
Proceedings of the Workshop on BioNLP: Shared Task, pages 28–36,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

UZurich in the BioNLP 2009 Shared Task

Kaarel Kaljurand
Institute of

Computational Linguistics
University of Zurich

Switzerland
kalju@cl.uzh.ch

Gerold Schneider
Institute of

Computational Linguistics
University of Zurich

Switzerland
gschneid@cl.uzh.ch

Fabio Rinaldi∗
Institute of

Computational Linguistics
University of Zurich

Switzerland
rinaldi@cl.uzh.ch

Abstract

We describe a biological event detection
method implemented for the BioNLP 2009
Shared Task 1. The method relies entirely on
the chunk and syntactic dependency relations
provided by a general NLP pipeline which was
not adapted in any way for the purposes of
the shared task. The method maps the syn-
tactic relations to event structures while be-
ing guided by the probabilities of the syntactic
features of events which were automatically
learned from the training data. Our method
achieved a recall of 26% and a precision of
44% in the official test run, under “strict equal-
ity” of events.

1 Introduction

This paper describes the adaptation of an existing
text mining system to the BioNLP shared task. The
system has been originally created for participation
in the BioCreative1 protein-protein interaction task
(Rinaldi et al., 2008) and further developed for an
internal project based on the IntAct dataset of pro-
tein interactions (Kerrien et al., 2006). We decided
to participate only in Task 1 of the BioNLP shared
task, mainly because of lack of time and resources.

Our event annotation method relied on various
preprocessing steps and an existing state of the art
dependency parser, which provided the input to the
event annotator. As all the linguistic processing was
performed by the preprocessor and the parser, the
ideas implemented for the event annotator could re-
main simple while still producing reasonable results.
∗Corresponding author
1http://www.biocreative.org/

Thus, the event annotator performed a straightfor-
ward rewriting of syntactic structures to event struc-
tures, guided by the information on the syntactic
nature of events that we obtained from the train-
ing data. In this sense our system can be used as
a reference for a comparison to other systems that
rely completely on a dependency parser delivered
analysis that is rewritten into event structures using
knowledge gained from the training data.

Our system consists of a preprocessing phase that
uses a pipeline of NLP tools, described in section 2
of this paper. Linguistic resources are learned auto-
matically from the preprocessed training data (sec-
tion 3). A Prolog-implemented event generator is
applied directly to the preprocessing results and is
guided by the relative frequencies of syntactic fea-
tures provided in the resources (section 4). This
is followed by a postprocessing step that removes
some unlikely event structures, makes sure that all
events that violate the well-formedness rules are fil-
tered out, and finally serializes the event structures
into the requested output format. In section 5 we
present an illustrative example of the events gener-
ated by this approach and discuss some implications
of the event model adopted in the shared task. In
section 6, we describe the evaluation that we per-
formed during the training period, the final official
results on the test data, and some alternative evalu-
ations performed in parallel to the official one. In
section 7 we draw conclusions and describe future
work.

2 Preprocessing

Aside from a format conversion step necessary to
deal with the data provided by the shared task, the

28



preprocessing phase is largely based on an existing
pipeline of NLP tools, that we have developed in the
OntoGene project2 (Rinaldi et al., 2006; Rinaldi et
al., 2008).

2.1 Tokenization, sentence splitting,
part-of-speech tagging

For tokenization, sentence splitting, and part-of-
speech (POS) tagging we used LingPipe3. Ling-
Pipe produces very granular tokens by default, e.g.
a character sequence from abstract 10395645

caspase-3-like (CPP32/Yama/apopain)

which contains multiple hyphens and slashes (as
usual for biomedical texts) is split into 12 (rather
than just 4) tokens

caspase, -, 3, -, like, (, CPP32, /, Yama, /,
apopain, )

allowing a more detailed detection of terms
(shown in boldface in the examples) and trigger-
words which would stay token-internal if a less gran-
ular tokenization was used.

The models used for sentence splitting and POS-
tagging come with the LingPipe distribution and are
trained on the GENIA corpus (Kim et al., 2003),
thus providing a biomedical text aware sentence
splitting and POS-tagging.

2.2 Term annotation
Correctly detecting multi-word terms in the text can
substantially improve the parsing results, because
long noun sequences would be grouped together and
the parser can only focus on the heads of the groups
and ignore the rest. In this task, however, we de-
cided to keep things simple and rely on chunking as
the only means of noun grouping.

Thus, we only annotated the terms provided by
the task organizers in the a1-files (i.e. protein men-
tions). We made the assumption that terms are se-
quences of tokens as defined by the LingPipe tok-
enizer. Whereas in the vast majority of cases this co-
incides with the tokenization used by the organizers,
there are 10 cases in the training data where this as-
sumption is violated (e.g. ‘IkappaB-alphaS32/36A’

2http://www.ontogene.org/
3http://alias-i.com/lingpipe/

contains the term ‘IkappaB-alpha’ but according to
LingPipe, the tokens are ‘IkappaB’, ‘-’, ‘alphaS32’,
‘/’, ‘36A’).

As the last step of term annotation, we recon-
nected tokens which were separated by hyphens and
slashes, unless the tokens were part of terms. This
allowed for a more reliable processing with tools
which are not optimized to deal with symbols like
hyphens and slashes if these are padded with white-
space.

2.3 Lemmatization using Morpha

Lemmatization was performed using Morpha (Min-
nen et al., 2001), which provides an accurate lemma-
tization given that the input contains part-of-speech
information. We used the lemma information even-
tually only as part of the input to the dependency
parser, i.e. for the other aspects of event annotation
lemmas were ignored.

2.4 Chunking using LTCHUNK

Chunking can considerably reduce parsing com-
plexity, while hardly affecting performance (Prins,
2005). In order to group contiguous sequences of
nouns and verbs, we used LTCHUNK (Mikheev,
1997). LTCHUNK annotates all noun and verb
groups in the sentences. A chunk is an important
unit in the analysis of biomedical texts. Consider an
NP chunk like

T cell-receptor-induced FasL upregula-
tion

which contains two event triggers, amounting to a
mention of a complex event.

After applying LTCHUNK, we also detected
chunk heads, with a simple algorithm — select last
noun in noun groups, select last verb in verb groups.
This selection is done on the basis of POS-tags.

2.5 Dependency parsing using Pro3Gres

Pro3Gres (Schneider, 2008) is a robust, deep-
syntactic, broad-coverage probabilistic dependency
parser, which identifies grammatical relations be-
tween the heads of chunks, including the majority
of long-distance dependencies. The output is a hi-
erarchical structure of relations (represented as the
directed arrows in the example shown in figure 1).

29



Figure 1: Dependency-syntax tree of the title of abstract 9360945: “Transcription factor NF-kappaB regulates in-
ducible Oct-2 gene expression in precursor B lymphocytes.” The dependency relations link together the heads of the
5 chunks.

The parser uses a hand-written grammar express-
ing linguistic competence, and a statistical language
model that calculates lexicalized attachment proba-
bilities, thus expressing linguistic performance. The
parser expresses distinctions that are especially im-
portant for a predicate-argument based deep syntac-
tic representation, as far as they are expressed in
the training data generated from the Penn Treebank
(Marcus et al., 1993). This includes prepositional
phrase attachments, control structures, appositions,
relative clause anaphora, participles, gerunds, and
argument/adjunct distinctions. The dependency la-
bel set is similar to the one used in the Stanford
scheme, the parser achieves state-of-the-art perfor-
mance (Haverinen et al., 2008).

We have slightly adapted Pro3Gres to the biomed-
ical domain. A class of nouns that varies consider-
ably in the biomedical domain are relational nouns.
They are syntactically marked because they can have
several prepositional phrase arguments. Biomedical
relational nouns like ‘overexpression’ or ‘transcrip-
tion’ are absent from the Penn Treebank or rare. We
have used an unsupervised approach based on (Hin-
dle, D and Rooth, M, 1991) to learn relational nouns
from Medline.

A new relation type, hyph, has been added to con-
nect tokens to hyphens and slashes, and thus better
deal with these characters in biomedical texts.

2.6 Preprocessor output

The preprocessor produces 5 Prolog-formatted files
for each abstract. Each of these files is token-
centered and affiliates a token ID with a group (ei-
ther sentence, chunk, or term) that contains this to-
ken, or maps it to a syntactically related (either as
the head or the dependent) token.

• Tokens maps each token to its lemma, POS-
tag, and character offsets

• Chunks maps each token to its containing
chunk, chunk’s type (noun or verb group), and
chunk’s head

• Terms maps each token to its containing term,
term’s type, term’s ID (assigned by the a1-file,
or the a2-file in case of processing the training
data)

• Sentences maps each sentence ID to the list of
IDs of the tokens in the sentence

• Dependencies maps each token to its imme-
diate head and dependent, and to the types of
these dependency relations

These files are the input to the resource generator
described below, and later (together with the gener-
ated resources), the input to the event annotator.

3 Resources

The 800 abstracts of the training data were used
during development for the generation of three re-
sources which are described in this section. For the
official testing we used the concatenation of training
and development data (i.e. 950 abstracts). The re-
sources were generated automatically from the a1-
and a2-files; and from the preprocessed version of
txt-, a1- and a2-files. The resulting data files include
frequencies of the total occurrence of an item (e.g.
word, syntactic configuration) and the frequency of
its occurrence in an event.

All the words in the resources were lowercased
but not lemmatized. Resources were stored as
Prolog-formatted files.

30



Frequency Event type Event arguments
149 Gene expression Theme(T)
28 Transcription Theme(T)

2 Localization Theme(T), AtLoc(T)
1 Positive regulation Theme(T)
1 Positive regulation Theme(E)

Table 1: Frequency distribution of the event structures
that are triggered by the word form ‘expressed’ which in
total triggered an event 181 times in the training data. ‘T’
means that the argument is filled by a term, ‘E’ means
that the argument is filled by an event.

3.1 Words
The word frequencies file provides a simple prob-
abilistic model for excluding stopwords, as we ob-
served that many different function words some-
times triggered events in the training data. We
wanted to exclude such words to obtain a better pre-
cision. The words-resource can be queried using a
simple interface

word_to_freq(+Word, -F)

which maps every word to its frequency.

3.2 Event types and arguments
Using the training data, we created a mapping from
each candidate trigger-word to the possible event
types and the permissible event frames. A sample of
this mapping is illustrated in table 1. The arguments
have a type (e.g. Theme) but their filler is abstracted
to be either ‘T’ (for terms) or ‘E’ (for events).

This resource can be queried via the interface
eword_to_event(+EventWord,

-EventType, -EventArgs, -F1, -F2)

which maps every trigger-word to its possible
event type and arguments. The returned frequencies
show how often the event structure was triggered
by the trigger-word, and how often the trigger-word
triggered an event in total.

3.3 Domination paths between terms
The most sophisticated of the resources that we
generated recorded the syntactic paths between the
terms (from a1- and a2-files) observed in the train-
ing data, and counted how often these paths were
present in events, connecting triggers with event ar-
gument fillers. With each term, also its type (e.g.
Positive regulation, Protein) was recorded.

For the syntactic paths, we only considered dom-
ination paths where one of the terms is the head and
the other the dependent, defined as follows.

Definition 1 (Domination between chunks)
Term t1 dominates term t2 if t1 ∈ c1 and
t2 ∈ c2 and there exists a directed syntactic path
h(c1) → . . . → h(c2), where h(·) is the head of the
given chunk.

For example, in figure 1, the term ‘regulates’
dominates all the other tokens, among them the term
‘expression’ (which is the head of its chunk), and the
Protein-term ‘Oct-2’. Note that this definition does
not require the terms to be in the chunk head posi-
tion. However, this decision did not affect the results
significantly.

The chunk-internal domination relation is defined
for terms which are chunk-internal and thus “invisi-
ble” to the dependency parser because the parser ig-
nores everything but the head of the chunk. This re-
lation captures the default syntactic dependency be-
tween nouns in noun groups where the head noun
usually follows its dependents.

Definition 2 (Chunk-internal domination) Term
t1 dominates term t2 if t1, t2 ∈ c and i(t1) > i(t2),
where i(·) is the sequential index of the given term
in the chunk.

For example, in figure 1, in the 3rd chunk, the
term ‘expression’ dominates the terms ‘Oct-2’ and
‘inducible’; and furthermore, ‘Oct-2’ dominates ‘in-
ducible’.

The stored syntactic path is a list of dependency
relations from the dependent to the head, or an
empty list if both terms are in the same chunk.

Instead of domination, we also considered using
the asymmetric relation of “connectedness”, where
two terms are connected if either of the terms dom-
inates the other, or if both are dominated by some
token in the tree. This relation, however, seemed to
decrease precision much more than increase recall.

In order to query the domination resource we
designed a simple query interface that allows for
partially instantiated input. For example the query
(where the underscores denote uninstantiated parts)

?- find_path_freq(bind, ’Binding’,
_, ’Protein’,

[modpp | _ ],
F1, F2).

31



asks how often there is a domination relation be-
tween the head term ‘bind’ if it has the type Bind-
ing and some dependent term with type Protein,
such that the dependency path starts with the rela-
tion modpp. The frequency counts resulting from
this query tell the frequency of this configuration in
events (F1), and in total (F2). This information al-
lows the computation of the conditional probability
of an argument of an event given the event type, the
trigger-word, the argument word, the argument type,
and the syntactic path between trigger and argument.

4 Event generation

The event generation relied fully on the syntax tree
and chunk information that was delivered by the pre-
processing module. No fall-back to a surface co-
occurrence of words was used. We only considered
words and structures seen in the training data as pos-
sible parts of events. Such a design entails relatively
good precision at lower recall.

For each of the generation steps described below,
a probability threshold decided whether to continue
the “building” of the event given the trigger-word,
the event arguments template or the argument in-
stantiation. The thresholds were set manually after
some experimentation. We did not try to automat-
ically decide the best performing thresholds. Deci-
sions are taken locally, possibly cutting some local
minima. A simple maximum-likelihood estimation
(MLE) approach was used.

4.1 Trigger generation

Trigger candidates were generated from the token
list of each sentence in the analyzed abstract. Fig-
ure 2 shows a browser-based visualization approach
that we created as a support in our work. In the case
of the training data, the annotations come the a1-
and a2-files provided by the organizers. In the case
of the development and test data, the annotations for
the triggers are those generated by the system.

We only considered one-token trigger-words be-
cause multi-token triggers were less frequent in the
training data, where only about 8% of the trigger-
word forms contained a space character. Also, many
of these multiword triggers contain a token that ex-
ists as a trigger on its own (e.g. ‘transcriptional reg-
ulation’ triggers the Regulation-event in the training

data, as does ‘regulation’), allowing us to generate a
sensible event structure even if it does not match a
gold standard event under the “strict equality”. To-
kens that had been seen to trigger an event in the
training data with probability higher than 0.12 were
considered further.

In MLE terms, we calculate the probability of a
given token to be a trigger as follows:

p(Trigger |Token) =
f(Token ∧ (Token = Trigger))

f(Token)
(1)

4.2 Event type and arguments template
generation

Next, trigger-words were mapped to event type and
argument template structures. In MLE terms, we
calculated the probability of an event structure (i.e.
the combination of event type and arguments tem-
plate) given the trigger-word.

p(EventStruct |Trigger) =
f(Trigger ∧ EventStruct)

f(Trigger)
(2)

Again, only high probability structures were con-
sidered further. We used the probability threshold of
0.25 for simple event structures (i.e. not containing
nested events), and 0.1 for complex event structures
(only regulation events in the shared task).

4.3 Event argument filling
The inclusion of a protein as an argument of an event
was based on the syntactic domination of the trigger
of the event over the term of the protein. We at-
tempted to generate simple events of all types seen
in the training data.

For complex events, the trigger-words of the main
and the embedded events had to be in a domination
relationship. We generated regulation-events with
only 1-level embedding. Although more complex
embeddings are possible (see example below), these
are not very frequent.

prevents T cell-receptor-induced FasL
upregulation

In order to flexibly deal with sparse data, we per-
formed a sequence of queries, one less instantiated

32



Figure 2: Example of an annotated sentence from abstract 10080948 in the training data.

than the previous one, weighted the results accord-
ingly and calculated the weighted mean to be the fi-
nal probability for including the argument.
find_path_freq(HWord, HType, DWord, DType, Path,

C1_1, C2_1),
find_path_freq(_, HType, _, DType, Path,

C1_2, C2_2),
find_path_freq(_, HType, _, DType, _,

C1_3, C2_3)

In MLE terms, we calculate the probability that
a syntactic configuration fills an argument slot.
Syntactic configurations consist of the head word
HWord, the head event type HType, the dependent
word DWord, the dependent event type DType, and
the syntactic path Path between them.

p(Arg |HWord, HType, DWord, DType, Path) =
1

w1+w2+w3
∗ (

w1 ∗ f(HWord, HType, DWord, DType, Path∧Arg)

f(HWord, HType, DWord, DType, Path)
+

w2 ∗ f(HType, DType, Path∧Arg)

f(HType, DType, Path)
+

w3 ∗ f(HType, DType∧Arg)

f(HType, DType)
) (3)

The weigths were set as w1 = 3, w2 = 2 and
w3 = 1.2. The fact that the weights decrease ap-
proximates a back-off model. Only if the final prob-
ability was higher than 0.3 the event was further con-
sidered. For complex events, we used formula 3 as
given, but for simple events, where DWord is a pro-
tein, DWord was always left uninstantiated.

4.4 Postprocessing
During the postprocessing step some unlikely event
structures were filtered out. This filtering is delayed
until all the events have been generated, because ex-
cluding the unwanted events is difficult during cre-
ation time as sometimes extrospection is required.
Also, the postprocessing step acts as a safety net
that filters out well-formedness errors (e.g. argu-
ment sharing violations), thus making sure that the
submission to the evaluation system is not rejected
by the system. Finally, the set of generated events is
serialized into the BioNLP a2-format.

5 Example and discussion

As an example of application of our approach, con-
sider again the syntactic tree shown in figure 1.
Our approach results in the generation of the events
shown in figure 3, given that ‘regulates’, ‘inducible’,
and ‘expression’ are trigger-words, and ‘Oct-2’ is an
a1-annotated protein.

Figure 3: Visualization of two simple event structures
regulates(Oct-2) and expression(Oct-2), and a complex
structure regulates(expression(Oct-2)).

We call events like regulates(Oct-2) “shortcut
events”, as there exists an alternative and longer
path — regulates(expression) and expression(Oct-2)
— that connects the trigger to its event argument.
These “shortcut events” are filtered out in the post-
processing step as unlikely events.

It is useful to observe that the particular view of
event structures defined by the BioNLP shared task
is by no means unchallenged. Whether nested events
are necessary in a representation of biological rele-
vant relations is a question which is open to debate.
While from the linguistic perspective they do offer a
more adequate representation of the content matter
of the text, from the biological point of view these
structures are redundant in many cases. The exam-
ple used in this section is illustrative.

From the biologist’s perspective, “A regulates the
expression of B” is a way to express that A regu-
lates B. Obviously such a short-circuit is not in all
cases possible, but the point is that the biologist

33



might be interested only in the direct biological in-
teractions, and be inclined to ignore the linguistic
representation of that interaction. This is the point
of view taken for example in the Protein-Protein
Interaction task of the latest BioCreative competi-
tion (Krallinger et al., 2008). In that case, all lin-
guistic structures used to better characterize the in-
teraction are purposefully ignored, and only the bare
interaction is preserved.

Since BioCreative aimed at simulating the pro-
cess of database curation, and was based on datasets
provided by real-word interaction databases such as
IntAct (Kerrien et al., 2006) and MINT (Zanzoni et
al., 2002), there is reasonable motivation for taking
this alternative view into consideration. At the very
least, a mapping from complex events to simple in-
teractions should always be provided.

The difference in the approach towards interpre-
tation of literature fragments has a direct impact on
the resources used and the success of each approach.
Our own development in the past couple of years has
been driven by the BioCreative model (Rinaldi et al.,
2008), and therefore we tended to ignore intermedi-
ate structures in protein interactions. For example,
in (Schneider et al., 2009) we present a lexical re-
source that aims at capturing “transparent” relations,
i.e. words that express a relation that from the bio-
logical point of view can be ignored because of its
transitivity properties, such as “expression of Oct-
2” in the example above. This resource, although
certainly useful from the biological point of view,
proved to be useless in the shared task, due to the
different level of granularity in the representation of
events.

6 Official evaluation and additional
experiments

We mainly trained and evaluated using the “strict
equality” evaluation criteria as our reference. The
results on the development data are shown in table
2. With more relaxed equality definitions, the results
were always a few percentage points better. Our re-
sults in the official testrun are shown in table 3.

Good results for some event structures (notably
Phosphorylation) are due to the simple textual repre-
sentation of these events. For example, Phosphory-
lation is always triggered by a form or derivation of

‘phosphorylate’, and these forms rarely trigger any
other types of events. Furthermore, according to the
parsed training data, the probability of a Phospho-
rylation-event, given a syntactic domination relation
between a Phosphorylation-trigger and a protein is
0.92. Also, 56% of these domination paths are ei-
ther chunk-internal or over a single modpp depen-
dency relation, making them easy to detect.

In parallel to the approach used in our official sub-
mission we considered some variants, aimed at max-
imizing either recall or precision, as well as an alter-
native approach based on machine learning.

A high recall baseline method, which generates
all possible event structures in a given sentence,
achieves 81% recall on simple events, with preci-
sion dropping to 11%. One of the reasons why this
method does not reach 100% recall is the fact that
it only annotates event candidates with single-token
triggers that have been seen in the training data.

The filter described in section 4.3 has a major ef-
fect on precision. If it is removed, precision drops
by 11%, while the gain in recall is only 3% — re-
call 35.10%, precision 37.88%, F-score 36.44%. In-
stead, if we keep w1 but set w2 = w3 = 0 in formula
3, precision increases to 56%, while recall drops to
27%. Increasing the probability thresholds to further
improve precision results in the precision of 60% but
this remains the ceiling in our experiments.

Additionally, we performed separate experiments
with a machine-learning approach which considers
a more varied set of features, including surface in-
formation and syntax coming from an ensemble of
parsers. However, the limited time and resources
available to us during the competition did not al-
low us to go beyond the results achieved using the
approach described in detail in this paper. Since
our best score on the development data was 27%
(about 10% inferior to our consolidated approach),
we opted for not considering this approach in our
official submission.

The fact that this approach was based on a de-
composition of events into their arguments led us to
realize some fundamental limitations in the official
evaluation measures. In particular, none of the orig-
inally implemented measures would give credit to
the partial recognition of an event (i.e. correct trig-
ger word and at least one correct argument, but not
all). We contend that such partial recognition can be

34



Event class Precision Recall F-Score True pos. False pos. False neg.
Simple events 56.71 48.20 52.11 389 297 418
Complex events 38.03 19.25 25.56 189 308 793
All events 48.86 32.31 38.90 578 605 1211

Table 2: Results on the development data of 150 abstracts, measured using “strict equality”.

Event class gold (match) answer (match) Recall Precision F-Score
Localization 174 (31) 34 (31) 17.82 91.18 29.81
Binding 347 (102) 287 (102) 29.39 35.54 32.18
Gene expression 722 (370) 515 (370) 51.25 71.84 59.82
Transcription 137 (28) 148 (28) 20.44 18.92 19.65
Protein catabolism 14 (8) 16 (8) 57.14 50.00 53.33
Phosphorylation 135 (78) 84 (78) 57.78 92.86 71.23
Simple events total 1529 (617) 1084 (617) 40.35 56.92 47.23
Regulation 291 (29) 120 (29) 9.97 24.17 14.11
Positive regulation 983 (138) 533 (138) 14.04 25.89 18.21
Negative regulation 379 (55) 158 (55) 14.51 34.81 20.48
Complex events total 1653 (222) 811 (222) 13.43 27.37 18.02
All events total 3182 (839) 1895 (839) 26.37 44.27 33.05

Table 3: Results on the test data of 260 abstracts, measured using “strict equality”, as reported by the BioNLP 2009
online evaluation system.

useful in a practical annotation task, and yet the of-
ficial scores doubly punish such an outcome (once
as a FP and once as a FN). This is a problem already
observed in previous evaluation challenges, however
we believe that a simple solution in this case consists
in decomposing the events (for evaluation purposes)
in their constituent roles and arguments. In other
words, each event is given as much “weight” as its
number of roles. The correct recognition of an event
with two roles would therefore lead to two TP, but its
partial recognition (one argument) would still lead
to one TP, which we think is a more fair evaluation
in case of partial recognition. Our suggestion was
later implemented by the organizers as an additional
scoring criteria.

7 Conclusions and future work

We have described a biological event detection
method that relies on the chunk and syntactic de-
pendency relations obtained during the preprocess-
ing stage. No fall-back strategy that is based on e.g.
surface patterns was designed for this task. This is
consistent with our approach to biomedical event de-
tection — relation extraction is entirely based on ex-
isting syntactic information about the sentences, and

can be ported easily if the definition of relations and
events is changed, as in the case of other competi-
tions which use a different notion of relations (e.g.
BioCreative).

As the chunker and the dependency parser form
a core of the described system, their limitations and
improvements have a fundamental effect on the fur-
ther processing. In parallel to a thorough error anal-
ysis which can drive further development of our con-
solidated approach, we intend to further explore the
enhanced flexibility provided by the machine learn-
ing approach briefly mentioned in section 6. In both
cases, we intend to use the BioNLP shared task eval-
uation site as a reference in order to compare them,
not only against each other, but also against the re-
sults of other participants.

Acknowledgements

This research is partially funded by the Swiss Na-
tional Science Foundation (grant 100014-118396/1).
Additional support is provided by Novartis Pharma
AG, NITAS, Text Mining Services, CH-4002, Basel,
Switzerland. The authors would like to thank the
two anonymous reviewers of BioNLP 2009 for their
valuable feedback.

35



References

[Haverinen et al.2008] Katri Haverinen, Filip Ginter,
Sampo Pyysalo, and Tapio Salakoski. 2008. Accu-
rate conversion of dependency parses: targeting the
stanford scheme. In Proceedings of Third Interna-
tional Symposium on Semantic Mining in Biomedicine
(SMBM 2008), Turku, Finland.

[Hindle, D and Rooth, M1991] Hindle, D and Rooth, M.
1991. Structural Ambiguity and Lexical Relations.
Meeting of the Association for Computational Linguis-
tics, pages 229–236.

[Kerrien et al.2006] S. Kerrien, Y. Alam-Faruque,
B. Aranda, I. Bancarz, A. Bridge, C. Derow, E. Dim-
mer, M. Feuermann, A. Friedrichsen, R. Huntley,
C. Kohler, J. Khadake, C. Leroy, A. Liban, C. Lieftink,
L. Montecchi-Palazzi, S. Orchard, J. Risse, K. Robbe,
B. Roechert, D. Thorneycroft, Y. Zhang, R. Apweiler,
and H. Hermjakob. 2006. IntAct — Open Source
Resource for Molecular Interaction Data. Nucleic
Acids Research.

[Kim et al.2003] J.D. Kim, T. Ohta, Y. Tateisi, and J. Tsu-
jii. 2003. GENIA corpus — a semantically annotated
corpus for bio-textmining. Bioinformatics, 19(1):180–
182.

[Krallinger et al.2008] Martin Krallinger, Florian Leit-
ner, Carlos Rodriguez-Penagos, and Alfonso Valencia.
2008. Overview of the protein-protein interaction an-
notation extraction task of BioCreative II. Genome Bi-
ology, 9(Suppl 2):S4.

[Marcus et al.1993] M Marcus, B Santorini, and
M Marcinkiewicz. 1993. Building a Large An-
notated Corpus of English: the Penn Treebank.
Computational Linguistics, 19:313–330.

[Mikheev1997] A Mikheev. 1997. Automatic rule induc-
tion for unknown word guessing. Computational Lin-
guistics, 23(3):405–423.

[Minnen et al.2001] G Minnen, J Carroll, and D Pearce.
2001. Applied morphological processing of English.
Natural Language Engineering, 7(3):207–223.

[Prins2005] Robbert Prins. 2005. Finite-State Pre-
Processing for Natural Language Analysis. Ph.D. the-
sis, Behavioral and Cognitive Neurosciences (BCN)
research school, University of Groningen.

[Rinaldi et al.2006] Fabio Rinaldi, Gerold Schneider,
Kaarel Kaljurand, Michael Hess, and Martin Ro-
macker. 2006. An Environment for Relation Mining
over Richly Annotated Corpora: the case of GENIA.
BMC Bioinformatics, 7(Suppl 3):S3.

[Rinaldi et al.2008] Fabio Rinaldi, Thomas Kappeler,
Kaarel Kaljurand, Gerold Schneider, Manfred Klen-
ner, Simon Clematide, Michael Hess, Jean-Marc von
Allmen, Pierre Parisot, Martin Romacker, and Therese

Vachon. 2008. OntoGene in BioCreative II. Genome
Biology, 9(Suppl 2):S13.

[Schneider et al.2009] Gerold Schneider, Kaarel Kalju-
rand, Thomas Kappeler, and Fabio Rinaldi. 2009.
Detecting protein-protein interactions in biomedical
texts using a parser and linguistic resources. In CI-
CLing 2009, 10th International Conference on Intel-
ligent Text Processing and Computational Linguistics,
Mexico City, Mexico.

[Schneider2008] Gerold Schneider. 2008. Hybrid Long-
Distance Functional Dependency Parsing. Ph.D. the-
sis, Faculty of Arts, University of Zurich.

[Zanzoni et al.2002] A. Zanzoni, L. Montecchi-Palazzi,
M. Quondam, G. Ausiello, M. Helmer-Citterich, and
G. Cesareni. 2002. MINT: a Molecular INTeraction
database. FEBS Letters, 513(1):135–140.

36


