subject,
but the model produced subject

• False Negative: Expected role is subject, but
the model produced some other role

As a quick evaluation, we compared baseline
and model-predicted results directly in the surface
string of the sentences, without reparsing the sen-
tences or using the semantic rewrite rules. The

advantage of this evaluation is that it is very fast
to run and is easily reproducible outside of our
specialized environment. This evaluation differed
from the full-pipeline evaluation in two ways: (1)
it did not distinguish event deverbals from agen-
tive and patient-like deverbals, thus possibly in-
troducing errors, and (2) it did not look up all ar-
gument lemmas to find out their animacy. This
baseline had precision of 0.56; recall of 1.0, and
an F-measure of 0.72.

The complete evaluation uses our full NL
pipeline, reparsing the sentences and applying all
of our deverbal mapping rules as described above.
The baseline for this evaluation had a precision of
0.65, recall of 0.94, and F-measure of 0.77. The
differences in the two baselines are mostly due to
the full-pipeline evaluation having different map-
ping rules for agentive and patient-like deverbals.

5.1.1 Results
Results of applying the models are summarized
in Table 5, for all models, trained with both the
smaller and the larger data sets, and measured with
and without using the full pipeline.

All models performed better than the baseline.
The all-arg model did about the same as the an-
imacy model with both training sets. We suggest
some reasons for this in the next section.

It is unambiguously clear that adding lexical
knowledge to the rule system, even when this
knowledge is derived from a relatively small train-
ing set, significantly improves performance, and
also that more training data leads to greater im-
provements.

Model Training Precision Recall F-measure
Surface String Measure

Baseline - 0.56 1.00 0.72
all-arg 10K 0.64 0.92 0.76
animacy 10K 0.62 0.93 0.75
all-arg FullWiki 0.68 0.95 0.81
animacy FullWiki 0.70 0.92 0.79

Full NL pipeline
Baseline - 0.65 0.94 0.77
all-arg 10K 0.75 0.88 0.81
animacy 10K 0.73 0.90 0.80
all-arg FullWiki 0.78 0.90 0.84
animacy FullWiki 0.81 0.88 0.84

Table 5: Performance on deverbal nouns with one
possessive argument

5.1.2 Error Analysis and Discussion
We looked at the errors produced by the best-
performing model, all-arg trained on the FullWiki
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set. There were 49 false negatives (i.e. cases
where the human judge decided that the underly-
ing relationship between the deverbal and its ar-
gument is ‘subject’, but our system produced a
different relation or no relation at all), covering
39 unique deverbal nouns. Of these, 20 deverbal
nouns were predicted by the model to prefer ob-
jects (e.g., Hopkins’ accusation), and 19 did not
get assigned either subject or object due to other
errors (including a few mislabeled evaluation sen-
tences).

Some of the false negatives involved deverbal
nouns that refer to reciprocal predicates such as
his marriage, or causative ones such as Berlin’s
unity, which could map to subject or objects. Our
current system does not allow us to express such
ambiguity, but it is a possible future improvement.

Looking at the false negatives produced by the
all-arg model, 3 deverbal nouns received more ac-
curate predictions with the animacy model (e.g.,
his sight; Peter Kay’s statement). Intuitively, the
animacy model should in general make more in-
formed decisions about the argument mappings
because it takes properties of individual arguments
into account. However, as we have seen, it does
not in fact outperform the model that treats all ar-
guments the same way.

We believe this is due to the fact that the an-
imacy model was trained on less data than the
all-arg model, because we only considered ani-
mate pronouns and common nouns when gener-
ating argument-mapping predictions. Excluding
all named entities and non-animate pronouns most
likely had an effect on the number of deverbals for
which the model was able to make accurate pre-
dictions. In the next iteration, we would like to
use all available arguments, relying on the named
entity type and information available in WordNet
for common nouns to distinguish between animate
and inanimate arguments.

The all-arg model evaluation resulted in 131
false positives (cases where the model predicted
the relation to be ‘subject’, but the human judge
thought it was something else). Of these, 105 were
marked by the human judge as having objects, 8 as
having a verbal relation other than subject or ob-
ject, 9 as having nominal modifiers, 9 has having
no deverbal.

Altogether, false positives covered 85 unique
verbs. Of these, 48 had been explicitly predicted
by our model to prefer subjects, and the rest had

no explicit prediction, thus defaulting to having a
subject. 3 of these deverbals would have been cor-
rectly identified as having objects by the animacy
model (e.g., his composition; her representation).

Although it is hard to predict the outcome of a
statistical model, we feel that more reliable infor-
mation about the animacy of arguments at training
time would improve the performance of the ani-
macy model, potentially making it better than the
all-arg model.

5.2 ‘Of’ Arguments of Deverbal Nouns

The evaluation procedure for ‘of’ arguments was
the same as for possessive arguments, except that
the default argument mapping was ‘object’, and
the evaluated decision was whether a particular
role was object or non-object. Ignoring sentence
with erroneous parses, we had 677 evaluation ex-
amples.

5.2.1 Results
Results for all models are summarized in Table 6.
All models outperformed the baseline on all train-
ing sets and on both the surface or full-pipeline
measures.

As with possessive arguments, the all-arg and
animacy models performed about the same, with
both the FullWiki and 10K training sets.

The 10K-trained animacy model did not do
as poorly as might have been expected given its
low prediction rate for deverbals with animate ar-
guments in our evaluation set. The better-than-
expected performance may be explained by low
incidence of animate arguments in this set.

Model Training Precision Recall F-measure
Surface String Measure

Baseline - 0.60 1.00 0.75
all-arg 10K 0.68 0.97 0.80
animacy 10K 0.66 0.94 0.78
all-arg FullWiki 0.71 0.97 0.82
animacy FullWiki 0.70 0.91 0.79

Full NL pipeline
Baseline - 0.61 0.89 0.73
all-arg 10K 0.71 0.86 0.78
animacy 10K 0.70 0.85 0.77
all-arg FullWiki 0.78 0.87 0.82
animacy FullWiki 0.80 0.85 0.82

Table 6: Performance on deverbal nouns with one
‘of’ argument

5.2.2 Error Analysis and Discussion
We looked at the errors produced by the best-
performing model, all-arg trained on the FullWiki
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set. There were 53 false negatives (cases where
the human judged marked the relation as ‘object’
but the system marked it as something else), cov-
ering 42 unique deverbal nouns. Of these 7 were
(incorrectly) predicted by the model to prefer sub-
jects (e.g., operation of a railway engine), and the
rest were misidentified due to other errors.

There were 101 false positives (cases where the
system marked the role as object, but the human
judge disagreed). Of these, the human judged
marked 54 as subject, 21 as other verbal role, 13
as nominal modifier, and 13 as non-deverbal.

Of the 72 unique deverbals in the false-positive
set, our model incorrectly predicted that 38 should
prefer objects (such as Adoration of the Magi; un-
der the direction of Bishop Smith)). For 30 de-
verbals, the model made no prediction, and the
default mapping to object turned out to be incor-
rect. It is unclear to what extent better information
about animacy would have helped.

6 Related Work

One of the earliest computational attempts to de-
rive argument structures for deverbal nouns is
(Hull and Gomez, 1996), with hand-crafted map-
ping rules for a small set of individual nouns, ex-
emplifying a highly precise but not easily scalable
method.

In recent years, NomBank (Meyers et al.,
2004a) has provided a set of about 200,000 manu-
ally annotated instances of nominalizations with
arguments, giving rise to supervised machine-
learned approaches such as (Pradhan et al., 2004)
and (Liu and Ng, 2007), which perform fairly well
in the overall task of classifying deverbal argu-
ments. However, no evaluation results are pro-
vided for specific, problematic classes of nominal
arguments such as possessives; it is likely that the
amount of annotations in NomBank is insufficient
to reliably map such cases onto verbal arguments.

(Padó et al., 2008) describe an unsupervised
approach that, like ours, uses verbal argument
patterns to deduce deverbal patterns, though the
resulting labels are semantic roles used in SLR
tasks (cf. (Gildea and Jurafsky, 2000)) rather
than syntactic roles. A combination of our much
larger training set and the sophisticated probabilis-
tic methods used by Padó et al. would most likely
improve performance for both syntactic and se-
mantic roles labelling tasks.

7 Conclusions and Future Work

We have demonstrated that large amounts of lexi-
cal data derived from an unsupervised parsed cor-
pus improve role assignment for deverbal nouns.
The improvements are significant even with a rel-
atively small training set, relying on parses that
have not been hand-corrected, using a very sim-
ple prediction model. Larger amounts of extracted
data improve performance even more.

There is clearly still headroom for improve-
ment in this method. In a pilot study, we used
argument preferences for individual deverbal-
argument pairs, falling back to deverbal-only gen-
eralizations when more specific patterns were not
available. This model had slightly higher preci-
sion and slightly lower recall than the deverbal-
only model, suggesting that a more sophisticcated
probabilistic prediction model may be needed.

In addition, performance should improve if we
allow non-binary decisions: in addition to map-
ping deverbal arguments to subject or object of the
underlying verb, we could allow mappings such
as “unknown” or “ambiguous”. The same training
sets can be used to produce a model that makes a
3- or 4-way split. In the possessive and ‘of’ sets,
the “unknown / ambiguous” class would cover be-
tween 15% and 20% of all the data. This third
possibility becomes even more important for other
deverbal arguments. For example, if the deverbal
noun has a prenominal modifier (as in city destruc-
tion), in a third of the cases the underlying relation
is neither the subject nor the object (Lapata, 2002).

And, of course, the methodology of extracting
lexical preferences based on large parsed corpora
can be applied to many other NL tasks not related
to deverbal nouns.
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Abstract

In this paper I shall present a treatment of
lexical and grammatical tone and vowel
length in Hausa, as implemented in an
emerging bidirectional HPSG of the lan-
guage based on the Lingo Grammar Ma-
trix (Bender et al., 2002). I shall argue
in particular that a systematic treatment
of suprasegmental phonology is indispen-
sible in an implemented grammar of the
language, both for theoretical and practical
reasons. I shall propose an LKB represen-
tation that is strongly inspired by linguistic
and computational work on Autosegmental
Phonology. Finally, I shall show that the
specific implementation presented here is
flexible enough to accommodate different
levels of suprasegmental information in the
input.

1 Introduction

Hausa is a tone language spoken by over 30 million
speakers in Northern Nigeria and bordering areas
of Niger. Genetically, the language belongs to the
Chadic sub-branch of the Afroasiatic family.

In this language, both tone and length are lexi-
cally and grammatically distinctive: Hausa distin-
guishes two vowel lengths, as well as two underly-
ing tones, H(igh) and L(ow). At the surface level,
we can observe two level tones, as well as one con-
tour tone (fall). Wolff (1993) cites the following
minimal pairs for tone:

(1) a. fàrı̄ — ‘look (n)’

b. far`̄ı — ‘dry season’

c. farı̄ — ‘white/whiteness’

Rising tone only results from the interaction of
grammatical and intonational tone (Sharon Inkelas
and Cobler, 1987; Inkelas and Leben, 1990).

In addition to its function of differentiating lex-
ical items, tone is also grammatically distinctive:

the paradigms of subjunctive and preterite (=rel-
ative completive) TAM markers partially over-
lap in terms of their segments (kà ‘2sg.subj, yà
‘3sg.m.subj’, tà ‘3sg.f.subj’ vs. ka ‘2sg.rel.compl,
ya ‘3sg.m.rel.compl’, ta ‘3sg.f.rel.compl’). Fur-
ther, the bound possessive linker and the previous
reference (=specificity) marker are systematically
distinguished by tonal means alone.

(2) a. r`̄ıga-r
gown.f-of.f

Audù
Audù.m

‘Audu’s gown’

b. r`̄ıgâ-r
gown.f-spec.f

‘the (aforementioned) gown

(3) a. birni-n
town.m-of.m

Kan`̄o
Kano

‘Kano town’

b. birnî-n
town.m-spec.m

‘the (aforementioned) town’

Similarly, vowel length is also distinctive on both
lexical and grammatical levels: Newman (2000)
cites the following pair (inter alia): fās `̄a ‘postpone’
vs. fas `̄a ‘smash’. Examples of grammatical length
distinctions can again be found in the areas of TAM
marking: in relative clauses and focus construc-
tions, completive aspect is expressed by means of
the relative completive set (or preterite), using short
vowel na ‘1.sg.rel.compl, ka ‘2.sg.rel.compl’, ya
‘3.sg.m.rel.compl’ and ta ‘3.sg.f.rel.compl’, inter
alia, which contrasts with the long vowel abso-
lute completive nā, kā, yā, and tā used elsewhere
(see Jaggar (2006) for discussion of the use of the
preterite in narratives). Furthermore, Hausa uses
verb-final vowel length to signal presence of a fol-
lowing in-situ direct object (Hayes, 1990; Crys-
mann, 2005).

Despite the fact that the sophisticated models of
suprasegmental phonology developed more than
a quarter of a century ago within Autosegmental
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Theory (Goldsmith, 1976; Leben, 1973) have al-
ready been rigorously formalised in the nineties
in the context of feature-structure-based computa-
tional phonology (Bird, 1995; Scobbie, 1991; Bird
and Klein, 1994; Walther, 1999), the representa-
tion of tone and length has received little or no
attention in the area of grammar engineering. This
may be partly due to the fact that the languages for
which substantial grammars have been developed
are not tone languages. Existing grammar imple-
mentations of tone languages like Chinese (Fang
and King, 2007) do not appear to make use of au-
tosegmental models either, possibly because the
assignment of tone in an isolating language is not
as intimately connected to inflectional and deriva-
tional processes, as it is in a morphologically rich
language like Hausa.

In this paper, I shall argue that the issue of
suprasegmental phonology is an integral part of any
implemented grammar of Hausa, not only from the
point of view of linguistic adequacy, but also un-
der grammar-engineering and application-oriented
perspectives. I shall propose a treatment of tone
and length in an LKB-grammar of Hausa that sys-
tematically builds on separate representations of
segments, tone and length and discuss how various
salient aspects of Hausa syntax and morphology
can be addressed using a representation inspired
by Autosegmental Theory. Furthermore, I shall ad-
dress how different levels of suprasegmental infor-
mation encoded in the different writing systems em-
ployed in the language can be robustly integrated
into a single grammar, and explore its application
potential.

2 Suprasegmental information in Hausa
writing systems

2.1 Latin script
2.1.1 Standard orthography (Boko)
Modern Hausa is standardly written using (a mod-
ified version of) the Latin script, called bōkòo. In
addition to the standard 26 letters of the Latin alpha-
bet, Boko uses hooked letters, the apostrophe, as
well as digraphs to represent glottalised consonants
(á, â, Î, ts [s’], ’y [Pj], ’ [P]). Yet, neither tone nor
length are represented in the standard orthography.

2.1.2 Tone & length in scientific and
educational literature

In contrast to the standard orthography, tone and
length are typically fully represented in the aca-
demic literature on Hausa. Besides reference gram-
mars and other scientific publications on the lan-
guage, this includes lexica, some of which exist in
machine-readable form (e.g., the on-line version

of Bargery (1934) at http://bargeryhausa.
gotdns.com/).

Length in scientific publications is typically
marked using one of the following strategies: di-
acritical marking of long (macron or post-fixed
colon; Newman (2000; Jaggar (2001)) or short vow-
els (ogonek; Newman and Ma Newman (1977)),
and segmental gemination of vowels (long) (Wolff,
1993). Regardless of whether the strategy is di-
acritic or segmental, there is a strong tendency
to have short vowels unmarked, representing the
length information on long vowels only.

Tone, by contrast, is exclusively marked by
means of diacritics: again, two systems are typ-
ically used, one marking low tone with a grave
accent leaving high tone unmarked, the other mark-
ing high tone with an acute accent, leaving low
tone unmarked. Besides that, fully toned represen-
tations can also occasionally be found (using acute
and grave accents). Falling tone, which phonologi-
cally corresponds to a H-L contour associated with
a single heavy syllable, is standardly marked with a
circumflex accent. Rising tone, by contrast, which
only ever plays a role in intonational phonology,
as mentioned in section 1, is typically not repre-
sented.1

Apart from the scientific literature, full represen-
tation of suprasegmental information is also pro-
vided in most of the Hausa language teaching liter-
ature, e.g. Cowan and Schuh (1976; Jungraithmayr
et al. (2004). Conventions tend to follow those
found in the scientific literature, given that Hausa
language teaching often forms an integral part of
African linguistics curricula.

The marking strategy assumed in this paper fol-
lows the one found in Newman (2000) and Jaggar
(2001), using diacritics for low and falling tones,
taking high tone as the default. Long vowels are
marked by a macron.

2.2 Arabic script (Ajami)
Besides the now standard Latin orthography, Hausa
has been written traditionally using a slightly mod-
ified version of the Arabic script called àjàmi. To-
day, Ajami is still used occasionally, mainly in the
context of religious texts.

Just like Boko, Ajami does not represent tone.
Owing to the Semitic origin of the script, however,
length distinctions are indeed captured: while short
vowels are solely marked by diacritics, if at all,
long vowels are represented using a combination
of letters and diacritics: long front vowels (/i:/ and
/e:/) using the letter ya (ø



), otherwise used for the

palatal glide /j/, long back vowels using the letter
wau (ð), also used for the labio-velar glide /w/, and

1Lexical L-H sequences associated with a single syllable
undergo tonological simplification rules (Leben, 1971; New-
man, 1995).29



long /a:/ being represented by alif ( @ ).2 Vowel
quality (/i:/ vs. /e:/ and /o:/ vs. /u:/) is differentiated
by means of diacritics.

Thus, depending on the writing system, differ-
ent levels of suprasegmental information need to
be processed, ranging from full representation in
scientific and educational texts, over partial rep-
resentation (Ajami), to complete absence of any
tone or length marking (Boko). This means that
the grammar should be able to extract what infor-
mation is available, and robustly deal with both
specified and underspecified input. This is even
more important, if we want to include applications,
where input in parsing is an underspecified rep-
resentation, but output in generation requires full
specification of suprasegmentals, e.g., in TTS or
CALL scenarios.

3 Morphology and suprasegmental
phonology

Hausa morphological processes, like derivation and
inflection, display close interaction between seg-
mental and suprasegmental marking. Affixation in
Hausa is predominantly suffixal, although prefixes
and circumfixes are also attested. On the segmental
level, affixes can be divided into fully specified suf-
fixes, and reduplicative suffixes. Although partial
and full reduplication of entire CV-sequences can
also be observed, probably the most common redu-
plicative pattern involves reduplication and gem-
ination of root consonants, with vowel melodies
prespecified.

Tonally, affixes fall into one of three categories:
affixes lexically unspecified for tone (only prefixes),
tone-integrating affixes (suffixes only) and non-
integrating affixes3. While non-integrating affixes
only specify their own lexical tone, possibly affect-
ing the segmental and suprasegmental realisation
of a preceding syllable, tone-integrating suffixes
holistically assign a tonal melody to the entire word
they attach to.

In contrast to tone, which is often assigned to the
entire morphological word, alternations in length
do not tend to affect the entire base, but rather only
syllables at morpheme boundaries.

3.1 Tone-integrating suffixes
Hausa plurals represent the prototypical case of
tone-integrating affixation. The language has an

2Ajami letter names are the Hausa equivalent of original
Arabic names. For a more complete description of Ajami, see
Newman (2000, pp. 729–740).

3Among the non-integrating affixes, there is a subclass
bearing polar tone, i.e., the surface tone is opposite to that of
the neighbouring syllable.

extremely rich set of morphological patterns for
plural formation: Newman (2000) identifies 15
classes, many of which have between 2 and 6 sub-
classes. Quite a few Hausa nouns form the plural
according to more than one pattern. Among these
15 plural classes, three are particularly productive,
most notably classes 1-3. All these three classes are
tone integrating, as are almost all plural formation
patterns. Thus, regardless of the tonal specification
in the singular, plural formation assigns a regular
tone melody to the entire word:

(4) -ōXı̄ (H) (Class I)

a. gul`̄a (HL) — gulōlı̄ ‘drum stick’

b. tāg`̄a (HL) — tāgōgı̄ ‘window’

c. gyàlè (LL) — gyalōlı̄ ‘shawl’

d. tàmbay`̄a (LHL) — tambayōyı̄ ‘ques-
tion’

e. kamfànı̄ (HLH) — kamfanōnı̄ ‘com-
pany’

f. kwàmìtíì (LLHL) — kwamitōcı̄ ‘com-
mittee’

(5) -ai (LH) (Class II)

a. àlhaj`̄ı (LHL) — àlh`̄azai ‘Hadji’

b. âālìbı̄ (HLH) — â `̄alìbai ‘pupil’

c. sankac`̄e (HHL) — sànkàtai ‘reaped
corn laid down in a row’

d. àlmùbazzàrı̄ (LLHLH) —
àlmùbàzzàrai ‘spendthrift’

Class I plural formation involves affixation of
a partially reduplicative suffix -ōXı̄ replacing the
base-final vowel, if there is one. Tone in class I
plurals is all H, regardless of whether the base is
HL, LH, LL, HLH, or LHL. Length specifications,
by contrast are carried over from the base, except
of course for the base-final vowel. The quality
of the affix-internal consonant is determined by
reduplication of the base-final consonant, possibly
undergoing regular palatalisation.

Class II plurals are formed by means of the fully
specified suffix -ai, with an associated integrating
LH. Tone assignment in Hausa is right to left: thus,
L automatically spreads to the left. Again, the tonal
shape of the base gets entirely overridden by the
LH plural pattern. Non-final length specifications,
however, are identical between the singular and the
plural.

3.2 Toneless prefixes
As we have seen above, tonal association in Hausa
proceeds from right to left. As a result, suffixes
carry a lexical specification for tone. Amongst
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Hausa prefixes, however, one must distinguish be-
tween those prefixes carrying a (non-integrating)
lexical tone specification themselves, and those pre-
fixes which are inherently unspecified for tone but
have their surface tone determined by means of
automatic spreading. An example of a prefix of the
latter type is provided by the reduplicative prefixes
C1VC1- and C1VC2 found with pluractional verbs.
These prefixes consists of an initial consonant that
copies the first consonant of the base, followed by
a short vowel copying the first vowel of the base
(possibly undergoing centralisation). The prefix-
final consonant either forms a geminate with the
following base-initial consonant, or else copies the
second consonant of the base.

(6) C1VC1-
a. darnàcē (HLH) — daddarnàcē (HHLH)

‘press down/oppress (gr 1)’
b. karàntā (HLH) — kakkaràntā (HHLH)

‘read (gr 1)’
c. d`̄agur`̄a (LHL) — dàdd`̄agur`̄a (LLHL)

‘gnaw at (gr 2)’
d. gy`̄aru (LH) — gyàggy`̄aru (LLH) ‘be

well repaired (gr 7)’

With trisyllabic bases, it is evident that the tone
assumed by the prefix is just a copy of the initial
tone of the base.

The tonal pattern assigned to Hausa verbs are
determined by paradigm membership, the so-called
grade (Parsons, 1960), together with the number
of syllables. Tone melodies range from monotonal,
over bitonal, to maximally tritonal patterns. Thus,
tone-assignment to quadrisyllabic verbs, as derived
by pluractional prefixes, is an effect of automatic
spreading.

Pluractional affixation to bisyllabic verbs con-
stitutes a slightly more complicated case: Since
some paradigms assign different tone melodies to
bisyllabic and trisyllabic verbs, prefixation to bi-
syllabic bases triggers a change in tonal pattern.
Note, however, that the tonal pattern assigned to
the derived trisyllabic pluractional verb is just the
one expected for trisyllabic underived verbs of the
same paradigm (cf. underived grade 1 karàntā and
grade 2 d `̄agur `̄a above to the pluractional grade 1
and grade 2 verbs below).

(7) a. tāk`̄a (HL) — tatt`̄akā (HLH) ‘step on
(gr 1)’

b. j`̄efā (LH) — jàjjēf`̄a (LHL) ‘throw at
(gr 2)’4

4Owing to the inherent shortness of the reduplicated vowel,
long /e:/ and /o:/ undergo regular reduction to [a] in the
reduplicant.

Thus, instead of the affix carrying lexical tone,
tone is rather assigned holistically to the entire
derived word (Newman, 2000).

3.3 Non-integrating affixes
The third class of affixes we shall discuss are lex-
ically specified for tone again (if vocalic). Yet, in
contrast to tone-integrating suffixes, they do not
override the entire tonal specification of the base.
Examples of tonally non-integrating suffixes are
manifold. They include nominal and verbal suf-
fixes like the bound accusative (polar) and genitive
pronouns, the genitive linker (-n/-r), the inherently
low-tone specificity marker (-ǹ/-r̀), and the regular
gerundive suffix -`wā, among many others. What is
common to all these suffixes is that they only affect
the segmental and suprasegmental specification of
the immediately preceding base-final syllable.

Regular gerunds of verbs in grades 1, 4, 5, 6 and
7 are formed by affixation of a floating tone-initial
suffix -`wā. When attached to a verb ending in a
long high syllable, the base final high tone and the
floating low tone combine into a falling contour
tone. If the base ends in a high short syllable, as in
grade 7, or if the base-final vowel is already low,
no tonal change to the base can be observed.

(8) a. karàntā — karàntˆ̄awā ‘read (gr1)’

b. sayar — sayârwā ‘sell (gr5)’

c. kāwō — kāwˆ̄owā ‘come (gr6)’

d. kām`̄a — kām`̄awā ‘catch (gr1)’

e. gy`̄aru — gy`̄aruwā ‘be repaired (gr7)’

Note that apart from tonal change of high long to
falling, the base undergoes no segmental or length
change.

Consonantal suffixes, like the genitive linker and
the specificity marker, by contrast, necessarily inte-
grate into the coda of the preceding syllable. Since
Hausa does not allow long vowels in closed syl-
lables, base-final long vowels and diphthongs are
shortened. The specificity marker is identical to the
genitive linker, as far as truncation of long vowels
and diphthongs is concerned. It differs from the
genitive linker, in that it is inherently specified as
low, giving rise to a falling tone with high-final
bases. With low-final bases, no tonal change can
be observed.

(9) a. Îwai — Îwa-n-tà ‘(her) egg’

b. r`̄ıgā — r`̄ıga-r-tà ‘(her) gown’

c. mōt`̄a — mōtà-r-tà ‘(her) car’

(10) a. Îwai — Îwâ-n ‘the (aforementioned)
egg’
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b. r`̄ıgā — r`̄ıgâ-r ‘the (aforementioned)
gown’

c. mōt`̄a — mōtà-r ‘(her) car’

Note that in contrast to tone-integrating suffixes,
segmental and suprasegmental changes are strictly
local, affecting material in adjacent syllables only.

Besides non-integrating suffixes there are some
very rare prefixes that can be regarded as inherently
specified for tone. One such prefix is low tone
bà- that features in singular ethnonyms, like, e.g.
bàhaush `̄e ‘Hausa person’. Typically, the prefix bà-
is accompanied by a final tone-integrating HL suf-
fix - `̄e (masc) or HLH -ā/-ìyā (fem), but not always.
With regular ethnonyms, the initial tone of the suf-
fix (H) spreads to the left, up to but excluding the
low tone prefix. The plural of such ethnonyms is
formed without a prefix. Instead, a tone-integrating
H or LH suffix -āwā is used. Vowel length of the
base is retained throughout:

(11) Fàransà ‘France’ — Bàfaransh`̄e (m), Bà-
faranshìyā (f) , Faransāwā (pl) ‘French’

(12) Jāmùs ‘Germany’ — Bàjāmush`̄e (m),
Bàjāmushìyā (f) , Jāmusāwā (pl) ‘French’

Besides the regular pattern, there are a few eth-
nonyms that use a non-integrating -ı̄ e.g. Bàg `̄obirı̄
from G `̄obir, thus preserving the tonal pattern of the
place name base. According to Newman (2000),
however, many Hausa speakers prefer to use the
regular tone-integrating suffix - `̄e instead. Thus, en-
tirely non-integrating formation of ethnonyms has
ceased to be a part of productive Hausa morphol-
ogy.

Moreover, even the productivity of tonally spec-
ified bà- seems to be diminished: while the plu-
ral is still productive, new ethnonyms tend to be
formed using alternate periphrastic constructions
âan/mùtumìn ‘son/man of’ (Newman, 2000).

(13) a. Pàlàsâı̄nù ‘Palestine’ — âan/mùtumìn
Pàlàsâı̄nù (m) — Palasâı̄nāwā (pl)
‘Palestinian’

b. Bosniyà ‘Bosnia’ — âan/mùtumìn
Bosniyà (m) — Bosniyāwā (pl)
‘Bosnian’

To summarise, I shall take integrating and non-
integrating suffixation as the standard case in
Hausa, together with toneless prefixation. As we
shall see in the description of our implementation
in the following section, the treatment of isolated
cases of tonally specified prefixes will be treated as
a non-productive sub-regularity.

4 Representing autosegmental phonology
in the LKB

4.1 Orthographemics in the LKB
The LKB (Copestake, 2002) has built-in support
for orthographemic alternations, providing support
for inflectional and derivational morphology. Tech-
nically, the orthographemic component of the LKB
adopts a string-unification approach. Below is an
example of the spelling part of regular -ōXı̄ plural
formation, together with the definitions of letter
sets and wild-cards used. Patterns on the right pre-
empt patterns further to the left.

(14) %(wild-card (?v aeiou))

%(letter-set (!c bcdfghjklmnpqrstvwxyzáâÎ)́)

noun_pl1_vow_ir :=

%suffix (!c?v !co!ci) (t?v toci)

(s?v soshi) (w?v woyi) (ts?v tsotsi)

noun-plural-infl-rule &

...

In the above rule, the letter set !c is string uni-
fied with the corresponding consonantal letter in the
input. Note that in contrast to wild cards (e.g. ?v),
multiple occurrences of letter set identifiers within
the same pattern are bound to the same consonant,
providing a convenient solution to gemination and
partial reduplication.

Orthographemic rules are unary (lexical) rules
consisting of a feature structure description and an
associated spelling change. The orthographemic
part is applied to surface tokens in order to derive
potential stem forms. The parser’s chart is then
initialised with lexical entries that have a corre-
sponding stem form. The orthographemic rules
that have been applied in order to derive the stem
are recorded on an agenda such that the feature
structure part can be applied to the lexical entries
thus retrieved.

Recall from section 2 that Hausa standard or-
thography does not represent tone or length. Thus,
suprasegmentally unmarked strings define the com-
mon denominator for retrieving entries from the
lexicon. But even if the input is marked diacrit-
ically for suprasegmentals, tone-integrating mor-
phology can lead to drastic tonal changes, which
are superficially encoded as segmental alternations
(since á 6= à). Moreover, we hope to have shown
above that tone and segmental phonology should
best be treated separately. Consequently, ortho-
graphic representations unmarked for tone consti-
tute the common denominator for all orthographic
input representations.

In a first preprocessing step, tone and length
specifications on input tokens are extracted by
means of a regular expression preprocessing en-
gine built into the LKB (Waldron et al., 2006).
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Instead of simply removing this potentially valu-
able information, the preprocessor rules convert
the (diacritical) marking of tone and length into an
inverse suffixal representation, separated from the
segmental string by _. Overtly marked high will be
represented as _H, overtly marked low as _L, and
lack of tonal marking is recorded as _*. Similarly,
length information, if present, will be recorded by
means of a colon next to the corresponding tone.
E.g., input â `̄al `̄ıbai ‘pupils’ will be converted
into âalibai_*_L_L:, whereas tonally unspec-
ified âalibai will become âalibai_*_*_*.
Input partially specified for length (âaalibai),
as, e.g., in Ajami, will receive a representation as
âalibai_*_*_*:.

Once we have separated suprasegmental infor-
mation from the orthography proper and stored
it in the form of suffixal annotations, we can use
LKB’s standard orthographemic machinery to con-
vert the suffixal annotation into feature structure
constraints.5

4.2 Phonological representation
As we have seen above, there are several strategies
of tone and length marking in Hausa. While overtly
marked tone and length is both unambiguous in it-
self and directly enables us to infer what marking
strategy is used, the interpretation of vowels un-
marked for tone or length depends entirely on the
context: if a low-marking strategy is employed, un-
marked segments (=_*) can be interpreted as high.
However, if no marking of tone occurs at all in
the input, unmarked segments should be compati-
ble with any tone. The very same goes for length.
In order to enable the grammar to flexibly infer
the meaning of these underspecified annotations,
we introduce the following type hierarchy of tonal
marking. The only assumption made here is that
the marking strategy being adopted is used consis-
tently across the entire input sentence.6

Lexical and grammatical tones will be one of
high, low, or fall.7 In addition to these three lin-
guistic tones, the type hierarchy features tonal types
that correspond to tonal annotations found in the
input: utone is the type associated with tonally un-
marked syllables, tone_ is the type associated with

5In the near future, we plan to supplant this two-step solu-
tion with a direct conversion of using diacritical information
into feature structure annotations, using the advanced token-
mapping developed by Adolphs et al. (2008). At present,
however, this token-mapping has only been integrated into the
Pet run-time system (Callmeier, 2000), but not yet into the
LKB.

6In principle, even this assumption can be relaxed, at the
peril of having reduced cross-sentence disambiguation.

7I do not decompose falling tone into HL sequences,
thereby simplifying the alignment between tone specifications,
length specifications and segments.

a high-marking strategy, _tone corresponds to low-
marking, and _tone_ to full tonal marking (overt
high and low).

(15)

tone

_tone
_utone

_uhigh
_tone_

_low_

_high_

_fall_

_low

_high

_fall

utone

utone_

ulow_

ufall

tone_

low_

high_

fall_

low

high

fall

Depending on which annotations are present in
the input, the meaning of underspecified annota-
tions can be determined on the basis of type infer-
ence. The orthographemic rules that consume tonal
annotations do exactly two things: first, they record
the tone specification just found as the first mem-
ber of the TONE list of the daughter, successfully
building up a list of surface tones from right to left.

(16) _HH_ir :=
%suffix (* _H:)
diacritic-irule &
[SUPRA [TONE [LIST #tones,

LAST #tl],
LEN [LIST #lens,

LAST #ll]],
DTR [SUPRA [TONE [LIST

high-marked-list &
<high . #tones>,

LAST #last],
LEN [LIST

long-marked-list &
<long . #lens>,

LAST #ll]]]].

_*_ir :=
%suffix (* \*)
diacritic-irule &
[SUPRA [TONE [LIST #tones,

LAST #tl],
LEN [LIST #lens,

LAST #ll]],
DTR [SUPRA [TONE [LIST

<utone . #tones>,
LAST #last],

LEN [LIST
<ulength . #lens>,

LAST #ll]]]].

If the annotation is that of an overtly unmarked
tone, the underspecified type utone is inserted, oth-
erwise high or low, as appropriate. H or L tone
rules simultaneously constrain the entire tone list
according to the marking strategy, using list con-
straints.

(17) high-marked-list :=
tone-marked-list.

high-marked-null :=
high-marked-list &
tone-marked-null.
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high-marked-cons :=
high-marked-list &
tone-marked-cons &
[FIRST tone_,
REST high-marked-list].

Presence of a single overtly marked high tone
will constrain every element of the tone list to be
a subtype of high_. According to the hierarchy of
tonal types given above, the greatest lower bound
of utone and high_ however, is low_, denoting (un-
marked) low tone under a high-marking strategy.
Thus, whatever tonal marking is found, unmarked
tones are coerced to represent the opposite tones.
The way the type hierarchy is set up, 4 different
marking strategies are possible: completely unspec-
ified tone, high-tone marking, low-tone marking
and fully explicit high- and low-tone marking.

With the constraints we have just seen, we only
get disambiguation of unmarked tone (and length)
within the same word. In order to disambiguate
across the entire sentence, we use difference lists
of these tone and length lists to propagate the mark-
ing regime to preceding and following words. In
essence, we use two difference lists _LTONE and
_RTONE to propagate from left to right and vice
versa.8 Lexically, every word inserts its own tone
list as the singleton member of each difference list.
The general phrasal types from which all gram-
mar rules inherit now concatenate the _LTONE and
_RTONE values of their daughters left to right and
right to left, respectively.

The tone marking rules given above are then fur-
ther constrained according to the types of _LTONE
and _RTONE. Using list-of-list type constraints as
given below, every word marked for tone will con-
strain the marking regime found to its left and to
its right.

(18) hm-llist := tm-llist.
hm-clist := tm-clist &

hm-llist &
[FIRST high-marked-list,
REST hm-llist].

hm-nlist := hm-llist & tm-nlist.

The treatment of length marking, as we have
hinted at already, is entirely analogous to that of
tone, imposing the corresponding constraints on a
list of vowel length specifications.

With these constraints in place, we get the fol-
lowing disambiguation results (note that the verb
zō is lexically specified as long):

(19) a. Fully unspecified: Ya zo (3 readings:
yā zō, ya zō, yà zō)

8Since only overtly marked items can disambiguate tonally
unmarked ones, and the position of these disambiguating items
in the string is not known a priori, we need two lists of lists,
one for disambiguation of preceding material (_LTONE), the
other for following material _RTONE.

b. Length specified: Ya zoo (2 read-
ings: ya zō, yà zō)

c. Length specified: Yaa zoo (1 read-
ing: yā zō)

d. Tone/length specified: Ya kaawoo
shì (1 reading: ya kāwō shì)

e. Fully specified: Yá zóó (1 reading:
ya zō)

f. Inconsistent: Yaa zo (0 readings)

As witnessed above, presence of length mark-
ing coerces vowels not marked as long into the
short vowel reading. Similarly, presence of a single
low tone marking enforces a high tone reading of
overtly unmarked tones.

In generation, the grammar only uses fully spec-
ified tone marking, i.e., application of rules such
as _*_ir is blocked. As a result, we always get a
surface representation with full tone and length in-
formation. Post-generation Lisp functions are used
to convert the suffixal notation into the appropriate
diacritic format.

4.3 Morphology
The main motivation for having tone and length
represented on separate lists is two-fold: first, as
witnessed by Ajami, writing systems may overtly
mark one distinction but not the other. Second, and
more importantly, we have seen in section 3, that
morphological processes tend to leave length in-
tact, even if the entire word is holistically marked
with a completely new tonal melody, unrelated to
that of the base. Having two separate lists, we can
replace the tonal structure in the course of mor-
phological derivation but still have the rhythmic
structure shared between base and derived form by
means of reentrancies.

Here we investigate in more detail the role these
representations play in morphological derivation.

In the previous section, we provided a general
representation of segmental and suprasegmental
information, the latter being encoded by means of
two lists and showed how preprocessor rules and
orthographemic rules are used to extract this infor-
mation from the input and associate it with parts of
the feature structure, such that it can be matched
against morphological and lexical constraints on
length and tone.

Since both tone and length are lexically distinc-
tive, every lexical item specifies the contents of its
SUPRA|TONE and SUPRA|LEN lists. The order of
the elements on these two lists is right to left, facil-
itating a treatment of tone spreading by means of
list types. At the same time, this encoding provides
convenient access to the right-most length and tone
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specification. Since Hausa is predominantly suf-
fixal, non-holistic morphophonological changes to
tone and length specifications exclusively target the
right-most syllable of the base.

As we have observed above, tonal changes can
be far more global than segmental and length alter-
nations. Thus, we will use the LEN list to synchro-
nise the segmental and suprasegmental represen-
tations. Consequently, length specifications will
always be a closed list. Tone, by contrast, may
involve spreading, i.e. the exact number of indi-
vidual H of an all H tone melody is determined by
the number of available tone bearing units, which
corresponds to vowel length specifications in our
grammar. Since the number of tone bearing units is
already fixed by the length of LEN, and because the
tone marking rules operate synchronously on TONE
and LEN, we are free to underspecify the tonal rep-
resentation as to the exact length of the melody.
Therefore, we can provide a straightforward ac-
count of right-to-left association and left-ward tone
spreading in terms of open tone list types.

(20) h*-list := list.
h*-cons := h*-list &

cons & [FIRST high,
REST h*-list].

h*-null := h*-list & null.

h*-l-list := list.
h*-l-cons := h*-l-list &

cons & [FIRST low,
REST h*-list].

As we shall see shortly, these list types provide
a highly general way to constrain holistic tonal
assignment, independently of the segmental make-
up of the base.

In order to illustrate the interplay between seg-
mental and suprasegmental constraints in morpho-
logical derivation, I provide a treatment of the
two major types of morphological rules: tone-
integrating and non-integrating.9

(21) noun_pl1_vow_ir :=
%suffix (!c?v !co!ci) ...
noun-plural-infl-rule \&
[SUPRA

[TONE [LIST h*-list],
LEN [LIST < long, long . #ll>,

LAST #llast] ],
DTR [SYNSEM.LKEYS.--MCLASS n-pl-1,

SUPRA.LEN [LIST < [] . #ll>,
LAST #llast]]].

Tone integrating affixes In our discussion of the
Class I plural inflection rule above, we have only
specified the segmental changes. As detailed in
the version below, holistic assignment of tone is
achieved by means of a list type constraint on the

9Toneless prefixation with automatic spreading constitutes
just a special sub-case of tone-integrating rules.

TONE of the mother, paired with the absence of
any tonal restrictions regarding the morphological
daughter (the base). The length marking of the two
inherently long suffix vowels is captured by means
of the addition of two long specification at the front
of LEN. Affixation of -ōXı̄ replaces the base final
vowel. Accordingly, the associated initial length
specification of the daughter is skipped and the re-
maining list is passed on to the length specification
of the mother.

Non-integrating affixes In feminine singular
specificity marking, both non-integrating tone and
length changes can be observed. As depicted be-
low, high-final bases undergo a tone change to fall.
The remainder of the TONE list is structure-shared
between mother and daughter, carrying over any
list constraints that might be imposed there.

(22) f-sg-noun_def_high_ir :=
%suffix (!v !vr) (!vi !vr) ...
noun-def-f-sg-irule &
[SUPRA [TONE [LIST <fall . #tl >,

LAST #tlast],
LEN [LIST <short . #ll>,

LAST #llast]],
DTR [SUPRA

[TONE [LIST <high . #tl>,
LAST #tlast],

LEN [LIST <[] . #ll>,
LAST #llast] ]]].

Likewise, final shortening, which is triggered
by the affixation of a syllable-final consonant, is
captured by an analogous constraint on LEN.

5 Conclusion

In this paper, we have proposed a treatment of tone
and length in Hausa in terms of distinct representa-
tions of segments, tone and length. We have shown
that this separation is not only needed to accommo-
date different orthographic representations in the
input, but that it also paves the way for a more gen-
eral account of Hausa morphology, most notably
holistic assignment of tonal melodies combined
with tone spreading. At present, the grammar is
not only capable of extracting different levels of
suprasegmental annotations contained in the input,
but can also resolving tone and length ambigui-
ties on the basis of grammatical constraints: e.g.,
the ambiguity between genitive linker and previ-
ous reference marker, or the ambiguity between
subjunctive, preterite, and absolute completive in
relative and focus constructions. In the future, we
intend to equip the grammar with parse selection
models, to further enhance disambiguation. Given
the bidirectionality of the grammar and its flexible
support for tone and length, we plan to use it in the
context of TTS and CALL applications in the near
future.
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Abstract

Grammar extraction in deep formalisms
has received remarkable attention in re-
cent years. We recognise its value, but try
to create a more precision-oriented gram-
mar, by hand-crafting a core grammar, and
learning lexical types and lexical items
from a treebank. The study we performed
focused on German, and we used the Tiger
treebank as our resource. A completely
hand-written grammar in the framework of
HPSG forms the inspiration for our core
grammar, and is also our frame of refer-
ence for evaluation. 1

1 Introduction

Previous studies have shown that treebanks can
be helpful when constructing grammars. The
most well-known example is PCFG-based statis-
tical parsing (Charniak and Johnson, 2005), where
a PCFG is induced from, for instance, the Penn
Treebank. The underlying statistical techniques
have been refined in the last decade, and previ-
ous work indicates that the labelled f-score of this
method converges to around 91%.

An alternative to PCFGs, with more linguistic
relevance, is formed by deeper formalisms, such
as TAG (Joshi and Schabes, 1997), CCG (Steed-
man, 1996), LFG (Kaplan and Bresnan, 1995)
and HPSG (Pollard and Sag, 1994). For LFG
(Butt et al., 2002) and HPSG (Flickinger, 2000;
Müller, 2002), large hand-written grammars have
been developed. In the case of HPSG, the gram-
mar writers found the small number of principles
too restrictive, and created more rules (approxi-
mately 50 to 300) to accommodate for phenomena

1The research reported in this paper has been carried out
with financial support from the Deutsche Forschungsgemein-
schaft and the German Excellence Cluster of Multimodal
Computing & Interaction.

that vanilla HPSG cannot describe correctly. The
increased linguistic preciseness comes at a cost,
though: such grammars have a lower out-of-the-
box coverage, i.e. they will not give an analysis on
a certain portion of the corpus.

Experiments have been conducted, where a
lexicalised grammar is learnt from treebanks, a
methodology for which we coin the name deep
grammar extraction. The basic architecture of
such an experiment is to convert the treebank to
a format that is compatible with the chosen lin-
guistic formalism, and read off the lexicon from
that converted treebank. Because all these for-
malisms are heavily lexicalised, the core gram-
mars only consist of a small number of principles
or operators. In the case of CCG (Hockenmaier
and Steedman, 2002), the core grammar consists
of the operators that CCG stipulates: function ap-
plication, composition and type-raising. Standard
HPSG defines a few schemata, but these are usu-
ally adapted for a large-scale grammar. Miyao et
al. (2004) tailor their core grammar for optimal use
with the Penn Treebank and the English language,
for example by adding a new schema for relative
clauses.

Hockenmaier and Steedman (2002), Miyao et
al. (2004) and Cahill et al. (2004) show fairly good
results on the Penn Treebank (for CCG, HPSG and
LFG, respectively): these parsers achieve accura-
cies on predicate-argument relations between 80%
and 87%, which show the feasibility and scalabil-
ity of this approach. However, while this is a sim-
ple method for a highly configurational language
like English, it is more difficult to extend to lan-
guages with more complex morphology or with
word orders that display more freedom. Hocken-
maier (2006) is the only study known to the au-
thors that applies this method to German, a lan-
guage that displays these properties.

This article reports on experiments where the
advantages of hand-written and derived grammars
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are combined. Compared to previous deep gram-
mar extraction approaches, a more sophisticated
core grammar (in the framework of HPSG) is cre-
ated. Also, more detailed syntactic features are
learnt from the resource treebank, which leads to
a more precise lexicon. Parsing results are com-
pared with GG (German Grammar), a previously
hand-written German HPSG grammar (Müller,
2002; Crysmann, 2003; Crysmann, 2005).

2 Core grammar

2.1 Head-driven phrase structure grammar

This study has been entirely embedded in the
HPSG framework (Pollard and Sag, 1994). This
is a heavily lexicalised, constraint-based theory of
syntax, and it uses typed feature structures as its
representation. HPSG introduces a small num-
ber of principles (most notably, the Head Feature
Principle) that guide the construction of a few Im-
mediate Dominance schemata. These schemata
are meant to be the sole basis to combine words
and phrases. Examples of schemata are head-
complement, head-subject, head-specifier, head-
filler (for long-distance dependencies) and head-
modifier.

In this study, the core grammar is an extension
of the off-the-shelf version of HPSG. The type hi-
erarchy is organised by a typed feature structure
hierarchy (Carpenter, 1992), and can be read by
the LKB system (Copestake, 2002) and the PET
parser (Callmeier, 2000). The output is given in
Minimal Recursion Semantics (Copestake et al.,
2005) format, which can be minimally described
as a way to include scope information in depen-
dency output.

2.2 The German language

Not unlike English, German uses verb position
to distinguish between different clause types. In
declarative sentences, verbs are positioned in the
second position, while subordinate classes are
verb-final. Questions and imperatives are verb-
initial. However, German displays some more
freedom with respect to the location of subjects,
complements and adjuncts: they can be scram-
bled rather freely. The following sentences are
all grammatical, and have approximately the same
meaning:

(1) a. Der
The.NOM

Präsident
President.NOM

hat
has

gestern
yesterday

das
the.ACC

Buch
book.ACC

gelesen.
read.PERF.
‘The president read the book yester-
day’

b. Gestern hat der Präsident das Buch
gelesen.

c. Das Buch hat der Präsident gestern
gelesen.

As can be seen, the main verb is placed at sec-
ond position (the so-called ‘left bracket’), but all
other verbs remain at the end of the sentence,
in the ‘right bracket’. Most linguistic theories
about German recognise the existence of topolog-
ical fields: the Vorfeld before the left bracket, the
Mittelfeld between both brackets, and the Nach-
feld after the right bracket. The first two are
mainly used for adjuncts and arguments, whereas
the Nachfeld is typically, but not necessarily, used
for extraposed material (e.g. relative clauses or
comparative phrases) and some VPs. Again, the
following examples mean roughly the same:

(2) a. Er
He

hat
has

das
the.ACC

Buch,
Book.ACC,

das
that

sie
she

empfohlen
recommended

hat,
has,

gelesen.
read.PERF.

He has read the book that she recom-
mended.

b. Er hat das Buch gelesen, das sie emp-
fohlen hat.

c. Das Buch hat er gelesen, das sie emp-
fohlen hat.

Another distinctive feature of German is its rela-
tively rich morphology. Nominals are marked with
case, gender and number, and verbs with number,
person, tense and mood. Adjectives and nouns
have to agree with respect to gender, number and
declension type, the latter being determined by
the (non-)existence and type of determiner used
in the noun phrase. Verbs and subjects have to
agree with respect to number and person. Ger-
man also displays highly productive noun com-
pounding, which amplifies the need for effective
unknown word handling. Verb particles can ei-
ther be separated from or concatenated to the verb:
compare ‘Er schläft aus’ (‘He sleeps in’) and ‘Er
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Amerikaner

 no-det

VAL

[
SPEC 〈〉
SUBCAT〈〉

]
 noun

VAL

[
SPEC 〈det〉
SUBCAT〈〉

]

müssen



verb

VAL 1

SLASH 2

XCOMP

 verb

VAL 1

SLASH 2




hart

[
adverb

MOD verb

]

arbeiten

 verb-inf

VAL
[

SUBJ〈np-nom〉]
SLASH〈〉



 slash-subj

VAL
[

SUBJ〈〉]
SLASH〈np-nom〉



 mod-head

VAL
[

SUBJ〈〉]
SLASH〈np-nom〉



 head-cluster

VAL
[

SUBJ〈〉]
SLASH〈np-nom〉



 filler-head

VAL
[

SUBJ〈〉]
SLASH〈〉



Figure 1: This figure shows a (simplified) parse tree of the sentence ‘Amerikaner müssen hart arbeiten’
(‘Americans have to work hard’).

wird ausschlafen’ (‘He will sleep in’). In such
verbs, the word ‘zu’ (which translates to the En-
glish ‘to’ in ‘to sleep’) can be infixed as well: ‘er
versucht auszuschlafen’ (‘He tries to sleep in’).

These characteristics make German a compar-
atively complex language to parse with CFGs:
more variants of the same lemma have to be mem-
orised, and the expansion of production rules will
be more diverse, with a less peaked statistical dis-
tribution. Efforts have been made to adapt existing
CFG models to German (Dubey and Keller, 2003),
but the results still don’t compare to state-of-the-
art parsing of English.

2.3 Structure of the core grammar

The grammar uses the main tenets from Head-
driven Phrase Structure Grammar (Pollard and
Sag, 1994). However, different from earlier deep
grammar extraction studies, more sophisticated
structures are added. Müller (2002) proposes a
new schema (head-cluster) to account for verb
clusters in the right bracket, which includes the
possibility to merge subcategorisation frames of
e.g. object-control verbs and its dependent verb.
Separate rules for determinerless NPs, genitive
modification, coordination of common phrases,
relative phrases and direct speech are also created.

The free word order of German is accounted for
by scrambling arguments with lexical rules, and

by allowing adjuncts to be a modifier of unsat-
urated verb phrases. All declarative phrases are
considered to be head-initial, with an adjunct or
argument fronted using the SLASH feature, which
is then discharged using the head-filler schema.
The idea put forward by, among others, (Kiss and
Wesche, 1991) that all sentences should be right-
branching is linguistically pleasing, but turns out
be computationally very expensive (Crysmann,
2003), and the right-branching reading should be
replaced by a left-branching reading when the
right bracket is empty (i.e. when there is no auxil-
iary verb present).

An example of a sentence is presented in fig-
ure 1. It receives a right-branching analysis, be-
cause the infinitive ‘arbeiten’ resides in the right
bracket. The unary rule slash-subj moves the re-
quired subject towards the SLASH value, so that it
can be discharged in the Vorfeld by the head-filler
schema. ‘müssen’ is an example of an argument
attraction verb, because it pulls the valence fea-
ture (containing SUBJ, SUBCAT etc; not visible
in the diagram) to itself. The head-cluster rule as-
sures that the VAL value then percolates upwards.
Because ‘Amerikaner’ does not have a specifier, a
separate unary rule (no-det) takes care of discharg-
ing the SPEC feature, before it can be combined
with the filler-head rule.

As opposed to (Hockenmaier, 2006), this study
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(a)

teure Detektive kann sich der Supermarkt nicht leisten

NP

MO HD

NP

DET HD

VP

HDNGOA DA

S

SBOCHD

(b)

teure Detektive kann sich der Supermarkt nicht leisten

NP

MO HD

NP

DET HD

S

OA HD REFL SB MO VC

Figure 2: (a) shows the original sentence, whereas (b) shows the sentence after preprocessing. Note that
NP is now headed, that the VP node is deleted, and that the verbal cluster is explicitly marked in (b). The
glossary of this sentence is ‘Expensive.ACC detectives.ACC can REFL the.NOM supermarket.NOM not
afford’

employs a core lexicon for words that have marked
semantic behaviour. These are usually closed
word classes, and include items such as raising
and auxiliary verbs, possessives, reflexives, arti-
cles, complementisers etc. The size of this core
lexicon is around 550 words. Note that, because
the core lexicon only contains function words, its
coverage is negligible without additional entries.

3 Derivation of the lexicon

3.1 The Tiger treebank

The Tiger treebank (Brants et al., 2002) is a tree-
bank that embraces the concept of constituency,
but can have crossing branches, i.e. the tree might
be non-projective. This allowed the annotators to
capture the German free word order. Around one-
third of the sentences received a non-projective
analysis. An example can be found in figure 2.
Additionally, it annotates each branch with a syn-
tactic function.

The text comes from a German newspaper
(Frankfurter Rundschau). It was annotated semi-
automatically, using a cascaded HMM model. Af-
ter each phase of the HMM model, the output was
corrected by human annotators. The corpus con-
sists of over 50,000 sentences, with an average
sentence length of 17.6 tokens (including punc-
tuation). The treebank employs 26 phrase cate-
gories, 56 PoS tags and 48 edge labels. It also en-
codes number, case and gender at the noun termi-
nals, and tense, person, number and mood at verbs.
Whether a verb is finite, an infinitive or a partici-
ple is encoded in the PoS tag. A peculiarity in the
annotation of noun phrases is the lack of headed-

ness, which was meant to keep the annotation as
theory-independent as reasonably possible.

3.2 Preprocessing
A number of changes had to be applied to the tree-
bank to facilitate the read-off procedure:

• A heuristic head-finding procedure is applied
in the spirit of (Magerman, 1995). We use
priority lists to find the NP’s head, deter-
miner, appositions and modifiers. PPs and
CPs are also split into a head and its depen-
dent.

• If a verb has a separated verb particle, this
particle is attached to the lemma of the verb.
For instance, if the verb ‘schlafen’ has a parti-
cle ‘aus’, the lemma will be turned into ‘auss-
chlafen’ (‘sleep in’). If this is not done, sub-
categorisation frames will be attributed to the
wrong lemma.

• Sentences with auxiliaries are non-projective,
if the adjunct of the embedded VP is in the
Vorfeld. This can be solved by flattening the
tree (removing the VP node), and marking
the verbal cluster (VC) explicitly. See fig-
ure 2 for an example. 67.6% of the origi-
nal Tiger treebank is projective, and with this
procedure, this is lifted to 80.1%.

• The Tiger treebank annotates reflexive pro-
nouns with the PoS tag PRF, but does not
distinguish the syntactic role. Therefore, if a
verb has an object that has PRF as its part-of-
speech, the label of that edge is changed into
REFL, so that reflexive verbs can be found.
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Figure 3: These graphs show learning curves of the algorithm on the first 45,000 sentences of the Tiger
treebank. Graph (a) indicates the amount of lemmas learnt (from top to bottom: nouns, names, adjec-
tives, verbs and adverbs). The graph in (b) shows the number of distinct lexical types for verbs that are
learnt. Graph (c) shows the average proportion of morphological forms that is observed per verb lemma,
assuming that each verb has 28 different forms: infinitive, zu (to) + infinitive, participle, imperative and
24 finite forms (3 (person) * 2 (number) * 2 (tense) * 2 (mood)).

The preprocessing stage failed in 1.1% of the
instances.

3.3 Previous work
The method described in Hockenmaier (2006) first
converts the Tiger analysis to a tree, after which
the lexical types were derived. Because it was
the author’s goal to convert all sentences, some
rather crude actions had to be taken to render
non-projective trees projective: whenever a cer-
tain node introduces non-projectivity, some of its
daughters are moved to the parent tree, until that
node is projective. Below, we give two examples
where this will lead to incorrect semantic compo-
sition, with the consequence of flawed lexicon en-
tries. We argue that it is questionable whether the
impressive conversion scores actually represent a
high conversion quality. It would be interesting to
see how this grammar performs in a real parsing
task, but no such study has been carried out so far.

The first case deals with extraposed material in
the Nachfeld. Typical examples include relative
phrases, comparatives and PH/RE constructions2.

2NPs, AVPs and PPs can, instead of their usual headed
structure, be divided in two parts: a ‘placeholder’ and
a ‘repeated element’. These nodes often introduce non-
projectivity, and it is not straightforward to create a valid lin-
guistic analysis for these phenomena. Example sentences of
these categories (NPs, AVPs and PPs, respectively) are:

(1) [ PH Es ] ist wirklich schwer zu sagen, [ RE welche
Positionen er einnimmt ]

(2) Man muß sie also [ PH so ] behandeln , [ RE wie man
eine Weltanschauungsbewegung behandelt ]

(3) Alles deutet [ PH darauf ] hin [ RE daß sie es nicht
schaffen wird ]

These examples all have the RE in the Nachfeld, but their
placement actually has a large variety.

The consequence is that the head of the extraposed
material will be connected to the verb, instead of
to the genuine head.

Another example where Hockenmaier’s algo-
rithm will create incorrect lexical entries is when
the edge label is PAR (for ‘parentheses’) or in the
case of appositions. Consider the following sen-
tence:

(3) mit
with

160
160

Planstellen
permanent posts

(etliche
(several

sind
are

allerdings
however

noch
still

unbesetzt)
unoccupied)

The conclusion that will be drawn from this sen-
tence is that ‘sind’ can modify nouns, which is
only true due to the parentheses, and has no re-
lation with the specific characteristics of ‘sind’.
Similarly, appositions will act as modifiers of
nouns. Although one might argue that this is the
canonical CCG derivation for these phenomena, it
is not in the spirit of the HPSG grammars, and we
believe that these constructions are better handled
in rules than in the lexicon.

3.4 Procedure
In our approach, we will be more conservative,
and the algorithm will only add facts to its knowl-
edge base if the evidence is convincing. That
means that less Tiger graphs will get projective
analyses, but that doesn’t have to be a curse: we
can derive lexical types from non-projective anal-
yses just as well, and leave the responsibility for
solving the more complex grammatical phenom-
ena to the core grammar. For example, lexical
rules will deal with fronting and Mittelfeld scram-
bling, as we have stated before. This step of the
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procedure has indeed strong affinity with deep lex-
ical acquisition, except for the fact that in DLA all
lexical types are known, and this is not the case in
this study: the hand-written lexical type hierarchy
is still extended with new types that are derived
from the resource treebank, mostly for verbs.

The basic procedure is as follows:

• Traverse the graph top-down.

• For each node:

– Identify the node’s head (or the deepest
verb in the verb cluster3);

– For each complement of this node, add
this complement to the head’s subcate-
gorisation frame.

– For each modifier, add this head to the
possible MOD values of the modifier’s
head.

• For each lexical item, a mapping of (lemma,
morphology)→ word form is created.

After this procedure, the following information
is recorded for the verb lemma ‘leisten’ from fig-
ure 2:

• It has a subcategorisation frame ‘npnom-refl-
npacc’.

• Its infinitive form is ‘leisten’.

The core grammar defines that possible sub-
jects are nominative NPs, expletive ‘es’ and CPs.
Expletives are considered to be entirely syntac-
tic (and not semantic), so they will not receive a
dependency relation. Complements may include
predicative APs, predicative NPs, genitive, dative
and accusative NPs, prepositional complements,
CPs, reflexives, separable particles (also purely
syntactic), and any combination of these. For non-
verbs, the complements are ordered (i.e. it is a
list, and not a verb). Verb complementation pat-
terns are sets, which means that duplicate com-
plements are not allowed. For verbs, it is also
recorded whether the auxiliary verb to mark the
perfect tense should be either ‘haben’ (default) or
‘sein’ (mostly verbs that have to do with move-
ment). Nouns are annotated with whether they can
have appositions or not.

3That means that the head of a S/VP-node is assumed
to be contained in the lexicon, as it must be some sort of
auxiliary.

Results from the derivation procedure are
graphed in figure 3. The number of nouns and
names is still growing after 45,000 sentences,
which is an expected result, given the infinite na-
ture of names and frequent noun compounding.
However, it appears that verbs, adjectives and ad-
verbs are converging to a stable level. On the other
hand, lexical types are still learnt, and this shows a
downside of our approach: the deeper the extrac-
tion procedure is, the more data is needed to reach
the same level of learning.

The core grammar contains a little less than 100
lexical types, and on top of that, 636 lexical types
are learnt, of which 579 are for verbs. It is inter-
esting to see that the number of lexical types is
considerably lower than in (Hockenmaier, 2006),
where around 2,500 lexical types are learnt. This
shows that our approach has a higher level of gen-
eralisation, and is presumably a consequence of
the fact that the German CCG grammar needs dis-
tinct lexical types for verb-initial and verb-final
constructions, and for different argument scram-
blings in the Mittelfeld, whereas in our approach,
hand-written lexical rules are used to do the scram-
bling.

The last graph shows that the number of word
forms is still insufficient. We assume that each
verb can have 28 different word forms. As can be
seen, it is clear that only a small part of this area
is learnt. One direction for future research might
be to find ways to automatically expand the lexi-
con after the derivation procedure, or to hand-code
morphological rules in the core grammar.

4 Parsing

4.1 Methodology

All experiments in this article use the first 45,000
sentences as training data, and the consecutive
5,000 sentences as test data. The remaining 472
sentences are not used. We used the PET parser
(Callmeier, 2000) to do all parsing experiments.
The parser was instructed to yield a parse error af-
ter 50,000 passive edges were used. Ambiguity
packing (Oepen and Carroll, 2000) and selective
unpacking (Zhang et al., 2007) were used to re-
duce memory footprint and speed up the selection
of the top-1000 analyses. The maximum entropy
model, used for selective unpacking, was based on
200 treebanked sentences of up to 20 words from
the training set. Part-of-speech tags delivered by
the stock version of the TnT tagger (Brants, ) were
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Tiger T.+TnT GG
Out of vocabulary 71.9 % 5.2 % 55.6 %
Parse error 0.2 % 1.5 % 0.2 %
Unparsed 7.9 % 37.7 % 28.2 %
Parsed 20.0 % 55.6 % 16.0 %
Total 100.0 % 100.0 % 100.0 %
Avg. length 8.6 12.8 8.0
Avg. nr. of parses 399.0 573.1 19.2
Avg. time (s) 9.3 15.8 11.6

Table 1: This table shows coverage results on the held-out test set. The first column denotes how the
extracted grammar performs without unknown word guessing. The second column uses PoS tags and
generic types to guide the grammar when an unknown word is encountered. The third column is the
performance of the fully hand-written HPSG German grammar by (Müller, 2002; Crysmann, 2003).
OOV stands for out-of-vocabulary. A parse error is recorded when the passive edge limit (set to 50,000)
has been reached. The bottom three rows only gives information about the sentences where the grammar
actually returns at least one parse.

Training set Test set
All 100.0 % 100.0 %
Avg. length 14.2 13.5
Coverage 79.0 % 69.0 %
Avg. length 13.2 12.8
Correct (top-1000) 52.0% 33.5 %
Avg. length 10.4 8.5

Table 2: Shown are the treebanking results, giv-
ing an impression of the quality of the parses.
The ‘training set’ and ‘test set’ are subsets of 200
sentences from the training and test set, respec-
tively. ‘Coverage’ means that at least one analysis
is found, and ‘correct’ indicates that the perfect
solution was found in the top-1000 parses.

used when unknown word handling was turned
on. These tags were connected to generic lexical
types by a hand-written mapping. The version of
GG that was employed (Müller, 2002; Crysmann,
2003) was dated October 20084.

4.2 Results

Table 1 shows coverage figures in three different
settings. It is clear that the resulting grammar has
a higher coverage than the GG, but this comes at a
cost: more ambiguity, and possibly unnecessary
ambiguity. Remarkably, the average processing
time is lower, even when the sentence lengths and

4It should be noted that little work has gone in to provid-
ing unknown word handling mechanisms, and that is why we
didn’t include it in our results. However, in a CoNLL-2009
shared task paper (Zhang et al., 2009), a coverage of 28.6%
was reported when rudimentary methods were used.

ambiguity rates are higher. We attribute this to
the smaller feature structure geometry that is in-
troduced by the core grammar (compared to the
GG). Using unknown word handling immediately
improved the coverage, by a large margin. Larger
ambiguity rates were recorded, and the number of
parser errors slightly increased.

Because coverage does not imply quality, we
wanted to look at the results in a qualitative fash-
ion. We took a sample of 200 sentences from
both the training and the test set, where the ones
from the training set did not overlap with the set
used to train the MaxEnt model, so that both set-
tings were equally influenced by the rudimentary
MaxEnt model. We evaluated for how many sen-
tences the exactly correct parse tree could be found
among the top-1000 parses (see table 2). The dif-
ference between the performance on the training
and test set give an idea of how well the gram-
mar performs on unknown data: if the difference
is small, the grammar extends well to unseen data.
Compared to evaluating on lexical coverage, we
believe this is a more empirical estimation of how
close the acquisition process is to convergence.

Based on the kind of parse trees we observed,
the impression was that on both sets, performance
was reduced due to the limited predictive power
of the disambiguation model. There were quite
a few sentences for which good parses could be
expected, because all lexical entries were present.
This experiment also showed that there were sys-
tematic ambiguities that were introduced by in-
consistent annotation in the Tiger treebank. For in-
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stance, the word ‘ein’ was learnt as both a number
(the English ‘one’) and as an article (‘a’), leading
to spurious ambiguities for each noun phrase con-
taining the word ‘ein’, or one of its morphological
variants. These two factors reinforced each other:
if there is spurious ambiguity, it is even harder for
a sparsely trained disambiguation model to pull
the correct parse inside the top-1000.

The difference between the two ‘correct’ num-
bers in table 2 is rather large, meaning that the
’real’ coverage might seem disappointingly low.
Not unexpectedly, we found that the generic lex-
ical types for verbs (transitive verb, third person
singular) and nouns (any gender, no appositions
allowed) was not always correct, harming the re-
sults considerably.

A quantitative comparison between deep gram-
mars is always hard. Between DELPH-IN gram-
mars, coverage has been the main method of eval-
uation. However, this score does not reward rich-
ness of the semantic output. Recent evidence from
the ERG (Ytrestøl et al., 2009) suggests that the
ERG reaches a top-500 coverage of around 70%
on an unseen domain, a result that this experiment
did not approximate. The goal of GG is not com-
putational, but it serves as a testing ground for lin-
guistic hypotheses. Therefore, the developers have
never aimed at high coverage figures, and crafted
the GG to give more detailed analyses and to be
suited for both parsing and generation. We are
happy to observe that the coverage figures in this
study are higher than GG’s (Zhang et al., 2009),
but we realise the limited value of this evaluation
method. Future studies will certainly include a
more granular evaluation of the grammar’s perfor-
mance.

5 Conclusion and discussion

We showed how a precise, wide-coverage HPSG
grammar for German can be created successfully,
by constructing a core grammar by hand, and ap-
pending it with linguistic information from the
Tiger treebank. Although this extracted gram-
mar suffers considerably more from overgenera-
tion than the hand-written GG, we argue that our
conservative derivation procedure delivers a more
detailed, compact and correct compared to pre-
vious deep grammar extraction efforts. The use
of the core lexicon allows us to have more lin-
guistically motivated analyses of German than ap-
proaches where the core lexicon only comprises

the textbook principles/operators. We compared
our lexicon extraction results to those from (Hock-
enmaier, 2006). Also, preliminary parsing exper-
iments are reported, in which we show that this
grammar produces reasonable coverage on unseen
text.

Although we feel confident about the successful
acquisition of the grammar, there still remain some
limiting factors in the performance of the grammar
when actually parsing. Compared to coverage fig-
ures of around 80%, reported by (Riezler et al.,
2001), the proportion of parse forests containing
the correct parse in this study is rather low. The
first limit is the constructional coverage, mean-
ing that the core grammar is not able to construct
the correct analysis, even though all lexical en-
tries have been derived correctly before. The most
frequent phenomena that are not captured yet are
PH/RE constructions and extraposed clauses, and
we plan to do an efficient implementation (Crys-
mann, 2005) of these in a next version of the gram-
mar. Second, as shown in figure 3, data scarcity in
the learning of the surface forms of lemmas neg-
atively influences the parser’s performance on un-
seen text.

In this paper, we focused mostly on the cor-
rectness of the derivation procedure. We would
like to address the real performance of the gram-
mar/parser combination in future work, which can
only be done when parses are evaluated according
to a more granular method than we have done in
this study. Furthermore, we ran into the issue that
there is no straightforward way to train larger sta-
tistical models automatically, which is due to the
fact that our approach does not convert the source
treebank to the target formalism’s format (in our
case HPSG), but instead reads off lexical types
and lexical entries directly. We plan to investigate
possibilities to have the annotation be guided auto-
matically by the Tiger treebank, so that the disam-
biguation model can be trained on a much larger
amount of training data.
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Abstract

This paper presents an argument against
modularizing linguistic information in nat-
ural language generation systems. We ar-
gue that complex linguistic constructions
require grammatical information to be lo-
cated in the same module, in order to
avoid over-complicating the system archi-
tecture. We demonstrate this point by
showing how parenthetical constructions
— which have only been generated in pre-
vious systems using an aggregation or re-
vision module — can be generated by a
surface realizer when using an integrated
grammar.

1 Introduction

The ultimate aim of research on natural language
generation is to develop large-scale, domain inde-
pendent NLG systems, which are able to generate
high quality, fluent and well-formatted texts. Ide-
ally the produced texts will be as long as needed
to convey the information given in the input and
should be presented in a style that is appropriate
for the purposes of the user. Current NLG systems
typically produce paragraph-length text tailored to
a specific domain and the grammars in these sys-
tems contain only a limited number of grammati-
cal constructions, typically collected during a cor-
pus study of example documents. Often the gram-
mar is implemented using schemas or “canned”
expressions, and individual grammatical levels are
distributed in independent modules.

Organizing the grammar this way severely lim-
its the flexibility of NLG systems. It has long been
recognized in the literature that text fluency can be
improved by modeling interactions between gram-
mar modules. The most commonly mentioned
interactions are those among discourse/rhetorical
relations and syntax (Scott and Souza, 1990;

Hovy, 1993; Callaway, 2003), rhetorical rela-
tions, syntax and referring expressions (Kibble
and Power, 2004); and layout and referring ex-
pressions (N. Bouayad-Agha, 2001). It is clear
that in order to generate high quality, coherent
discourse, a generator needs access to a gram-
mar which is able to model the interdependent,
context-sensitive behaviour of these separate lin-
guistic phenomena.

In this paper we draw a parallel between gram-
mar design and the design of natural language gen-
eration systems. We argue that in order to gener-
ate complex linguistic constructions, current NLG
systems tend to have overly complicated architec-
tures. To illustrate this point we show how a sur-
face realizer can take on tasks from other com-
ponents when linguistic information from differ-
ent grammar modules (and hence, system mod-
ules) is integrated. This simplifies system archi-
tecture by reducing the need for interaction be-
tween modules and enables the generator to pro-
duce more complex and coherent text. We illus-
trate this point by first showing constraints that
parenthetical constructions impose on pronomi-
nalization. Then we present a grammar which in-
tegrates a representation for referring expressions
into a syntax/discourse grammar. Finally we show
that using this grammar, we can generate complex,
coherent paragraphs which contain parenthetical
constructions using only a surface realizer.

2 The problem of generating
parenthetical constructions

Parentheticals are constructions that provide less
important or background information in texts and
they are a prime example of interactions between
referring expressions, syntax, layout and discourse
structure. Parentheticals help readers distinguish
between more and less important propositions and
therefore significantly increase the fluency and
readability of the generated text. Despite this ma-
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jor effect on the quality of the generated text, cur-
rent natural language generation systems still do
not have a principled way of producing paren-
theticals. In this paper we focus on parenthetical
constructions which take the form of a subordi-
nate clause introduced by a discourse connective.
Some examples of this type of parentheticals in the
Wall Street Journal are illustrated (1):

(1) a The irony is that the attack commercial,
after getting a boost in last year’s
presidential campaign, has come of age
in an off-off election year with only a
few contests scattered across the
country.

b the 1989 fall total of 80, while well
below 1988 activity, shows a steady
ratcheting up in citizen referenda and
initiatives

c pollination, while easy in corn because
the carrier is wind, is more complex
and involves insects as carriers in crops
such as cotton

The examples in (2) illustrate the difficulties in
generating parenthetical constructions by show-
ing some possible but incoherent realizations of
the same message. In particular, they illustrate
the importance of appropriate punctuation marks
(2a), syntactic requirements of discourse connec-
tives (2b), the limit on embedding (2c), and the
importance of ordering syntactic arguments (the-
matic structure/information structure) (2d).

(2) a # The FDA though it bans Elixir since it
contains Gestodene approves Elixir
Plus.

b # The FDA – but it bans Elixir since it
contains Gestodene – approves Elixir
Plus.

c # The FDA though since Elixir contains
Gestodene , it bans Elixir approves
Elixir Plus.

d # The FDA, since Gestodene is an
ingredient of Elixir, bans Elixir. But it
approves Elixir Plus.

Correct realizations of the same message would
include:

(3) a The FDA — though it bans Elixir since
it contains Gestodene — approves
Elixir Plus .

b The FDA bans Elixir because it
contains Gestodene. However, Elixir
Plus is approved by the FDA

c The FDA approves Elixir Plus although
Elixir — since it contains Gestodene —
is banned by the FDA.

Generation systems that produce output similar
to the examples in (3) have three kinds of strate-
gies: either a text planning module chooses a dis-
course connective and decides the position and
ordering of clauses (Hovy, 1993) or aggregation
is considered to be one of the tasks of the sen-
tence planning module (Shaw, 2002); or a revi-
sion module performs aggregation opportunisti-
cally (Robin, 1994; Callaway and Lester, 1997).
However, none of these systems handle paren-
thetical constructions in a principled way. Sys-
tems where aggregation is part of the text planning
module only produce complex sentences made
up of clauses joined by discourse connectives –
sentence-medial subordinate clauses are not gen-
erated at all. In revision-based systems, the output
often needs to be corrected after aggregation. For
example, Robin’s system includes various trans-
formations to correct redundancies, ambiguities or
invalid lexical collocations introduced by the revi-
sion module. In Shaw’s system, the referring ex-
pression generation module is run twice, once be-
fore and once after aggregation. In general, the
ordering of aggregation rules and the interactions
between them pose further problems where ag-
gregation is separated into an independent mod-
ule.We propose a different approach to modeling
interactions between linguistic information in sep-
arate grammar modules. We argue that constraints
that are at the interface of modules (syntactic con-
straints on referring expressions, discourse-level
constraints on syntax, constraints imposed by lay-
out on discourse, etc.) should be stored in an in-
tegrated grammar, and only straightforward deci-
sions — which do not require information from a
separate grammatical level — should be separated
out into individual modules.

As an example, we show a grammar which is
capable of generating parenthetical constructions
in a principled way. The grammar includes

- a representation for discourse connectives
and discourse-level constraints they impose
on syntax;

- referring expressions and syntactic con-
straints on them;
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- elements of layout (punctuation marks for
main clauses and parentheticals).

We show that by incorporating the above kinds
of linguistic information into the grammar of a
surface realizer we can improve the flexibility of
the system (i.e., generate more paraphrases for the
same input) and improve the quality of the gener-
ated text without adding more modules to the sys-
tem.

2.1 Syntactic constraints on
pronominalization

To design a grammar for parenthetical construc-
tions, we have carried out a corpus study on em-
bedded rhetorical relations in the RST treebank
(Banik and Lee, 2008). The corpus study has
shown that the most numerous class of embed-
ded subordinate clauses that occur in sentence-
medial position contain a subject pronoun (as in
4a). This embedded subject pronoun in all cases
referred back to the subject of the matrix clause,
which always immediately preceded the subordi-
nate clause. The pronoun can be either explicit (as
in 4a) or implicit (as in the examples in 1). Of the
119 sentence-medial subordinate clauses that we
looked at in the study, 35 were of this type (what
we call pseudo-relatives).1 This suggests that in
sentence-medial subordinate clauses (or sentence-
final ones immediately following the main clause
object) the type of a referring expression is solely
determined by syntax, much like a WH-pronoun
in relative clauses.

(4) a Elixir, since it contains Gestodene, is
banned by the FDA.

b # Elixir, since Elixir contains
Gestodene, is banned by the FDA.

c # It, since Elixir contains Gestodene, is
banned by the FDA.

d # The FDA, since it contains
Gestodene, banned Elixir.

The constraints on the form of referring expres-
sions selected for the matrix clause and subordi-
nate clause subjects in these cases can be stated as
follows:

1Of the rest, 30 were ‘free’ subordinate clauses (subor-
dinate clauses that are equally felicitous in sentence-initial
or sentence final positions, typically they do not contain any
pronouns). The rest of the cases were either time adverbials
(20) or scopal elements (22).

- the subject of the subordinate clause has to be
realized as a pronoun. (c.f. 4b)

- the subject of the main clause cannot be a
pronoun (c.f. 4c)

- the subject pronoun in the subordinate clause
will be resolved as referring to an entity men-
tioned in the matrix clause; this entity has to
precede the subordinate clause (c.f. 4d )

In addition to modeling the above constraints, in
order to generate parentheticals a generation sys-
tem also has to

- insert the appropriate discourse connective
for the subordinate clause (c.f.2b) and

- insert appropriate punctuation marks on ei-
ther side of the subordinate clause to avoid
potential garden path effects.

3 An integrated discourse-syntax
grammar

In order to generate coherent discourse, a gener-
ation system needs access to a grammar that is
capable of representing multisentential text. In
modular systems this is typically achieved by two
modules: a text planning module which constructs
a text plan and a surface realizer that converts
the text plan into sentences. However, text plan-
ning and linguistic realization are not two inde-
pendent processes and many linguistic decisions
are in fact made by the text planner. The inter-
actions between text planning and linguistic re-
alization in modular systems have been handled
in several ways, including backtracking (Appelt,
1985), interleaving the two components (McDon-
ald, 1983) and restrictive planning (Hovy, 1988).
These approaches however make the system in-
flexible because all possible interactions between
modules have to be anticipated by the system de-
signer.

Another, more recent approach to tackle this
problem is to use lexicalization not only for sen-
tences but also for texts. The theoretical back-
ground for lexicalization on the discourse level
has been laid down for Tree Adjoining Grammar
(Joshi and Schabes, 1997) by several researchers,
including Webber (2004), and Danlos (2000). In
particular, Danlos (2000) shows that extending
lexicalization to the discourse level makes it possi-
ble to completely integrate text planning and sur-
face realization.

48



We have designed a Tree Adjoining Grammar
for parenthetical constructions following this lat-
ter approach. Elementary trees in the grammar
are associated with a flat semantic representation.
The trees integrate syntax and discourse represen-
tations in the sense that each sentence-level ele-
mentary tree includes one or more discourse-level
nodes. The elementary trees in Fig. 1 illustrate
what we mean by this: every lexical item that
would normally project a sentence in a syntactic
grammar (i.e., an S-rooted tree) here projects a dis-
course clause (i.e., a Dc rooted tree). Every pred-
icate that projects a discourse clause is assigned
two kinds of elementary trees: a discourse ini-
tial tree (e.g., Fig. 1a) and a discourse continu-
ing tree (e.g., Fig. 1b), which takes the preceding
discourse clause as an argument.

h1:white-cream(e)

Dc

���
���

S

��� ���

NP↓
[idx:e]

VP
�� ��

V

is

NP

cream
[idx:e]

Punct

.

(a) discourse initial

h2:contain(e,a)

Dc

��� ���

Dc ↓ Dc

��� ���

S

��� ���

NP↓
[idx:e]

VP
�� ��

V

contains

NP↓
[idx:a]

Punct

.

(b) discourse continuing

Figure 1: Elementary syntax/discourse trees

The combination of these two trees corresponds
to the empty connective (⊕ in Danlos (2000)).
Other types of discourse connectives are imple-
mented in the grammar the usual way (see e.g.
Danlos (2000)).

4 Referring expressions

One of the challenges of generating paraphrases
from a semantic representation is that in some ver-
sions there will be a mismatch between the num-
ber of noun phrases needed to make the output
syntactically well-formed and the number of se-
mantic arguments in the input which can poten-
tially become a noun phrase.

This happens whenever a discourse entity is the
argument of more than one semantic predicate.
For example, (5) shows possible realizations of the
following input where (5a) contains three syntac-
tic slots for “Elixir”, (5b,c) contain two slots, and

(5d) only one:

h0:white-cream(e)
h1:contains(e,g)
h2:elixir(e)
h3:gestodene(g)
h4:ban(f,e)
h5:fda(f)

(5) a Elixir is a white cream. Elixir contains
gestodene. Elixir is banned by the FDA.

b This white cream, Elixir, contains
gestodene. It is banned by the FDA.

c Elixir is a white cream, which contains
gestodene. It is banned by the FDA.

d Elixir, a white cream banned by the
FDA, contains gestodene.

The task of a generation system is to decide
what predicate-argument structure to choose and
to decide how the individual noun phrases should
be represented. In most systems creating the syn-
tactic “slots” is the task of a text planning or sen-
tence planning module, and filling them in with the
right noun phrases is the task of a referring expres-
sion generation module, i.e., the referring expres-
sion module decides whether an NP slot should be
realized as a name, a pronoun or a description.

This division of labour makes it difficult to rep-
resent syntactic constraints on pronominalization
exhibited by the examples in the previous section,
where pronouns are either prohibited or obligatory
in specific syntactic contexts.

To model these constraints we include a repre-
sentation for underspecified referring expressions
in the grammar by replacing NP substitution nodes
with a referring expression leaf node as illustrated
in Fig.2. This allows syntactic constraints to be
‘posted’ on referring expressions in the appropri-
ate contexts while completely specifying the form
of the underspecified slots still remains the task of
a referring expression module. In other words, we
factor out pronominalization decisions dictated by
syntax from pronominalization decisions dictated
by discourse level constraints.

Treating pronouns in subordinate clauses dif-
ferently from pronouns in main clauses has inde-
pendent justification from psycholinguistics and
theoretical linguistics. For example, Miltsakaki
(2003) has carried out psycholinguistic experi-
ments on complex sentences containing relative
clauses. The experiments show that pronouns in
embedded clauses tend to refer back to an entity
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h2:contain(e,a)

Dc

��� ���

Dc ↓ Dc

��� ���

S

��� ���

RX
[idx:e]

VP
�� ��

V

banned by

RX
[idx:a]

Punct

.

Figure 2: Elementary trees with referring expressions

in the matrix clause, whereas referring expressions
in main clauses tend to find their antecedent in the
previous main clause. This suggests that pronom-
inalization should be treated differently in subor-
dinate clauses than in main clauses. Research in
theoretical linguistics underlines this claim, where
Kehler (2002) has shown that apparent discrepan-
cies between different accounts of pronominaliza-
tion can be reconciled if each method is applied in
a different discourse context.

To sum up, in this integrated approach part of
the job of the referring expression generation mod-
ule is taken over by the grammar, namely

- pronominalization of discourse entities in
subordinate clauses and

- decisions about when not to realize under-
specified referring expressions as pronouns.

5 Representing parenthetical
constructions

Integrating referring expressions into the grammar
this way makes it possible to state syntactic con-
straints on pronominalization.

5.1 Pronoun prohibited

(6) a Elixir, an illegal drug, is banned by the
FDA.

b # It, an illegal drug, is banned by the
FDA.

The constraint that parenthetical constructions
such as appositives, relative clauses or parenthet-
ical subordinate clauses cannot follow a pronoun
is illustrated by the contrast in (6). Using the el-
ementary trees described in the previous section

this constraint can now be stated by adding a fea-
ture ([pron:no]) to the foot node of auxiliary
trees, as illustrated in Fig. 3. When the aux-
iliary tree is adjoined onto an NP, the feature is
percolated to the underspecified referring expres-
sion node, which will block the referring expres-
sion module from realizing this noun phrase as a
pronoun.

5.2 Pronoun obligatory

(7) a Elixir, since it contains Gestodene, is
banned by the FDA.

b # Elixir, since Elixir contains
Gestodene, is banned by the FDA.

Another case where syntax imposes constraints
on pronominalization is contexts where pronouns
are not allowed, as illustrated by the example in
(7). The discourse connective ‘since‘ is assigned
an NP auxiliary tree in this context, which takes
the embedded clause as an argument. The features
on the auxiliary tree state that the subject of this
embedded clause should be expressed by a pro-
noun and that it should refer to the same discourse
entity as the head noun that the auxiliary tree ad-
joins to. When the discourse connective is com-
bined with the embedded clause, these features are
percolated to the referring expression in subject
position, requiring it to be realized by a pronoun.
Figure 4 illustrates the elementary trees and the
derived tree for the embedded clause in (7).

6 Comparison

As an experiment, we have implemented a gram-
mar fragment in the GenI surface realizer (Kow,
2007) and regenerated an example from the
ICONOCLAST generator (Power et al., 2003).
The example we used is represented by the fol-
lowing input semantics:

h1: elixir(e)
h2: fda(f)
h3: elixir plus(p)
h4: gestodene(g)
h5: contain(e g)
h6: ban(f e)
h7: approve(f p)
h8: concession(h6 h7)
h9: cause(h5 h6)
h10: contain(p o)
h11: oestradiol(o)
h12: cause(h10 h7)
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(a) Elementary trees for (6)
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(b) Derived tree for (6)

Figure 3: Pronouns not allowed before an appositive
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(b) Derived tree for (7)

Figure 4: Obligatory pronouns in parenthetical subordinate clauses

ICONOCLAST is a constraint-based system
which integrates text planning, document plan-
ning and pronominalization to generate all possi-
ble paraphrases for a given input. It uses a version
of Centering Theory (Grosz et al., 1995) adapted
to natural language generation to decide when to
pronominalize noun phrases in the generated text.
ICONOCLAST has an overgenerate and test ap-
proach, where all possible paraphrases are gener-
ated and the solutions are ranked according to a set
of soft constraints. The system generated 172 so-
lutions for the above input, of which (8) illustrates
the top three:

(8) a Since Elixir contains gestodene it is
banned by the FDA. However, the FDA
approves Elixir Plus since Elixir Plus
contains oestradiol.

b Elixir contains gestodene so it is
banned by the FDA. However, the FDA
approves ElixirPlus since ElixirPlus

contains oestradiol.

c Elixir is banned by the FDA since it
contains gestodene. However,
ElixirPlus is approved by the FDA
since it contains oestradiol.

We have regenerated the same text, using only
a surface realizer and the grammar described in
the previous sections, without a referring expres-
sion generation module. A post-processing script
transforms RX nodes into a pronoun when they
have the relevant feature ([pron:yes]) and into
a name when the [pron] feature is missing or its
value is no. The surface realizer produced 208 so-
lutions for the same input, of which 96 contained
parentheticals. Some of the output is illustrated in
(9). Since sentence final parenthetical construc-
tions are impossible to distinguish from sentence-
final subordinate clauses in many cases, there is an
overlap between the solutions generated by ICON-
OCLAST and the 96 solutions generated by our
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(9) a The FDA bans Elixir since Elixir contains gestodene. However, Elixir Plus (since it contains
oestradiol) is approved by the FDA.

b Since Elixir Plus contains oestradiol, although the FDA bans Elixir (since it contains
gestodene), Elixir Plus is approved by the FDA.

c Elixir contains gestodene. Consequently, Elixir is banned by the FDA. However, Elixir Plus
(since it contains oestradiol) is approved by the FDA.

d Elixir Plus contains oestradiol. Consequently, although the FDA bans Elixir (since it contains
gestodene), the FDA approves Elixir Plus.

e Elixir Plus (since it contains oestradiol) is approved by the FDA (although it bans Elixir since
it contains gestodene).

f The FDA bans Elixir (since it contains gestodene). However, Elixir Plus is approved by the
FDA since Elixir Plus contains oestradiol.

grammar which contain parentheticals. Also, de-
spite the fact that the two systems use the same
discourse connectives and a very similar grammar,
there are slight differences in the constructions
produced. For example, ICONOCLAST allows
subordinating conjunctions to “dominate” coordi-
nating conjunctions, producing solutions like the
one in (10), although these solutions are assigned
at least 4 defects in all cases. These constructions
are not allowed in our grammar.

(10) Although Elixir contains gestodene so it is
banned by the FDA ElixirPlus contains
oestradiol so it is approved by the FDA.

Though comparing the generated solutions is
not a straightforward task because of these subtle
differences and the sheer number of the solutions
produced, the two systems do generate a number
of very similar outputs, including the ones shown
in (8). However, a significant difference is that our
system generates coherent texts which include par-
enthetical constructions, and which are not gener-
ated by ICONOCLAST at all.

7 Related work

Our grammar design was inspired by three
discourse-level extensions of Lexicalized Tree Ad-
joining Grammar. A common idea behind all these
approaches is to build an integrated text under-
standing or generation system in which the same
mechanisms are used for the sentence and dis-
course levels.

DLTAG (Webber, 2004) is an extension of
LTAG in which discourse syntax is projected by
different types of discourse connectives. In this
approach discourse-level syntax is considered to

be a separate layer on top of sentence-level syntax
and there are two kinds of discourse connectives:
anaphoric and structural (Webber et al., 2003).
This analysis is not suitable for natural language
generation systems which need to have an explicit
representation for the arguments of discourse con-
nectives.

G-TAG (Danlos, 2000) is another discourse-
level extension of TAG where underspecified ‘g-
derivation trees’ are created for a conceptual input
and grouped into lexical databases. A g-derivation
tree specifies a set of surface variants, one of
which is produced by linearization of the g-derived
tree. The other surface variants are created by a
post-processing module. While this methodology
efficiently reduces the search space of solutions by
grouping them together, it assumes that all variants
of the same sentence can be generated in the same
discourse context.

Most recently, Danlos (2008) introduces D-
STAG, a discourse level synchronous TAG cou-
pled with Segmented Discourse Representation
Theory (Asher, 1993). In this framework the sen-
tential grammar (S-TAG) and the discourse gram-
mar (D-STAG) are not integrated, therefore dis-
courses where arguments of discourse relations
come from discontinuous text spans (as in rela-
tive clauses or other types of parentheticals) are
not handled by the theory.

8 Conclusions

We have presented an argument against modular-
izing linguistic information in natural language
generation systems. We have argued that com-
plex linguistic constructions which require inter-
actions between several system components are
best represented in natural language generation
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systems using an integrated grammar. As an ex-
ample, we have presented the problem of gener-
ating parenthetical constructions. Current natural
language generation systems either do not gener-
ate these constructions at all, or if they do, they
do not have a principled approach to the prob-
lem and generate parentheticals by adding more
modules to a pipeline. We have shown that par-
entheticals can be generated in a principled way
using a surface realizer, when it is equipped with
an integrated grammar which incorporates infor-
mation about syntax, discourse and referring ex-
pressions. The solutions produced by our surface
realizer demonstrate that this approach enhances
the fluency of the generated text and the flexibility
of generation systems, without adding extra com-
ponents or changing the system’s architecture.
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Using Arti�
ially Generated Datato Evaluate Statisti
al Ma
hine TranslationManny Rayner, Paula Estrella, Pierrette BouillonUniversity of Geneva, TIM/ISSCO40 bvd du Pont-d'Arve, CH-1211 Geneva 4, SwitzerlandfEmmanuel.Rayner,Paula.Estrella,Pierrette.Bouillong�unige.
hBeth Ann Ho
keyMail Stop 19-26, UCSC UARCNASA Ames Resear
h Center, Moffett Field, CA 94035�1000baho
key�u
s
.eduYukie NakaoLINA, Nantes University, 2, rue de la Houssini�ere, BP 92208 44322 Nantes Cedex 03yukie.nakao�univ-nantes.frAbstra
tAlthough Statisti
al Ma
hine Translation(SMT) is now the dominant paradigmwithin Ma
hine Translation, we argue thatit is far from 
lear that it 
an outperformRule-Based Ma
hine Translation (RBMT)on small- to medium-vo
abulary appli
a-tions where high pre
ision is more impor-tant than re
all. A parti
ularly importantpra
ti
al example is medi
al spee
h trans-lation. We report the results of exper-iments where we 
on�gured the variousgrammars and rule-sets in an Open Sour
emedium-vo
abulary multi-lingual medi
alspee
h translation system to generate largealigned bilingual 
orpora for English !Fren
h and English ! Japanese, whi
hwere then used to train SMTmodels basedon the 
ommon 
ombination of Giza++,Moses and SRILM. The resulting SMTswere unable fully to reprodu
e the per-forman
e of the RBMT, with performan
etopping out, even for English ! Fren
h,with less than 70% of the SMT translationsof previously unseen senten
es agreeingwith RBMT translations. When the out-puts of the two systems differed, humanjudges reported the SMT result as fre-quently being worse than the RBMT re-sult, and hardly ever better; moreover, theadded robustness of the SMT only yieldeda small improvement in re
all, with a largepenalty in pre
ision.

1 Introdu
tionWhen Statisti
al Ma
hine Translation (SMT) was�rst introdu
ed in the early 90s, it en
ountered ahostile re
eption, and many people in the resear
h
ommunity were unwilling to believe it 
ould everbe a serious 
ompetitor to symboli
 approa
hes(
f. for example (Arnold et al., 1994)). The pendu-lum has now swung all the way to the other end ofthe s
ale; right now, the prevailing wisdom withinthe resear
h 
ommunity is that SMT is the onlytruly viable ar
hite
ture, and that rule-based ma-
hine translation (RBMT) is ultimately doomed tofailure. In this paper, one of our initial 
on
ernswill be to argue for a 
ompromise position. In ouropinion, the initial s
epti
ism about SMT was notgroundless; the arguments presented against it of-ten took the form of examples involving deep lin-guisti
 reasoning, whi
h, it was 
laimed, would behard to address using surfa
e methods. Proponentsof RBMT had, however, greatly underestimatedthe extent to whi
h SMT would be able to ta
klethe problem of robustness, where it appears to befar more powerful than RBMT. For most ma
hinetranslation appli
ations, robustness is the 
entralissue, so SMT's 
urrent preeminen
e is hardly sur-prising.Even for the large-vo
abulary tasks where SMTdoes best, the situation is by no means as 
lear asone might imagine: a

ording to (Wilks, 2007),purely statisti
al systems are still unable to out-perform SYSTRAN. In this paper, we will how-ever be more 
on
erned with limited-domain MTtasks, where robustness is not the key requirement,and a

ura
y is paramount. An immediate exam-
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ple is medi
al spee
h translation, whi
h is estab-lishing itself as an an appli
ation area of some sig-ni�
an
e (Bouillon et al., 2006; Bouillon et al.,2008a). Translation in medi
al appli
ations needsto be extremely a

urate, sin
e mistranslations
an have serious or even fatal 
onsequen
es. Atthe panel dis
ussion at the 2008 COLING work-shop on safety-
riti
al spee
h translation (Rayneret al., 2008), the 
onsensus opinion, based on in-put from pra
tising physi
ians, was that an appro-priate evaluation metri
 for medi
al appli
ationswould be heavily slanted towards a

ura
y, as op-posed to robustness. If the metri
 is normalised soas to award 0 points for no translation, and 1 pointfor a 
orre
t translation, the estimate was that asuitable s
ore for an in
orre
t translation wouldbe something between �25 and �100 points. Withthese requirements, it seems unlikely that a robust,broad-
overage ar
hite
ture has mu
h 
han
e ofsu

ess. The obvious strategy is to build a limited-domain 
ontrolled-language system, and tune it tothe point where a

ura
y rea
hes the desired level.For systems of this kind, it is at least 
on
eiv-able that RBMT may be able to outperform SMT.The next question is how to investigate the issuesin a methodologi
ally even-handed way. A fewstudies, notably (Seneff et al., 2006), suggest thatrule-based translation may in fa
t be preferable inthese 
ases. (Another related experiment is de-s
ribed in (Dugast et al., 2008), though this was
arried out in a large-vo
abulary system). Thesestudies, however, have not been widely 
ited. Onepossible explanation is suspi
ion about method-ologi
al issues. Seneff and her 
olleagues trainedtheir SMT system on 20 000 senten
e pairs, asmall number by the standards of SMT. It is a pri-ori not implausible that more training data wouldhave enabled them to 
reate an SMT system thatwas as good as, or better than, the rule-based sys-tem.In this paper, our primary goal is to take thiskind of obje
tion seriously, and develop a method-ology designed to enable a tight 
omparison be-tween rule-based and statisti
al ar
hite
tures. Inparti
ular, we wish to examine the widely be-lieved 
laim that SMT is now inherently betterthan RBMT. In order to do this, we start with alimited-domain RBMT system; we use it to auto-mati
ally generate a large 
orpus of aligned pairs,whi
h is used to train a 
orresponding SMT sys-tem. We then 
ompare the performan
e of the two

systems.Our argument will be that this situation essen-tially represents an upper bound for what is possi-ble using the SMT approa
h in a limited domain.It has been widely remarked that quality, as wellas quantity, of training data is important for goodSMT; in many proje
ts, signi�
ant effort is ex-pended to 
lean the original training data. Here,sin
e the data is automati
ally generated by a rule-based system, we 
an be sure that it is already
ompletely 
lean (in the sense of being internally
onsistent), and we 
an generate as large a quan-tity of it as we require. The appli
ation, more-over, uses only a smallish vo
abulary and a fairly
onstrained syntax. If the derived SMT system isunable to mat
h the original RBMT system's per-forman
e, it seems reasonable to 
laim that thisshows that there are types of appli
ations whereRBMT ar
hite
tures are superior.The experiments des
ribed have been 
arriedout using MedSLT, an Open Sour
e interlingua-based limited-domain medi
al spee
h translationsystem. The rest of the paper is organised as fol-lows. Se
tion 2 provides ba
kground on the Med-SLT system. Se
tion 3 des
ribes the experimen-tal framework, and Se
tion 4 the results obtained.Se
tion 5 
on
ludes.2 The MedSLT SystemMedSLT (Bouillon et al., 2005; Bouillon et al.,2008b) is a medium-vo
abulary interlingua-basedOpen Sour
e spee
h translation system for do
tor-patient medi
al examination questions, whi
hprovides any-language-to-any-language transla-tion 
apabilities for all languages in the set En-glish, Fren
h, Japanese, Arabi
, Catalan. Bothspee
h re
ognition and translation are rule-based.Spee
h re
ognition runs on the Nuan
e 8.5 re
og-nition platform, with grammar-based languagemodels built using the Open Sour
e Regulus 
om-piler. As des
ribed in (Rayner et al., 2006),ea
h domain-spe
i�
 language model is extra
tedfrom a general resour
e grammar using 
orpus-based methods driven by a seed 
orpus of domain-spe
i�
 examples. The seed 
orpus, whi
h typi-
ally 
ontains between 500 and 1500 utteran
es,is then used a se
ond time to add probabilisti
weights to the grammar rules; this substantiallyimproves re
ognition performan
e (Rayner et al.,2006, x11.5). Vo
abulary sizes and performan
emeasures for spee
h re
ognition in the three lan-
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guages where serious evaluations have been 
ar-ried out are shown in Figure 1.Language Vo
ab WER SemEREnglish 447 6% 11%Fren
h 1025 8% 10%Japanese 422 3% 4%Table 1: Re
ognition performan
e for English,Fren
h and Japanese MedSLT re
ognisers. �Vo-
ab� = number of surfa
e words in sour
e lan-guage re
ogniser vo
abulary; �WER� = Word Er-ror Rate for sour
e language re
ogniser, on in-
overage material; �SemER� = semanti
 error rate(proportion of utteran
es failing to produ
e 
orre
tinterlingua) for sour
e language re
ogniser, on in-
overage material.At run-time, the re
ogniser produ
es a sour
e-langage semanti
 representation. This is �rsttranslated by one set of rules into an interlingualform, and then by a se
ond set into a target lan-guage representation. A target-language Regu-lus grammar, 
ompiled into generation form, turnsthis into one or more possible surfa
e strings, af-ter whi
h a set of generation preferen
es pi
ksone out. Finally, the sele
ted string is realised inspoken form. Robustness issues are addressed bymeans of a ba
k-up statisti
al re
ogniser, whi
hdrives a robust embedded help system. The pur-pose of the help system (Chatzi
hrisa�s et al.,2006) is to guide the user towards supported 
ov-erage; it performs approximate mat
hing of out-put from the statisti
al re
ogniser again a libraryof senten
es whi
h have been marked as 
orre
tlypro
essed during system development, and thenpresents the 
losest mat
hes to the user.Examples of typi
al English domain senten
esand their translations into Fren
h and Japanese areshown in Figure 2.3 Experimental frameworkIn the literature on language modelling, there isa known te
hnique for bootstrapping a statisti-
al language model (SLM) from a grammar-basedlanguage model (GLM). The grammar whi
hforms the basis of the GLM is sampled randomlyin order to 
reate an arbitrarily large 
orpus of ex-amples; these examples are then used as a train-ing 
orpus to build the SLM (Jurafsky et al., 1995;Jonson, 2005). We adapt this pro
ess in a straight-forward way to 
onstru
t an SMT for a given

language pair, using the sour
e language gram-mar, the sour
e-to-interlingua translation rules, theinterlingua-to-target-language rules, and the tar-get language generation grammar. We start in thesame way, using the sour
e language grammar tobuild a randomly generated sour
e language 
or-pus; as shown in (Ho
key et al., 2008), it is im-portant to have a probabilisti
 grammar. We thenuse the 
omposition of the other 
omponents toattempt to translate ea
h sour
e language senten
einto a target language equivalent, dis
arding theexamples for whi
h no translation is produ
ed.The result is an aligned bilingual 
orpus of ar-bitrary size, whi
h 
an be used to train an SMTmodel.We used this method to generate aligned 
or-pora for the two MedSLT language pairs English! Fren
h and English ! Japanese. For ea
h lan-guage pair, we �rst generated one million sour
e-language utteran
es; we next �ltered them to keeponly examples whi
h were full senten
es, as op-posed to ellipti
al phrases, and �nally used thetranslation rules and target-language generators toattempt to translate ea
h senten
e. This 
reatedapproximately 305K aligned senten
e-pairs forEnglish ! Fren
h (1901K words English, 1993Kwords Fren
h), and 311K aligned senten
e-pairsfor English ! Japanese (1941K words English,2214K words Japanese). We held out 2.5% ofea
h set as development data, and 2.5% as testdata. Using Giza++, Moses and SRILM (O
h andNey, 2000; Koehn et al., 2007; Stol
ke, 2002), wetrained SMT models from in
reasingly large sub-sets of the training portion, using the developmentportion in the usual way to optimize parameter val-ues. Finally, we used the resulting models to trans-late the test portion.Our primary goal was to measure the extent towhi
h the derived versions of the SMT were ableto approximate the original RBMT on data whi
hwas within the RBMT's 
overage. There is a sim-ple and natural way to perform this measurement:we apply the BLEU metri
 (Papineni et al., 2001),with the RBMT's translation taken as the refer-en
e. This means that perfe
t 
orresponden
e be-tween the two translations would yield a BLEUs
ore of 1.0.This raises an important point. The BLEUs
ores we are using here are non-standard; theymeasure the extent to whi
h the SMT approxi-mates the RBMT, rather than, as usual, measuring
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English Is the pain above your eye?Fren
h Avez-vous mal au dessus des yeux?Japanese Itami wa me no ue no atari desu ka?English Have you had the pain for more than a month?Fren
h Avez-vous mal depuis plus d'un mois?Japanese Ikkagetsu ijou itami wa tsuzuki mashita ka?English Is the pain asso
iated with nausea?Fren
h Avez-vous des nausées quand vous avez la douleur?Japanese Itamu to hakike wa okori masu ka?English Does bright light make the pain worse?Fren
h La douleur est-elle aggravée par une lumi�ere forte?Japanese Akarui hikari wo miru to zutsu wa hidoku nari masu ka?Table 2: Examples of English domain senten
es, and the system's translations into Fren
h and Japanese.the extent to whi
h it approximates human trans-lations. It is important to bring in human judge-ment, to evaluate the 
ases where the SMT andRBMT differ. If, in these 
ases, it transpired thathuman judges typi
ally thought that the SMT wasas good as the RBMT, then the differen
e wouldbe purely a
ademi
. We need to satisfy ourselvesthat human judges typi
ally as
ribe differen
es be-tween SMT and RBMT to short
omings in theSMT rather than in the RBMT.Con
retely, we 
olle
ted all the differenthSour
e, SMT-translation, RBMT-translationitriples produ
ed during the 
ourse of the ex-periments, and extra
ted those where the twotranslations were different. We randomly sele
teda set of examples for ea
h language pair, andasked human judges to 
lassify them into one ofthe following 
ategories:� RBMT better: The RBMT translation wasbetter, in terms of preserving meaning and/orbeing grammati
ally 
orre
t;� SMT better: The SMT translation was bet-ter, in terms of preserving meaning and/or be-ing grammati
ally 
orre
t;� Similar: Both translations were aboutequally good OR the sour
e senten
e wasmeaningless in the domain.In order to show that our metri
s are intuitivelymeaningful, it is suf�
ient to demonstrate that thefrequen
y of o

urren
e of RBMT better is bothlarge in 
omparison to that of SMT better, anda

ounts for a substantial proportion of the totalpopulation.

Finally, we 
onsider the question of whetherthe SMT, whi
h is 
apable of translating out-of-grammar senten
es, 
an add useful robustness tothe base system. We 
olle
ted, from the set used inthe experiments des
ribed in (Rayner et al., 2005),all the English senten
es whi
h failed to be trans-lated into Fren
h. We used the best version ofthe English ! Fren
h SMT to translate ea
h ofthese senten
es, and asked human judges to eval-uate the translations as being 
learly a

eptable,
learly una

eptable, or borderline.In the next se
tion, we present the results of thevarious experiments we have just des
ribed.4 ResultsWe begin with Figure 1, whi
h shows non-standard BLEU s
ores for versions of the English! Fren
h SMT system trained on quantities ofdata in
reasing from 14 287 to 285 740 pairs. As
an be seen, translation performan
e improves upto about 175 000 pairs. After this, it levels outat around BLEU = 0.90, well below that of theRBMT system with whi
h it is being 
ompared.A more dire
t way to report the result is simply to
ount the proportion of test senten
es that are notin the training data, whi
h are translated similarlyby the SMT and the RBMT. This �gure tops out ataround 68%.The results strongly suggest that the SMT isunable to repli
ate the RBMT's performan
e atall 
losely even in an easy language-pair, irre-spe
tive of the amount of training data available.Out of 
uriosity, and to reassure ourselves that theautomati
 generation pro
edure was doing some-thing useful, we also tried training the English !Fren
h SMT on pairs derived from the 669 ut-
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Figure 1: Non-standard BLEU s
ores againstnumber of pairs of training senten
es for English! Fren
h; training and test data both indepen-dently generated, hen
e overlapping.teran
e �seed 
orpus� used to generate the gram-mar (
f. Se
tion 2). This produ
ed utterly dis-mal performan
e, with BLEU = 0.52. The result ismore interesting than it may �rst appear, sin
e, inspee
h re
ognition, the differen
e in performan
ebetween the SLMs trained from seed 
orpora andlarge generated 
orpora is fairly small (Ho
key etal., 2008).It seemed possible that the improvement in per-forman
e with in
reased quantities of training datamight, in effe
t, only be due to the SMT fun
-tioning as a translation memory; sin
e trainingand test data are independently generated by thesame random pro
ess, they overlap, with the de-gree of overlap in
reasing as the training set getslarger. In order to investigate this hypothesis,we repeated the experiments with data whi
h hadbeen uniqued, so that the training and test setswere 
ompletely disjoint, and neither 
ontainedany dupli
ate senten
es1 . In fa
t, Figure 2 showthat the graph for uniqued English ! Fren
h dataare fairly similar to the one for the original non-uniqued data shown in Figures 1. The main differ-en
e is that the non-standard BLEU s
ore for the1Our opinion is that this is not a realisti
 way to evaluatethe performan
e of a small-vo
abulary system; for example,in MedSLT, one expe
ts that at least some training senten
es,e.g. �Where is the pain?�, will also o

ur frequently in testdata.

Figure 2: Non-standard BLEU s
ores againstnumber of pairs of training senten
es for English! Fren
h; training and test data both indepen-dently generated, then uniqued to remove dupli-
ates and overlapping items.uniqued data, unsurprisingly, tops out at a lowerlevel, re�e
ting the fa
t that a �translation mem-ory� effe
t does indeed o

ur to some extent.Results for English ! Japanese showed thesame trends as English ! Fren
h, but were morepronoun
ed. Table 3 
ompares the performan
eof the best versions of the SMTs for the twolanguage-pairs, using both plain and arti�
iallyuniqued data. We see that, with plain data, theEnglish ! Japanese SMT falls even further shortof repli
ating the performan
e of the RBMT thanwas the 
ase for English ! Fren
h; BLEU isonly 0.76. The differen
e between the plain anduniqued versions is also more extreme. BLEU(0.64) is 
onsiderably lower for the version trainedon uniqued data, suggesting that the SMT for thislanguage pair is �nding it harder to generalise,and is in effe
t 
loser to fun
tioning as a trans-lation memory. This is 
on�rmed by 
ountingthe senten
es in test data and not in training datawhi
h were translated similarly by the SMT andthe RBMT; we �nd that the �gure tops out at thevery low value of 26%.As noted in our dis
ussion of the experimentalframework, the non-standard BLEU s
ores onlyaddress the question of whether the performan
eof the SMT and RBMT systems is the same. It is
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Training data Test data BLEUEnglish ! Fren
hGenerated Generated 0.90Gen/uniqued Gen/uniqued 0.85English ! JapaneseGenerated Generated 0.76Gen/uniqued Gen/uniqued 0.64Table 3: Translation performan
e, in terms of non-standard BLEU metri
, for different 
on�gura-tions, training on all available data of the spe
-i�ed type. �Generated� = data randomly gener-ated; �Gen/uniqued� = data randomly generated,then uniqued so that dupli
ates are removed andtest and training pairs do not overlap.ne
essary to establish what the differen
es meanin terms of human judgements. We 
onsequentlyturn to evaluation of the pairs for whi
h the SMTand the RBMT systems produ
ed different trans-lation results.Table 4 shows the 
ategorisation, a

ording tothe 
riteria outlined at the end of Se
tion 3, for 500English ! Fren
h pairs randomly sele
ted fromthe set of examples where RBMT and SMT gavedifferent results; we asked three judges to evalu-ate them independently, and 
ombined their judg-ments by majority de
ision where appropriate. Weobserved a very heavy bias towards the RBMT,with unanimous agreement among the judges thatthe RBMT translation was better in 201/500 
ases,and 2-1 agreement in a further 127. In 
ontrast,there were only 4/500 
ases where the judgesunanimously thought that the SMT translation waspreferable, with a further 12 supported by a ma-jority de
ision. The rest of the table gives the
ases where the RBMT and SMT translations werejudged the same or 
ases in whi
h the judges dis-agreed; there were only 41/500 
ases where nomajority de
ision was rea
hed. Our overall 
on-
lusion is that we are justi�ed in evaluating theSMT by using the BLEU s
ores with the RBMT asthe referen
e. Of the 
ases where the two systemsdiffer, only a tiny fra
tion, at most 16/500, indi-
ate a better translation from the SMT, and wellover half are translated better by the RBMT. Ta-ble 5 presents typi
al examples of bad SMT trans-lations in the English ! Fren
h pair, 
ontrastedwith the translations produ
ed by the RBMT. The�rst two are grammati
al errors (a super�uous ex-

tra verb in the �rst, and agreement errors in these
ond). The third is an bad 
hoi
e of tense andpreposition; although grammati
al, the target lan-guage senten
e fails to preserve the meaning, and,rather than referring to a 20 day period endingnow, instead refers to a 20 day period some timein the past.Result Agreement CountRBMT better all judges 201RBMT better majority 127SMT better all judges 4SMT better majority 12Similar all judges 34Similar majority 81Un
lear disagree 41Total 500Table 4: Comparison of RBMT and SMT perfor-man
e on 500 randomly 
hosen English! Fren
htranslation examples, evaluated independently bythree judges.Table 6 shows a similar evaluation for the En-glish ! Japanese. Here, the differen
e betweenthe SMT and RBMT versions was so pronoun
edthat we felt justi�ed in taking a smaller sample, ofonly 150 senten
es. This time, 92/150 
ases wereunanimously judged as having a better RBMTtranslation, and there was not a single 
ase whereeven a majority found that the SMT was better.Agreement was good here too, with only 8/150
ases not yielding at least a majority de
ision.Result Agreement CountRBMT better all judges 92RBMT better majority 32SMT better all judges 0SMT better majority 0Similar all judges 2Similar majority 16Un
lear disagree 8Total 150Table 6: Comparison of RBMT and SMT per-forman
e on 150 randomly 
hosen English !Japanese translation examples, evaluated indepen-dently by three judges.Finally, we look at the performan
e of the SMTon material whi
h the RBMT is not able to trans-late. This would seem to be a situation where
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English does a temperature 
hange 
ause the heada
heRBMT Fren
h vos maux de t�ete sont-ils 
ausés par des 
hangements de température(your heada
hes are-they 
aused by 
hanges of temperature)SMT Fren
h avez-vous vos maux de t�ete sont-ils 
ausés par des 
hangements de température(have-you your heada
hes are-they 
aused by 
hanges of temperature)English are heada
hes relieved in the afternoonRBMT Fren
h vos maux de t�ete diminuent-ils l'apr�es-midi(your heada
hes (MASC-PLUR) de
rease-MASC-PLUR the afternoon)SMT Fren
h vos maux de t�ete diminue-t-elle l'apr�es-midi(your heada
hes (MASC-PLUR) de
rease-FEM-SING the afternoon)English have you had them for twenty daysRBMT Fren
h avez-vous vos maux de t�ete depuis vingt jours(have-you your heada
hes sin
e twenty days)SMT Fren
h avez-vous eu vos maux de t�ete pendant vingt jours(have-you had your heada
hes during twenty days)Table 5: Examples of in
orre
t SMT translations from English into Fren
h. Errors are highlighted inbold.the SMT 
ould have an advantage; robustness isgenerally a strength of statisti
al approa
hes. Wereturn to English ! Fren
h in Table 7, whi
hpresents the result of running the best SMT modelon the 357 examples from the test set in (Rayneret al., 2005) whi
h failed to be translated by theRBMT. We divide the set into 
ategories based onthe reason for failure of the RBMT.In the most populous group, translations thatfailed due to out of vo
abulary items, the SMTwas, more or less by 
onstru
tion, also unableto produ
e a translation. For the 110 items thatwere out of grammar 
overage for the RBMT, theSMT produ
ed 38 good translations, and another 4borderline translations. There were 50 items thatwere within the sour
e grammar 
overage of theRBMT, but failed somewhere in transfer and gen-eration pro
essing. Of those, the majority (32)represented �bad� sour
e senten
es, 
onsidered asill-formed for the purposes of this experiment. Outof the remaining items that were within RBMTgrammar 
overage, the SMT managed to produ
e5 good translations and 1 borderline translation. Intotal, on the most lenient interpretation, the SMTprodu
ed 48 additional translations out of 357.While this improvement in re
all is arguably worthhaving, it would 
ome at the pri
e of a substantialde
line in pre
ision.5 Dis
ussion and Con
lusionsWe have presented a novel methodology for 
om-paring RBMT and SMT, and tested it on a spe-

Result CountOut of vo
abularyBad translation 187Out of sour
e grammar 
overageGood translation 38Bad translation 44Borderline translation 4Bad sour
e senten
e 34In sour
e grammar 
overageGood translation 5Bad translation 12Borderline translation 1Bad sour
e senten
e 32Total 357Table 7: English ! Fren
h SMT performan
e onexamples from the test set whi
h failed to be trans-lated by the RBMT, evaluated by one judge.
i�
 pair of RBMT and SMT ar
hite
tures. Our
laim is that these results show that the versionof SMT used here is not in fa
t 
apable of repro-du
ing the output of the RBMT system. Althoughthere has been some interest in attempting to trainSMT systems from RBMT output, the evaluationissues that arise when 
omparing SMT and RBMTversions of a high-pre
ision limited-domain sys-tem are different from those arising in most MTtasks, and ne
essitate a 
orrespondingly differentmethodology. It is easy to gain the impression thatit is unsound, and that the experiment has been set
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up in su
h a way that only one result is possible.This is not, in fa
t, true.When we have dis
ussed the methodology withpeople who work primarily with SMT, we haveheard two main obje
tions. The �rst is that theSMT is being trained on RBMT output, and hen
e
an only be worse; a 
ommon suggestion is thata system trained on human-produ
ed translations
ould yield better results. It is not at all implau-sible that an SMT trained on this kind of datamight perform better on material whi
h is outsidethe 
overage of the RBMT system. In this do-main, however, the important issue is pre
ision,not re
all; what is 
riti
al is the ability to trans-late a

urately on material that is within the 
on-strained language de�ned by the RBMT 
overage.The RBMT engine gives very good performan
eon in-
overage data, as has been shown in otherevaluations of the MedSLT system, e.g. (Rayner etal., 2005); over 97% of all in-
overage senten
esare 
orre
tly translated. Human-generated transla-tions would often, no doubt, be more natural thanthose produ
ed by the RBMT, and there would beslightly fewer outright mistranslations. But theprimary reason why the SMT is doing badly isnot that the training material 
ontains bad trans-lations, but rather that the SMT is in
apable of
orre
tly reprodu
ing the translations it sees in thetraining data. Even in the easy English ! Fren
hlanguage-pair, the SMT often produ
es a differenttranslation from the RBMT. It 
ould a priori havebeen 
on
eivable that the differen
es were unin-teresting, in the sense that SMT outputs differentfrom RBMT outputs were as good, or even better.In fa
t, Table 4 show that this is not true; when thetwo translations differ, although the SMT transla-tion 
an o

asionally be better, it is usually worse.Table 6 shows that this problem is 
onsiderablymore a
ute in English ! Japanese. Thus theSMT system's inability to model the RBMT sys-tem points to a real limitation.If the SMT had instead been trained on human-generated data, its performan
e on in-
overagematerial 
ould only have improved substantially ifthe SMT for some reason found it easier to learn toreprodu
e patterns in human-generated data thanin RBMT-generated data. This seems unlikely.The SMT is being trained from a set of translationpairs whi
h are guaranteed to be 
ompletely 
on-sistent, sin
e they have been automati
ally gener-ated by the RBMT; the fa
t that the RBMT system

only has a small vo
abulary should also work inits favour. If the SMT is unable to reprodu
e theRBMT's output, it is reasonable to assume it willhave even greater dif�
ulty reprodu
ing transla-tions present in normal human-generated trainingdata, whi
h is always far from 
onsistent, and willhave a larger vo
abulary.The se
ond obje
tion we have heard is that thenon-standard BLEU s
ores whi
h we have used tomeasure performan
e use the RBMT translationsas a referen
e. People are qui
k to point out that,if real human translations were s
ored in this way,they would do less well on the non-standard met-ri
s than the RBMT translations. This is, indeed,absolutely true, and explains why it was essentialto 
arry out the 
omparison judging shown in Ta-bles 4 and 6. If we had 
ompared human transla-tions with RBMT translations in the same way, wewould have found that human translations whi
hdiffered from RBMT translations were sometimesbetter, and hardly ever worse. This would haveshown that the non-standard metri
s were inap-propriate for the task of evaluating human trans-lations. In the a
tual 
ase 
onsidered in this paper,we �nd a 
ompletely different pattern: the differ-en
es are one-sided in the opposite dire
tion, in-di
ating that the non-standard metri
s do in fa
tagree with human judgements here.A general obje
tion to all these experiments isthat there may be more powerful SMT ar
hite
-tures. We used the Giza++/Moses/SRILM 
om-binination be
ause it is the de fa
to standard. Wehave posted the data we used at http://www.bahr
.net/geaf2009; this will allow othergroups to experiment with alternate ar
hite
tures,and determine whether they do in fa
t yield sig-ni�
ant improvements. For the moment, however,we think it is reasonable to 
laim that, in domainswhere high a

ura
y is required, it remains to beshown that SMT approa
hes are 
apable of a
hiev-ing the levels of performan
e that rule-based sys-tems 
an deliver.
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Abstract

This paper reports on guiding parser de-
velopment by extracting information from
output of a large-scale parser applied to
Wikipedia documents. Data-driven parser
improvement is especially important for
applications where the corpus may differ
from that originally used to develop the
core grammar and where efficiency con-
cerns affect whether a new construction
should be added, or existing analyses mod-
ified. The large size of the corpus in ques-
tion also brings scalability concerns to the
foreground.

1 Introduction

Initial development of rule-based parsers1 is often
guided by the grammar writer’s knowledge of the
language and test suites that cover the “core” lin-
guistic phenomena of the language (Nerbonne et
al., 1988; Cooper et al., 1996; Lehmann et al.,
1996). Once the basic grammar is implemented,
including an appropriate lexicon, the direction of
grammar development becomes less clear. Inte-
gration of a grammar in a particular application
and the use of a particular corpus can guide gram-
mar development: the corpus and application will
require the implementation of specific construc-
tions and lexical items, as well as the reevalua-
tion of existing analyses. To streamline this sort
of output-driven development, tools to examine
parser output over large corpora are necessary, and
as corpus size increases, the efficiency and scal-
ability of those tools become crucial concerns.
Some immediate relevant questions for the gram-
mar writer include:

1The techniques discussed here may also be relevant to
purely machine-learned parsers and are certainly applicable
to hybrid parsers.

• What constructions and lexical items need to
be added for the application and corpus in
question?

• For any potential new construction or lexical
item, is it worth adding, or would it be better
to fall back to robust techniques?

• For existing analyses, are they applying cor-
rectly, or do they need to be restricted, or even
removed?

In the remainder of this section, we briefly dis-
cuss some existing techniques for guiding large-
scale grammar development and then introduce
the grammar being developed and the tool we use
in examining the grammar’s output. The remain-
der of the paper discusses development of lexical
resources and grammar rules, how overall progress
is tracked, and how analysis of the grammar output
can help development in other natural language
components.

1.1 Current Techniques

There are several techniques currently being used
by grammar engineers to guide large-scale gram-
mar development, including error mining to de-
tect gaps in grammar coverage, querying tools for
gold standard treebanks to determine frequency
of linguistic phenomena, and tools for querying
parser output to determine how linguistic phenom-
ena were analyzed in practice.

An error mining technique presented by van
Noord (2004) (henceforth: the van Noord Tool)
can reveal gaps in grammar coverage by compar-
ing the frequency of arbitrary n-grams of words
in unsuccessfully parsed sentences with the same
n-grams in unproblematic sentences, for large
unannotated corpora.2 A parser can be run over
new text, and a comparison of the in-domain and

2The suffix array error mining software is available at:
http://www.let.rug.nl/˜vannoord/SuffixArrays.tgz

63



out-of-domain sentences can determine, for in-
stance, that the grammar cannot parse adjective-
noun hyphenation correctly (e.g. an electrical-
switch cover). A different technique for error
mining that uses discriminative treebanking is de-
scribed in (Baldwin et al., 2005). This tech-
nique aims at determining issues with lexical cov-
erage, grammatical (rule) coverage, ungrammati-
cality within the corpus (e.g. misspelled words),
and extragrammaticality within the corpus (e.g.
bulleted lists).

A second approach involves querying gold-
standard treebanks such as the Penn Treebank
(Marcus et al., 1994) and Tiger Treebank (Brants
et al., 2004) to determine the frequency of cer-
tain phenomena. For example, Tiger Search (Lez-
ius, 2002) can be used to list and frequency-
sort stacked prepositions (e.g. up to the door) or
temporal noun/adverbs after prepositions (e.g. by
now). The search tools over these treebanks al-
low for complex searches involving specification
of lexical items, parts of speech, and tree config-
urations (see (Mı́rovský, 2008) for discussion of
query requirements for searching tree and depen-
dency banks).

The third approach we discuss here differs from
querying gold-standard treebanks in that corpora
of actual parser output are queried to examine
how constructions are analyzed by the grammar.
For example, Bouma and Kloosterman (2002) use
XQuery (an XML query language) to mine parse
results stored as XML data.3 It is this sort of ex-
amination of parser output that is the focus of the
present paper, and specific examples of our expe-
riences follow in Section 2.2.

Use of such tools has proven vital to the devel-
opment of large-scale grammars. Based on our
experiences with them, we began extensively us-
ing a tool called Oceanography (Waterman, 2009)
to search parser output for very large (approxi-
mately 125 million sentence) parse runs stored on
a distributed file system. Oceanography queries
the parser output and returns counts of specific
constructions or properties, as well as the exam-
ple sentences they were extracted from. In the
subsequent sections we discuss how this tool (in
conjunction with existing ones like the van No-
ord Tool and Tiger Search) has enhanced grammar
development for an English-language Lexical-

3See also (Bouma and Kloosterman, 2007) for further dis-
cussion of this technique.

Functional Grammar used for a semantic search
application over Wikipedia.

1.2 The Grammar and its Role

The grammar being developed is a Lexical-
Functional Grammar (LFG (Dalrymple, 2001))
that is part of the ParGram parallel grammar
project (Butt et al., 1999; Butt et al., 2002). It runs
on the XLE system (Crouch et al., 2009) and pro-
duces c(onstituent)-structures which are trees and
f(unctional)-structures which are attribute value
matrices recording grammatical functions and
other syntactic features such as tense and number,
as well as debugging features such as the source
of lexical items (e.g. from a named entity finder,
the morphology, or the guesser). There is a base
grammar which covers the constructions found in
standard written English, as well as three overlay
grammars: one for parsing Wikipedia sentences,
one for parsing Wikipedia headers, and one for
parsing queries (sentential, phrasal, and keyword).

The grammar is being used by Powerset (a Mi-
crosoft company) in a semantic consumer-search
reference vertical which allows people to search
Wikipedia using natural language queries as well
as traditional keyword queries. The system uses a
pipeline architecture which includes: text extrac-
tion, sentence breaking, named entity detection,
parsing (tokenization, morphological analysis, c-
structure, f-structure, ranking), semantic analysis,
and indexing of selected semantic facts (see Fig-
ure 1). A similar pipeline is used on the query
side except that the resulting semantic analysis is
turned into a query execution language which is
used to query the index.

text extraction script
sentence breaker finite state
named entity detection MaxEnt model
LFG grammars

tokenizer finite state
morphology finite state
grammar XLE: parser
ranking MaxEnt model

semantics XLE: XFR

Figure 1: NL Pipeline Components

The core idea behind using a deep parser in the
pipeline in conjunction with the semantic rules is
to localize role information as to who did what to
whom (i.e. undo long-distance dependencies and
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locate heads of arguments), to abstract away from
choice of particular lexical items (i.e. lemmatiza-
tion and detection of synonyms), and generally
provide a more normalized representation of the
natural language string to improve both precision
and recall.

1.3 Oceanography

As a byproduct of the indexing pipeline, all of
the syntactic and semantic structures are stored
for later inspection as part of failure analysis.4

The files containing these structures are distributed
over several machines since ∼125 million sen-
tences are parsed for the analysis of Wikipedia.

For any given syntactic or semantic structure,
the XLE ordered rewrite system (XFR; (Crouch et
al., 2009)) can be used to extract information that
is of interest to the grammar engineer, by way of
“rules” or statements in the XFR language. As the
XFR ordered rewrite system is also used for the
semantics rules that turn f-structures into seman-
tic representations, the notation is familiar to the
grammar writers and is already designed for ma-
nipulating the syntactic f-structures.

However, the mechanics of accessing each file
on each machine and then assembling the results is
prohibitively complicated without a tool that pro-
vides a simple interface to the system. Oceanogra-
phy was designed to take a single specification file
stating:

• which data to examine (which corpus ver-
sion; full Wikipedia build or fixed 10,000
document set);

• the XFR rules to be applied;

• what extracted data to count and report back.

Many concrete examples of Oceanography runs
will be discussed below. The basic idea is to
use the XFR rules to specify searches over lexi-
cal items, features, and constructions in a way that
is similar to that of Tiger Search and other facili-
ties. The Oceanography machinery enables these
searches over massive data and helps in compil-
ing the results for the grammar engineer to inspect.
We believe that similar approaches would be fea-
sible to implement in other grammar development
environments and, in fact, for some grammar out-
puts and applications, existing tools such as Tiger

4The index is self-contained and does not need to refer-
ence the semantic, much less the earlier syntactic, structures
as part of the search application.

Search would be sufficient. By providing exam-
ples where such searches have aided our grammar
development, we hope to encourage other gram-
mar engineers to similarly extend their efforts to
use easy access to massive data to drive their work.

2 Grammar Development

The ParGram English LFG grammar has been de-
veloped over many years. However, the focus of
development was on newspaper text and technical
manuals, although some adaptation was done for
new domains (King and Maxwell, 2007). When
moving to the Wikipedia domain, many new con-
structions and lexical items were encountered (see
(Baldwin et al., 2005) for a similar experience
with the BNC) and, at the same time, the require-
ments on parsing efficiency increased.

2.1 Lexical Development

When first parsing a new corpus, the grammar en-
counters new words that were previously unknown
to the morphology. The morphology falls back to a
guesser that uses regular expressions to guess the
part of speech and other features associated with
an unknown form. For example, a novel word end-
ing in s might be a plural noun. The grammar
records a feature LEX-SOURCE with the value
guesser for all guessed words. Oceanography was
used to extract all guessed forms and their parts
of speech. In many cases, the guesser had cor-
rectly identified the word’s part of speech. How-
ever, words that occurred frequently were added to
the morphology to avoid the possibility that they
would be incorrectly guessed as a different part of
speech. The fact that Oceanography was able to
identify not just the word, but its posited part of
speech and frequency in the corpus greatly sped
lexical development.

Incorrect guessing of verbs was of particular
concern to the grammar writers, as misidentifica-
tion of verbs was almost always accompanied by
a bad parse. In addition, subcategorization frames
for guessed verbs were guessed as either transi-
tive or intransitive, which often proved to be in-
correct. As such, the guessed verbs extracted us-
ing Oceanography were hand curated: true verbs
were added to the morphology and their subcate-
gorization frames to the lexicon. Due to the high
rate of error with guessed verbs, once the correctly
guessed verbs were added to the morphology, this
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option was removed from the guesser.5

Overall, ∼4200 new stems were added to the
already substantial morphology, with correct in-
flection. Approximately ∼1300 of these were
verbs. The decision to eliminate verbs as possi-
ble guessed parts of speech was directly motivated
by data extracted using Oceanography.

Since the guesser works with regular expres-
sions (e.g. lowercase letters + s form plural
nouns), it is possible to encounter forms in
the corpus that neither the morphology nor the
guesser recognize. The grammar will fragment on
these sentences, creating well-formed f-structure
chunks but no single spanning parse, and the un-
recognized forms will be recorded as TOKENs
(Riezler et al., 2002). An Oceanography run ex-
tracting all TOKENs resulted in the addition of sev-
eral new patterns to the guesser as well as the addi-
tion of some of the frequent forms to the morphol-
ogy. For example, sequences of all upper case let-
ters followed by a hyphen and then by a sequence
of digits were added for forms like AK-47, F-22,
and V-1.

The guesser and TOKENs Oceanography runs
look for general problems with the morphology
and lexicon, and can be run for every new cor-
pus. More specific jobs are run when evaluating
whether to implement a new analysis, or when
evaluating whether a current analysis is function-
ing properly. For example, use of the van No-
ord tool indicated that the grammar had problems
with certain less common multiword prepositions
(e.g. pursuant to, in contrast with). Once these
multiword prepositions were added, the question
then arose as to whether more common preposi-
tions should be multiwords when stacked (e.g. up
to, along with). An Oceanography run was per-
formed to extract all occurrences of stacked prepo-
sitions from the corpus. Their frequency was tal-
lied in both the stacked formations and when used
as simple prepositions. With this information, we
determined which stacked configurations to add to
the lexicon as multiword prepositions, while main-
taining preposition stacking for less common com-
binations.

2.2 Grammar Rule Development

In addition to using Oceanography to help develop
the morphology and lexicon, it has also proven ex-

5It is simple to turn the guessed verbs back on in order to
run the same Oceanography experiment with a new corpus.

tremely useful in grammar rule development. In
general, the issue is not in finding constructions
which the grammar does not cover correctly: a
quick investigation of sentences which fragment
can provide these and issues are identified and re-
ported by the semantics which uses the syntax out-
put as its input. Furthermore, the van Noord tool
can be used to effectively identify gaps in gram-
mar rule coverage.

Rather, the more pressing issues include
whether it is worthwhile adding a construction,
which possible solution to pick (when it is worth-
while), and whether an existing solution is ap-
plying correctly and efficiently. Being able to
look at the occurrence of a construction over large
amounts of data can help with all of these issues,
especially when combined with searching over
gold standard treebanks such as the Penn Tree-
bank.

Determining which constructions to examine
using Oceanography is often the result of failure
analysis findings on components outside the gram-
mar itself, but that build on the grammar’s output
later in the natural language processing pipeline.
The point we wish to emphasize here is that the
grammar engineer’s effectiveness can greatly ben-
efit from being able to take a set of problematic
data gathered from massive parser output and de-
termine from it that a particular construction mer-
its closer scrutiny.

2.2.1 When relative/subordinate clauses
An observation that subordinate clauses contain-
ing when (e.g. Mary laughed when Ed tripped.)
were sometimes misanalyzed as relative clauses
attaching to a noun (e.g. the time when Ed tripped)
prompted a more directed analysis of whether
when relative clauses should be allowed to at-
tach to nouns that were not time-related expres-
sions (e.g. time, year, day). An Oceanography run
was performed to extract all when relative clauses,
the modified nominal head, and the sentence con-
taining the construction. A frequency-sorted list
of nouns taking when relative clause modifiers
helped to direct hand-examination of when relative
clauses for accuracy of the analysis. This yielded
some correct analyses:

(1) There are times [when a Bigfoot sighting or
footprint is a hoax].

More importantly, however, the search revealed
many incorrect analyses of when subordinate
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clauses as relative clauses:

(2) He gets the last laugh [when he tows away
his boss’ car as well as everyone else’s].

By extracting all when relative clauses, and their
head nouns, it was determined that the construc-
tion was generally only correct for a small class of
time expression nominals. Comparatively, when
relative clause modification of other nominals was
rarely correct. The grammar was modified to dis-
prefer relative clause analyses of when clauses un-
less the head noun was an expression of time. As
a result, the overall quality of parses for all sen-
tences containing when subordinate clauses was
improved.

2.2.2 Relative clauses modifying gerunds
Another example of an issue with the accuracy of a
grammatical analysis concerns gerund nouns mod-
ified by relative clauses without an overt relative
pronoun (e.g. the singing we liked). It was ob-
served that many strings were incorrectly analyzed
as a gerund and reduced relative clause modifier:

(3) She lost all of her powers, including [her
sonic screams].

Again, a frequency sorted list of gerunds modi-
fied by reduced relative clauses helped to guide
hand inspection of the instances of this construc-
tion. By extracting all of the gerunds with re-
duced relative clause modifiers, it was possible
to see which gerunds were appearing in this con-
struction (e.g. including occurred alarmingly fre-
quently) and how rarely the overall analysis was
correct. As a result of the data analysis, such rel-
ative clause modifiers are now dispreferred in the
grammar and certain verbs (e.g. include) are addi-
tionally dispreferred as gerunds in general. Note
that this type of failure analysis is not possible
with a tool (such as the van Noord tool) that only
points out gaps in grammar coverage.

2.2.3 Noun-noun compounds
As part of the semantic search application,
argument-relation triples are extracted from the
corpus and presented to the user as a form of sum-
mary over what Wikipedia knows about a partic-
ular entity. These are referred to as Factz. For
example, a search on Noam Chomsky will find
Factz triples as in Figure 2. Such an application
highlights parse problems, since the predicate-
argument relations displayed are ultimately ex-
tracted from the syntactic parses themselves.

One class of problem arises when forms which
are ambiguous between nominal and verbal analy-
ses are erroneously analyzed as verbs and hence
show up as Factz relations. This is particularly
troublesome when the putative verb is part of a
noun-noun compound (e.g. ice cream, hot dog)
and the verb form is comparatively rare. A list
of potentially problematic noun-noun compounds
was extracted by using an independent part of
speech tagger over the sentences that generated the
Factz triples. If the relation in the triple was tagged
as a noun and was not a deverbal noun (e.g. de-
struction, writing), then the first argument of the
triple and the relation were tagged as potentially
problematic noun-noun compounds. Oceanogra-
phy was then used to determine the relative fre-
quency of whether the word pairs were analyzed as
noun-noun compounds, verb-argument relations,
or independent nouns and verbs.

This distributional information, in conjunction
with information about known noun-noun com-
pounds in WordNet (Fellbaum, 1998), is being
used to extract a set of ∼100,000 noun-noun com-
pounds whose analysis is extremely strongly pre-
ferred by the grammar. Currently, these are con-
strained via c-structure optimality marks6 but they
may eventually be allowed only as noun-noun
compounds if the list proves reliable enough.

3 Tracking Grammar Progress

The grammar is used as part of a larger applica-
tion which is actively being developed and which
is regularly updated. As such, new versions of
the grammar are regularly released. Each release
includes a detailed list of improvements and bug
fixes, as well as requirements on other compo-
nents of the system (e.g. the grammar may require
a specific version of the XLE parser or of the mor-
phology). It is extremely important to be able to
confirm that the changes to the grammar are in
place and are functioning as expected when used
in the pipeline. Some changes can be confirmed
by browsing documents, finding a sentence likely
to contain the relevant lexical item or construction,
and then inspecting the syntactic structures for that

6See (Frank et al., 2001) and (Crouch et al., 2009) on the
use of Optimality Theory marks within XLE. C-structure op-
timality marks apply preferences to the context free backbone
before any constraints supplied by the f-structure annotations
are applied. This means that the noun-noun compounds will
be the only analysis possible if any tree can be constructed
with them.

67



Figure 2: Example Factz

document.

3.1 Confirming Grammar Changes

However, some changes are more complicated to
confirm either because it is hard to determine from
a sentence whether the grammar change would ap-
ply or because the change is more frequency re-
lated. For these types of changes, Oceanogra-
phy runs can detect whether a rare change oc-
curred at all, alleviating the need to search through
documents by hand. For example, to determine
whether the currency symbols are being correctly
treated by the grammar, especially the ones that
are not standard ASCII (e.g. the euro and yen sym-
bols), two simple XFR rules can be written: one
that looks for the relevant c-structure leaf node and
counts up which symbols occur under this node
and one that looks for the known list of currency
symbols in the f-structure and counts up what part-
of-speech they were analyzed as.

To detect whether frequency related changes
to the grammar are behaving as expected, two
Oceanography runs can be compared, one with
the older grammar and one with the newer one.
For example, to determine whether relative clauses
headed by when were dispreferred relative to
subordinate clauses, the number of such relative
clauses and such subordinate clauses were counted
in two successive runs; the relative occurrence of
the types confirmed that the preference mecha-
nism was working correctly. In addition, a quick
examination of sentences containing each type
showed that the change was not over-applying
(e.g. incorrectly analyzing when relative clauses as
subordinate clauses).

3.2 General Grammar Checking

In addition to Oceanography runs done to check
on specific changes to the grammar, a core set of
XFR rules extracts all of the features from the f-
structure and counts them. The resulting statistics
of features and counts are computed for each ma-

jor release and compared to that of the previous
release. This provides a list of new features which
subsequent components must be alerted to (e.g. a
feature added to indicate what type of punctua-
tion surrounded a parenthetical). It also provides a
quick check of whether some feature is no longer
occurring with the same frequency. In some cases
this is expected; once many guessed forms were
added to the lexicon, the feature indicating that
the guesser had applied dropped sharply. How-
ever, unexpected steep variations from previous
runs can be investigated to make sure that rules
were not inadvertently removed from the gram-
mar, and that rules added to the grammar are func-
tioning correctly.

4 Using Grammar Output to Develop
Other Components

In addition to being used in development of the
grammar itself, examination of the grammar out-
put can be useful for engineering efforts on other
components. In addition to the examples cited
above concerning the development of the mor-
phology used by the grammar, we discuss one sim-
ple example here. The sentence breaker used in
the pipeline is designed for high precision; it only
breaks sentences when it is sure that there is a sen-
tence break. To make up for breaks that may have
been missed, the grammar contains a rule that al-
lows multiple sentences to be parsed as a single
string. The resulting f-structure has the final sen-
tence’s f-structure as the value of a feature, LAST,
and the remainder as the value of a feature, REST.
The grammar iteratively parses multiple sentences
into these LAST-REST structures. Because the fea-
ture LAST is only instantiated when parsing mul-
tiple sentences, input strings whose parses con-
tained a LAST component could be extracted to
determine whether the sentence breaker’s behavior
should be changed. An example of two sentences
which were not broken is:
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(4) The current air staff includes former CNN
Headline News gal Holly Firfer in the morn-
ings with co-host Orff. Mid-days is Mara
Davis, who does a theme lunch hour.

The relatively short unknown word Orff before the
period makes it unclear whether this is an abbrevi-
ation or not. Based on the Oceanography analysis,
the number of unbroken sentences which received
analyses was roughly halved and one bug concern-
ing footnote markers was discovered and fixed.

5 Conclusion

Large-scale grammars are increasingly being used
in applications. In order to maximize their effec-
tiveness in terms of coverage, accuracy, and effi-
ciency for a given application, it is increasingly
important to examine the behavior of the grammar
on the relevant corpus and in the relevant applica-
tion.

Having good tools makes the grammar engi-
neer’s task of massive data driven grammar de-
velopment significantly easier. In this paper we
have discussed how such a tool, which can ap-
ply search patterns over the syntactic (and seman-
tic) representations of Wikipedia, is being used in
a semantic search research vertical. When used
in conjunction with existing tools for detecting
gaps in parser coverage (e.g. the van Noord tool),
Oceanography greatly aids in the evaluation of ex-
isting linguistic analyses from the parser. In ad-
dition, oceanography provides vital information to
determining whether or not to implement coverage
for a particular construction, based on efficiency
requirements. Thus, the grammar writer has a
suite of tools available to address the questions
raised in the introduction of this paper: what gaps
exist in parser coverage, how to best address those
gaps, and whether existing analyses are function-
ing appropriately. We hope that our experiences
encourage other grammar engineers to use similar
techniques in their grammar development efforts.
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Abstract

Error mining is a useful technique for
identifying forms that cause incomplete
parses of sentences. We extend the iter-
ative method of Sagot and de la Clerg-
erie (2006) to treat n-grams of an arbi-
trary length. An inherent problem of in-
corporating longer n-grams is data sparse-
ness. Our new method takes sparseness
into account, producing n-grams that are
as long as necessary to identify problem-
atic forms, but not longer.

Not every cause for parsing errors can be
captured effectively by looking at word
n-grams. We report on an algorithm for
building more general patterns for min-
ing, consisting of words and part of speech
tags.

It is not easy to evaluate the various er-
ror mining techniques. We propose a new
evaluation metric which will enable us to
compare different error miners.

1 Introduction

In the past decade wide-coverage grammars and
parsers have been developed for various lan-
guages, such as the Alpino parser and grammar
(Bouma et al., 2001) for Dutch and the English
Resource Grammar (Copestake and Flickinger,
2000). Such grammars account for a large num-
ber of grammatical and lexical phenomena, and
achieve high accuracies. Still, they are usually
tailored to general domain texts and fail to reach
the same accuracy for domain-specific texts, due
to missing lexicon entries, fixed expressions, and
grammatical constructs. When parsing new texts
there are usually two types of parsing errors:

• The parser returns an incorrect parse. While
the parser may have constructed the correct

parse, the disambiguation model chose an in-
correct parse.

• The parser can not find an analysis that spans
the full sentence. If that sentence is allowed
in the language, the grammar or lexicon is in-
complete.

While the first type of errors can be alleviated
by improving the disambiguation model, the sec-
ond type of problems requires extension of the
grammar or lexicon. Finding incomplete descrip-
tions by hand can become a tedious task once a
grammar has wide coverage. Error mining tech-
niques aim to find problematic words or n-grams
automatically, allowing the grammar developer to
focus on frequent and highly suspicious forms
first.

2 Previous work

In the past, two major error mining techniques
have been developed by Van Noord (2004) and
Sagot and de la Clergerie (2006). In this paper we
propose a generalized error miner that combines
the strengths of these methods. Both methods fol-
low the same basic principle: first, a large (unan-
notated) corpus is parsed. After parsing, the sen-
tences can be split up in a list of parsable and a list
of unparsable sentences. Words or n-grams that
occur in the list of unparsable sentences, but that
do not occur in the list of parsable sentences have
a high suspicion of being the cause of the parsing
error.

2.1 Suspicion as a ratio
Van Noord (2004) defines the suspicion of a word
as a ratio:

S(w) =
C(w|error)

C(w)
(1)

where C(w) is the number of occurrences of
word w in all sentences, and C(w|error) is the

71



number of occurrences of w in unparsable sen-
tences. Of course, it is often useful to look at n-
grams as well. For instance, Van Noord (2004)
gives an example where the word via had a low
suspicion after parsing a corpus with the Dutch
Alpino parser, while the Dutch expression via via
(via a complex route) was unparsable.

To account for such phenomena, the notion of
suspicion is extended to n-grams:

S(wi..wj) =
C(wi..wj |error)

C(wi..wj)
(2)

Where a longer sequence wh...wi...wj ...wk is
only considered if its suspicion is higher than each
of its substrings:

S(wh...wi...wj ...wk) > S(wi...wj) (3)

While this method works well for forms that are
unambiguously suspicious, it also gives forms that
just happened to occur often in unparsable sen-
tences by ’bad luck’ a high suspicion. If the occur-
rences in unparsable sentences were accompanied
by unambiguously suspicious forms, there is even
more reason to believe that the form is not prob-
lematic. However, in such cases this error mining
method will still assign a high suspicion to such
forms.

2.2 Iterative error mining

The error mining method described by Sagot and
de la Clergerie (2006) alleviates the problem of
‘accidentally suspicious’ forms. It does so by
taking the following characteristics of suspicious
forms into account:

• If a form occurs within parsable sentences, it
becomes less likely that the form is the cause
of a parsing error.

• The suspicion of a form should depend on the
suspicions of other forms in the unparsable
sentences in which it occurs.

• A form observed in a shorter sentence is ini-
tially more suspicious than a form observed
in a longer sentence.

To be able to handle the suspicion of a form
within its context, this method introduces the no-
tion of observation suspicion, which is the suspi-
cion of a form within a given sentence. The suspi-
cion of a form, outside the context of a sentence,

is then defined to be the average of all observation
suspicions:

Sf =
1

|Of |
∑

oi,j∈Of

Si,j (4)

Here Of is the set of all observations of the form
f , oi,j is the jth form of the ith sentence, and Si,j

is the observation suspicion of oi,j . The observa-
tion suspicions themselves are dependent on the
form suspicions, making the method an iterative
process. The suspicion of an observation is the
suspicion of its form, normalized by suspicions of
other forms occurring within the same sentence:

S
(n+1)
i,j = error(si)

S
(n+1)
F (oi,j)∑

1≤j≤|Si| S
(n+1)
F (oi,j)

(5)

Here error(si) is the sentence error rate, which
is normally set to 0 for parsable sentences and 1
for unparsable sentences. SF (oi,j) is the suspicion
of the form of observation oi,j .

To accommodate the iterative process, we will
have to redefine the form suspicion to be depen-
dent on the observation suspicions of the previous
cycle:

S
(n+1)
f =

1
|Of |

∑
oi,j∈Of

S
(n)
i,j (6)

Since there is a recursive dependence between
the suspicions and the observation suspicions,
starting and stopping conditions need to be defined
for this cyclic process. The observation suspicions
are initialized by uniformly distributing suspicion
over observed forms within a sentence:

S
(0)
i,j =

error(si)
|Si|

(7)

The mining is stopped when the process reaches
a fixed point where suspicions have stabilized.

This method solves the ‘suspicion by accident’
problem of ratio-based error mining. However, the
authors of the paper have only used this method to
mine on unigrams and bigrams. They note that
they have tried mining with longer n-grams, but
encountered data sparseness problems. Their pa-
per does not describe criteria to determine when to
use unigrams and when to use bigrams to represent
forms within a sentence.

3 N-gram expansion

3.1 Inclusion of n-grams
While the iterative miner described by Sagot and
de la Clergerie (2006) only mines on unigrams and
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bigrams, our prior experience with the miner de-
scribed by Van Noord (2004) has shown that in-
cluding longer n-grams in the mining process can
capture many additional phenomena. To give one
example: the words de (the), eerste (first), and
beste (best) had very low suspicions during er-
ror mining, while the trigram eerste de beste had
a very high suspicion. This trigram occurred in
the expression de eerste de beste (the first you can
find). While the individual words within this ex-
pression were described by the lexicon, this multi-
word expression was not.

3.2 Suspicion sharing
It may seem to be attractive to include all n-grams
within a sentence in the mining process. However,
this is problematic due to suspicion sharing. For
instance, consider the trigram w1, w2, w3 in which
w2 is the cause of a parsing error. In this case,
the bigrams w1, w2 and w2, w3 will become sus-
picious, as well as the trigram w1, w2, w3. Since
there will be multiple very suspicious forms within
the same sentence the unigram w2 will have no op-
portunity to manifest itself.

A more practical consideration is that the num-
ber of forms within a sentence grows at such a rate
(n + (n − 1)... + 1) that error mining becomes
unfeasible for large corpora, both in time and in
space.

3.3 Expansion method
To avoid suspicion sharing we have devised a
method for adding and expanding n-grams when
it is deemed useful. This method iterates through
a sentence of unigrams, and expands unigrams to
longer n-grams when there is evidence that it is
useful. This expansion step is a preprocessor to
the iterative miner, that uses the same iterative al-
gorithm as described by Sagot and De la Clergerie.
Within this preprocessor, suspicion is defined in
the same manner as in Van Noord (2004), as a ra-
tio of occurrences in unparsable sentences and the
total number of occurrences.

The motivation behind this method is that there
can be two expansion scenarios. When we have
the bigram w1, w2, either one of the unigrams can
be problematic or the bigram w1, w2. In the for-
mer case, the bigram w1, w2 will also inherit the
high suspicion of the problematic unigram. In the
latter case, the bigram will have a higher suspicion
than both of its unigrams. Consequently, we want
to expand the unigram w1 to the bigram w1, w2 if

the bigram is more suspicious than both of its un-
igrams. If w1, w2 is equally suspicious as one of
its unigrams, it is not useful to expand to a bigram
since we want to isolate the cause of the parsing
error as much as possible.

The same methodology is followed when we
expand to longer n-grams. Expansion of w1, w2

to the trigram w1, w2, w3 will only be permitted
if w1, w2, w3 is more suspicious than its bigrams.
Since the suspicion of w3 aggregates to w2, w3,
we account for both w3 and w2, w3 in this com-
parison.

The general algorithm is that the expansion to
an n-gram i..j is allowed when S(i..j) > S(i..j−
1) and S(i..j) > S(i + 1..j). This gives us a sen-
tence that is represented by the n-grams n0..nx,
n1..ny, ... n|si|−1..n|si|−1.

3.4 Data sparseness

While initial experiments with the expansion al-
gorithm provided promising results, the expansion
algorithm was too eager. This eagerness is caused
by data sparseness. Since longer n-grams occur
less frequently, the suspicion of an n-gram oc-
curring in unparsable sentences goes up with the
length of the n-gram until it reaches its maximum
value. The expansion conditions do not take this
effect into account.

To counter this problem, we have introduced an
expansion factor. This factor depends on the fre-
quency of an n-gram within unparsable sentences
and asymptotically approaches one for higher fre-
quencies. As a result more burden of proof
is inflicted upon the expansion: the longer n-
gram either needs to be relatively frequent, or it
needs to be much more suspicious than its (n-1)-
grams. The expansion conditions are changed to
S(i..j) > S(i..j − 1) · extFactor and S(i..j) >
S(i + 1..j) · extFactor, where

extFactor = 1 + e−α|Of,unparsable| (8)

In our experiments α = 1.0 proved to be a good
setting.

3.5 Pattern expansion

Previous work on error mining was primarily fo-
cused on the extraction of interesting word n-
grams. However, it could also prove useful to al-
low for patterns consisting of other information
than words, such as part of speech tags or lemmas.
We have done preliminary work on the integra-
tion of part of speech tags during the n-gram ex-
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pansion. We use the same methodology as word-
based n-gram expansion, however we also con-
sider expansion with a part of speech tag.

Since we are interested in building patterns that
are as general as possible, we expand the pat-
tern with a part of speech tag if that creates a
more suspicious pattern. Expansion with a word
is attempted if expansion with a part of speech
tag is unsuccessful. E.g., if we attempt to ex-
pand the word bigram w1w2, we first try the tag
expansion w1w2t3. This expansion is allowed
when S(w1, w2, t3) > S(w1, w2) · extFactor
and S(w1, w2, t3) > S(w2, t3) · extFactor. If
the expansion is not allowed, then expansion to
S(w1, w2, w3) is attempted. As a result, mixed
patterns emerge that are as general as possible.

4 Implementation

4.1 Compact representation of data
To be able to mine large corpora some precau-
tions need to be made. During the n-gram expan-
sion stage, we need quick access to the frequen-
cies of arbitrary length n-grams. Additionally, all
unparsable sentences have to be kept in memory,
since we have to traverse them for n-gram expan-
sion. Ordinary methods for storing n-gram fre-
quencies (such as hash tables) and data will not
suffice for large corpora.

As Van Noord (2004) we used perfect hashing
to restrict memory use, since hash codes are gen-
erally shorter than the average token length. Addi-
tionally, comparisons of numbers are much faster
than comparisons of strings, which speeds up the
n-gram expansion step considerably.

During the n-gram expansion step the miner
calculates ratio-based suspicions of n-grams us-
ing frequencies of an n-gram in parsable and un-
parsable sentences. The n-gram can potentially
have the length of a whole sentence, so it is not
practical to store n-gram ratios in a hash table.
Instead, we compute a suffix array (Manber and
Myers, 1990) for the parsable and unparsable sen-
tences1. A suffix array is an array that contains in-
dices pointing to sequences in the data array, that
are ordered by suffix.

We use suffix arrays differently than Van No-
ord (2004), because our expansion algorithm re-
quires the parsable and unparsable frequencies of
the (n-1)-grams, and the second (n-1)-gram is not

1We use the suffix sorting algorithm by Peter M. McIlroy
and M. Douglas McIlroy.

(necessarily) adjacent to the n-gram in the suffix
array. As such, we require random access to fre-
quencies of n-grams occurring in the corpus. We
can compute the frequency of any n-gram by look-
ing up its upper and lower bounds in the suffix ar-
ray2, where the difference is the frequency.

4.2 Determining ratios for pattern expansion
While suffix arrays provide a compact and rela-
tively fast data structure for looking up n-gram fre-
quencies, they are not usable for pattern expansion
(see section 3.5). Since we need to look up fre-
quencies of every possible combination of repre-
sentations that are used, we would have to create
dl suffix arrays to be (theoretically) able to look
up pattern frequencies with the same time com-
plexity, where d is the number of dimensions and
l is the corpus length.

For this reason, we use a different method for
calculating pattern frequencies. First, we build a
hash table for each type of information that can
be used in patterns. A hash table contains an in-
stance of such information as a key (e.g. a specific
word or part of speech tag) and a set of corpus in-
dices where the instance occurred in the corpus as
the value associated with that key. Now we can
look up the frequency of a sequence i..j by calcu-
lating the set intersection of the indices of j and
the indices found for the sequence i..j − 1, after
incrementing the indices of i..j − 1 by one.

The complexity of calculating frequencies fol-
lowing this method is linear, since the set of in-
dices for a given instance can be retrieved with
a O(1) time complexity, while both increment-
ing the set indices and set intersection can be per-
formed in O(n) time. However, n can be very
large: for instance, the start of sentence marker
forms a substantial part of the corpus and is looked
up once for every sentence. In our implementation
we limit the time spent on such patterns by caching
very frequent bigrams in a hash table.

4.3 Removing low-suspicion forms
Since normally only one form within a sentence
will be responsible for a parsing error, many forms
will have almost no suspicion at all. However, dur-
ing the mining process, their suspicions will be
recalculated during every cycle. Mining can be
sped up considerably by removing forms that have
a negligible suspicion.

2Since the suffix array is sorted, finding the upper and
lower bounds is a binary search in O(log n) time.
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If we do not drop forms, mining of the Dutch
Wikipedia corpus described in section 5.3, with
n-gram expansion and the extension factor en-
abled, resulted in 4.8 million forms with 13.4 mil-
lion form observations in unparsable sentences. If
we mine the same material and drop forms with
a suspicion below 0.001 there were 3.5 million
forms and 4.0 million form observations within
unparsable sentences left at the end of the iterative
mining process.

5 Evaluation

5.1 Methodology
In previous articles, error mining methods have
primarily been evaluated manually. Both Van No-
ord (2004) and Sagot and de la Clergerie (2006)
make a qualitative analysis of highly suspicious
forms. But once one starts experimenting with var-
ious extensions, such as n-gram expansion and ex-
pansion factor functions, it is difficult to qualify
changes through small-scale qualitative analysis.

To be able to evaluate changes to the error
miner, we have supplemented qualitative analysis
with a automatic quantitative evaluation method.
Since error miners are used by grammar engineers
to correct a grammar or lexicon by hand, the eval-
uation metric should model this use case:

• We are interested in seeing problematic forms
that account for errors in a large number of
unparsable sentences first.

• We are only interested in forms that actually
caused the parsing errors. Analysis of forms
that do not, or do not accurately pinpoint ori-
gin of the parsing errors costs a lot of time.

These requirements map respectively to the re-
call and precision metrics from information re-
trieval:

P =
|{Sunparsable} ∩ {Sretrieved}|

|{Sretrieved}|
(9)

R =
|{Sunparsable} ∩ {Sretrieved}|

|{Sunparsable}|
(10)

Consequently, we can also calculate the f-score
(van Rijsbergen, 1979):

F − score =
(1 + β2) · (P · R)

(β2 · P + R)
(11)

The f-score is often used with β = 1.0 to give
as much weight to precision as recall. In evalu-
ating error mining, this can permit cheating. For

instance, consider an error mining that recalls the
start of sentence marker as the first problematic
form. Such a strategy would instantly give a re-
call of 1.0, and if the coverage of a parser for a
corpus is relatively low, a relatively good initial f-
score will be obtained. Since error mining is often
used in situations where coverage is still low, we
give more bias to precision by using β = 0.5.

We hope to provide more evidence in the future
that this evaluation method indeed correlates with
human evaluation. But in our experience it has the
required characteristics for the evaluation of error
mining. For instance, it is resistant to recalling
of different or overlapping n-grams from the same
sentences, or recalling n-grams that occur often in
both parsable and unparsable sentences.

5.2 Scoring methods

After error mining, we can extract a list of forms
and suspicions, and order the forms by their sus-
picion. But normally we are not only interested in
forms that are the most suspicious, but forms that
are suspicious and frequent. Sagot and de la Clerg-
erie (2006) have proposed three scoring methods
that can be used to rank forms:

• Concentrating on suspicions: Mf = Sf

• Concentrating on most frequent potential er-
rors: Mf = Sf |Of |

• Balancing between these possibilities: Mf =
Sf · ln|Of |

For our experiments, we have replaced the ob-
servation frequencies of the form (|Of |) by the
frequency of observations within unparsable sen-
tences (|{Of,unparsable}|). This avoids assigning a
high score to very frequent unsuspicious forms.

5.3 Material

In our experiments we have used two corpora that
were parsed with the wide-coverage Alpino parser
and grammar for Dutch:

• Quantitative evaluation was performed on the
Dutch Wikipedia of August 20083. This cor-
pus consists of 7 million sentences (109 mil-
lion words). For 8.4% of the sentences no full
analysis could be found.

3http://ilps.science.uva.nl/WikiXML/
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• A qualitative evaluation of the extensions was
performed on the Flemish Mediargus news-
paper corpus (up to May 31, 2007)4. This
corpus consists of 67 million sentences (1.1
billion words). For 9.2% of the sentences no
full analysis could be found.

Flemish is a variation of Dutch written and spo-
ken in Belgium, with a grammar and lexicon that
deviates slightly from standard Dutch. Previously,
the Alpino grammar and lexicon was never specif-
ically modified for parsing Flemish.

6 Results

6.1 Iterative error mining

We have evaluated the different mining methods
with the three scoring functions discussed in sec-
tion 5.2. In the results presented in this section we
only list the results with the scoring function that
performed best for a given error mining method
(section 6.3 provides an overview of the best scor-
ing functions for different mining methods).

Our first interest was if, and how much itera-
tive error mining outperforms error mining with
suspicion as a ratio. To test this, we compared
the method described by Van Noord (2004) and
the iterative error miner of Sagot and de la Clerg-
erie (2006). For the iterative error miner we eval-
uated both on unigrams, and on unigrams and bi-
grams where all unigrams and bigrams are used
(without further selection). Figure 6.1 shows the
f-scores for these miners after N retrieved forms.
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Figure 1: F-scores after retrieving N forms for
ratio-based mining, iterative mining on unigrams
and iterative mining on uni- and bigrams.

4http://www.mediargus.be/

The unigram iterative miner outperforms the
ratio-based miner during the retrieval of the first
8000 forms. The f-score graph of the iterative
miner on unigrams flattens after retrieving about
4000 forms. At that point unigrams are not spe-
cific enough anymore to pinpoint more sophisti-
cated problems. The iterative miner on uni- and bi-
grams performs better than the ratio-based miner,
even beyond 8000 forms. More importantly, the
curves of the iterative miners are steeper. This is
relevant if we consider that a grammar engineer
will only look at a few thousands of forms. For
instance, the ratio-based miner achieves an f-score
of 0.4 after retrieving 8448 forms, while the iter-
ative miner on uni- and bigrams attains the same
f-score after retrieving 5134 forms.

6.2 N-gram expansion

In our second experiment we have compared the
performance of iterative mining on uni- and bi-
grams with an iterative miner using the n-gram
expansion algorithm described in section 3. Fig-
ure 6.2 shows the result of n-gram expansion com-
pared to mining just uni- and bigrams. Both the
results for expansion with and without use of the
expansion factor are shown.
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Figure 2: F-scores after retrieving N forms for it-
erative mining on uni- and bigrams, and iterative
mining using n-gram expansion with and without
using an expansion factor.

We can see that the expansion to longer n-grams
gives worse results than mining on uni- and bi-
grams when data sparseness is not accounted for.
The expansion stage will select forms that may be
accurate, but that are more specific than needed.
As such, the recall per retrieved form is lower on
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average, as can be seen in figure 6.2. But if sparse-
ness is taken into account through the use of the
expansion factor, we achieve higher f-scores than
mining on uni- and bigrams up to the retrieval of
circa five thousand forms. Since a user of an error
mining tool will probably only look at the first few
thousands of forms, this is a welcome improve-
ment.
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Figure 3: Recall after retrieving N forms for it-
erative mining on uni- and bigrams, and iterative
mining using n-gram expansion with and without
using an expansion factor.

Among the longer n-grams in the mining results
for the Mediargus corpus, we found many Flemish
idiomatic expressions that were not described in
the Alpino lexicon. For example:

• had er (AMOUNT) voor veil [had
(AMOUNT) for sale]

• (om de muren) van op te lopen [to get terribly
annoyed by]

• Ik durf zeggen dat [I dare to say that]

• op punt stellen [to fix/correct something]

• de daver op het lijf [shocked]

• (op) de tippen (van zijn tenen) [being very
careful]

• ben fier dat [am proud of]

• Nog voor halfweg [still before halfway]

• (om duimen en vingers) van af te likken [de-
licious]

Since these expressions are longer than bi-
grams, they cannot be captured properly without
using n-gram expansion. We also found longer
n-grams describing valid Dutch phrases that were
not described by the grammar or lexicon.

• Het stond in de sterren geschreven dat [It was
written in the stars that]

• zowat de helft van de [about half of the]

• er zo goed als zeker van dat [almost sure of]

• laat ons hopen dat het/dit lukt [let us hope that
it/this works]

6.3 Scoring methods
The miners that use n-gram expansion perform
best with the Mf = Sf |Of | function, while the
other miners perform best with the Mf = Sf ·
ln|Of | function. This is not surprising – the it-
erative miners that do not use n-gram expansion
can not make very specific forms and give rela-
tively high scores to forms that happen to occur in
unparsable sentences (since some forms in a sen-
tence will have to take blame, if no specific sus-
picious form is found). If such forms also hap-
pen to be frequent, they may be ranked higher
than some more suspicious infrequent forms. In
the case of the ratio-based miner, there are many
forms that are ‘suspicious by accident’ which may
become highly ranked when they are more fre-
quent than very suspicious, but infrequent forms.
Since the miners with n-gram expansion can find
specific suspicious forms and shift blame to them,
there is less chance of accidentally ranking a form
to highly by directly including the frequency of
observations of that form within unparsable sen-
tences in the scoring function.

6.4 Pattern expansion
We have done some preliminary experiments with
pattern expansion, allowing for patterns consisting
of words and part of speech tags. For this exper-
iment we trained a Hidden Markov Model part of
speech tagger on 90% of the Dutch Eindhoven cor-
pus using a small tag set. We then extracted 50000
unparsable and about 495000 parsable sentences
from the Flemish Mediargus corpus. The pattern
expansion preprocessor was then used to find in-
teresting patterns.

We give two patterns that were extracted to give
an impression how patterns can be useful. A fre-
quent pattern was doorheen N (through followed
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by a (proper) noun). In Flemish a sentence such
as We reden met de auto doorheen Frankrijk (lit-
eral: We drove with the car through France) is al-
lowed, while in standard Dutch the particle heen
is separated from the preposition door. Conse-
quently, the same sentence in standard Dutch is We
reden met de auto door Frankrijk heen. Mining
on word n-grams provided hints for this difference
in Flemish through forms such as doorheen Krot-
tegem, doorheen Engeland, doorheen Hawai, and
doorheen Middelkerke, but the pattern provides a
more general description with a higher frequency.

Another pattern that was found is wegens Prep
Adj (because of followed by a preposition and
an adjective). This pattern captures prepositional
modifiers where wegens is the head, and the fol-
lowing words within the constituent form an ar-
gument, such as in the sentence Dat idee werd
snel opgeborgen wegens te duur (literal: That idea
became soon archived because of too expensive).
This pattern provided a more general description
of forms such as wegens te breed (because it is
too wide), wegens te deprimerend (because it is
too depressing), wegens niet rendabel (because it
is not profitable), and wegens te ondraaglijk (be-
cause it is too unbearable).

While instances of both patterns were found us-
ing the word n-gram based miner, patterns consol-
idate different instances. For example, there were
120 forms with a high suspicion containing the
word wegens. If such a form is corrected, the other
examples may still need to be checked to see if a
solution to the parsing problem is comprehensive.
The pattern gives a more general description of the
problem, and as such, most of these 120 forms can
be represented by the pattern wegens Prep Adj.

Since we are still optimizing the pattern ex-
pander to scale to large corpora, we have not per-
formed an automatic evaluation using the Dutch
Wikipedia yet.

7 Conclusions

We combined iterative error mining with expan-
sion of forms to n-grams of an arbitrary length,
that are long enough to capture interesting phe-
nomena, but not longer. We dealt with the prob-
lem of data sparseness by introducing an expan-
sion factor that softens when the expanded form is
very frequent.

In addition to the generalization of iterative er-
ror mining, we introduced a method for automatic

evaluation. This allows us to test modifications to
the error miner without going through the tedious
task of ranking and judging the results manually.

Using this automatic evaluation method, we
have shown that iterative error mining improves
upon ratio-based error mining. As expected,
adding bigrams improves performance. Allowing
expansion beyond bigrams can lead to data sparse-
ness problems, but if we correct for data sparse-
ness the performance of the miner improves over
mining on just unigrams and bigrams.

We have also described preliminary work on
a preprocessor that allows for more general pat-
terns that incorporate additional information, such
as part of speech tags and lemmas. We hope to
optimize and improve pattern-based mining in the
future and evaluate it automatically on larger cor-
pora.

The error mining methods described in this pa-
per are generic, and can be used for any grammar
or parser, as long as the sentences within the cor-
pus can be divided in a list of parsable and un-
parsable sentences. The error miner is freely avail-
able5, and is optimized to work on large corpora.
The source distribution includes a graphical user
interface for browsing mining results, showing the
associated sentences, and removing forms when
they have been corrected in the grammar or lex-
icon.
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