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Abstract

The paper presents the design and implemen-
tation of the BioNLP’09 Shared Task, and
reports the final results with analysis. The
shared task consists of three sub-tasks, each of
which addresses bio-molecular event extrac-
tion at a different level of specificity. The data
was developed based on the GENIA event cor-
pus. The shared task was run over 12 weeks,
drawing initial interest from 42 teams. Of
these teams, 24 submitted final results. The
evaluation results are encouraging, indicating
that state-of-the-art performance is approach-
ing a practically applicable level and revealing
some remaining challenges.

1 Introduction

The history of text mining (TM) shows that shared
tasks based on carefully curated resources, such
as those organized in the MUC (Chinchor, 1998),
TREC (Voorhees, 2007) and ACE (Strassel et al.,
2008) events, have significantly contributed to the
progress of their respective fields. This has also been
the case inbio-TM. Examples include the TREC Ge-
nomics track (Hersh et al., 2007), JNLPBA (Kim et
al., 2004), LLL (Ńedellec, 2005), and BioCreative
(Hirschman et al., 2007). While the first two ad-
dressedbio-IR (information retrieval) andbio-NER
(named entity recognition), respectively, the last two
focused onbio-IE (information extraction), seeking
relations between bio-molecules. With the emer-
gence of NER systems with performance capable of
supporting practical applications, the recent interest
of the bio-TM community is shifting toward IE.

Similarly to LLL and BioCreative, the
BioNLP’09 Shared Task (the BioNLP task, here-
after) also addresses bio-IE, but takes a definitive
step further toward finer-grained IE. While LLL and
BioCreative focus on a rather simple representation
of relations of bio-molecules, i.e. protein-protein
interactions (PPI), the BioNLP task concerns the
detailed behavior of bio-molecules, characterized as
bio-molecular events (bio-events). The difference in
focus is motivated in part by different applications
envisioned as being supported by the IE methods.
For example, BioCreative aims to support curation
of PPI databases such as MINT (Chatr-aryamontri
et al., 2007), for a long time one of the primary tasks
of bioinformatics. The BioNLP task aims to support
the development of more detailed and structured
databases, e.g. pathway (Bader et al., 2006) or Gene
Ontology Annotation (GOA) (Camon et al., 2004)
databases, which are gaining increasing interest
in bioinformatics research in response to recent
advances in molecular biology.

As the first shared task of its type, the BioNLP
task aimed to define a bounded, well-defined bio-
event extraction task, considering both the actual
needs and the state of the art inbio-TM technology
and to pursue it as a community-wide effort. The
key challenge was in finding a good balance between
the utility and the feasibility of the task, which was
also limited by the resources available. Special con-
sideration was given to providing evaluation at di-
verse levels and aspects, so that the results can drive
continuous efforts in relevant directions. The pa-
per discusses the design and implementation of the
BioNLP task, and reports the results with analysis.
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Type Primary Args. Second. Args.
Geneexpression T(P)
Transcription T(P)
Proteincatabolism T(P)
Phosphorylation T(P) Site
Localization T(P) AtLoc, ToLoc
Binding T(P)+ Site+
Regulation T(P/Ev), C(P/Ev) Site, CSite
Positiveregulation T(P/Ev), C(P/Ev) Site, CSite
Negativeregulation T(P/Ev), C(P/Ev) Site, CSite

Table 1: Event types and their arguments. The type of the
filler entity is specified in parenthesis. The filler entity
of the secondary arguments are all ofEntity type which
represents any entity but proteins: T=Theme, C=Cause,
P=Protein, Ev=Event.

2 Task setting

To focus efforts on the novel aspects of the event
extraction task, is was assumed that named entity
recognition has already been performed and the task
was begun with a given set of gold protein anno-
tation. This is the only feature of the task setting
that notably detracts from its realism. However,
given that state-of-the-art protein annotation meth-
ods show a practically applicable level of perfor-
mance, i.e. 88% F-score (Wilbur et al., 2007), we
believe the choice is reasonable and has several ad-
vantages, including focus on event extraction and ef-
fective evaluation and analysis.

2.1 Target event types

Table 1 shows the event types addressed in the
BioNLP task. The event types were selected from
the GENIA ontology, with consideration given to
their importance and the number of annotated in-
stances in the GENIA corpus. The selected event
types all concern protein biology, implying that they
take proteins as their theme. The first three types
concern protein metabolism, i.e. protein production
and breakdown. Phosphorylation is a representa-
tive protein modification event, and Localization and
Binding are representative fundamental molecular
events. Regulation (including its sub-types, Posi-
tive and Negativeregulation) represents regulatory
events and causal relations. The last five are uni-
versal but frequently occur on proteins. For the bio-
logical interpretation of the event types, readers are
referred to Gene Ontology (GO) and the GENIA on-
tology.

The failure of p65 translocation to the nucleus . . .
T3 (Protein, 40-46)
T2 (Localization, 19-32)
E1 (Type:T2, Theme:T3, ToLoc:T1)
T1 (Entity, 15-18)
M1 (Negation E1)

Figure 1: Example event annotation. The protein an-
notation T3 is given as a starting point. The extraction
of annotation in bold is required for Task 1, T1 and the
ToLoc:T1 argument for Task 2, and M1 for Task 3.

As shown in Table 1, the theme or themes of all
events are considered primary arguments, that is, ar-
guments that are critical to identifying the event. For
regulation events, the entity or event stated as the
causeof the regulation is also regarded as a primary
argument. For some event types, other arguments
detailing of the events are also defined (Secondary
Args. in Table 1).

From a computational point of view, the event
types represent different levels of complexity. When
only primary arguments are considered, the first five
event types require only unary arguments, and the
task can be cast as relation extraction between a
predicate (event trigger) and an argument (Protein).
The Binding type is more complex in requiring the
detection of an arbitrary number of arguments. Reg-
ulation events always take a Theme argument and,
when expressed, also a Cause argument. Note that a
Regulation event may take another event as its theme
or cause, a unique feature of the BioNLP task com-
pared to other event extraction tasks, e.g. ACE.

2.2 Representation

In the BioNLP task, events are expressed using three
different types of entities.Text-bound entities(t-
entitieshereafter) are represented as text spans with
associated class information. The t-entities include
event triggers (Localization, Binding, etc), protein
references (Protein) and references to other entities
(Entity). A t-entity is represented by a pair, (entity-
type, text-span), and assigned an id with the pre-
fix “T”, e.g. T1–T3 in Figure 1. Aneventis ex-
pressed as ann-tuple of typed t-entities, and has
a id with prefix “E”, e.g. E1. Anevent modifi-
cation is expressed by a pair, (predicate-negation-
or-speculation, event-id), and has an id with prefix
“M”, e.g. M1.
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Item Training Devel. Test
Abstract 800 150 260
Sentence 7,449 1,450 2,447

Word 176,146 33,937 57,367
Event 8,597 / 8,615 1,809 / 1,815 3,182 / 3,193

Table 2: Statistics of the data sets. For events,
Task1/Task2 shown separately as secondary arguments
may introduce additional differentiation of events.

2.3 Subtasks

The BioNLP task targets semantically rich event ex-
traction, involving the extraction of several different
classes of information. To facilitate evaluation on
different aspects of the overall task, the task is di-
vided to three sub-tasks addressing event extraction
at different levels of specificity.

Task 1. Core event detection detection of typed,
text-bound events and assignment of given pro-
teins as their primary arguments.

Task 2. Event enrichment recognition of sec-
ondary arguments that further specify the
events extracted in Task 1.

Task 3. Negation/Speculation detection detection
of negations and speculation statements
concerning extracted events.

Task 1 serves as the backbone of the shared task and
is mandatory for all participants. Task 2 involves the
recognition ofEntity type t-entities and assignment
of those as secondary event arguments. Task 3 ad-
dresses the recognition of negated or speculatively
expressed events without specific binding to text. An
example is given in Fig. 1.

3 Data preparation

The BioNLP task data were prepared based on the
GENIA event corpus. The data for the training and
development sets were derived from the publicly
available event corpus (Kim et al., 2008), and the
data for the test set from an unpublished portion of
the corpus. Table 2 shows statistics of the data sets.

For data preparation, in addition to filtering out
irrelevant annotations from the original GENIA cor-
pus, some new types of annotation were added to
make the event annotation more appropriate for the
purposes of the shared task. The following sections
describe the key changes to the corpus.

3.1 Gene-or-gene-product annotation

The named entity (NE) annotation of the GENIA
corpus has been somewhat controversial due to dif-
ferences in annotation principles compared to other
biomedical NE corpora. For instance, the NE an-
notation in the widely applied GENETAG corpus
(Tanabe et al., 2005) does not differentiate proteins
from genes, while GENIA annotation does. Such
differences have caused significant inconsistency in
methods and resources following different annota-
tion schemes. To remove or reduce the inconsis-
tency, GENETAG-style NE annotation, which we
term gene-or-gene-product (GGP) annotation, has
been added to the GENIA corpus, with appropriate
revision of the original annotation. For details, we
refer to (Ohta et al., 2009). The NE annotation used
in the BioNLP task data is based on this annotation.

3.2 Argument revision

The GENIA event annotation was made based on
the GENIA event ontology, which uses a loose typ-
ing system for the arguments of each event class.
For example, in Figure 2(a), it is expressed that
the binding event involves two proteins, TRAF2
and CD40, and that, in the case of CD40, its cy-
toplasmic domain takes part in the binding. With-
out constraints on the type of theme arguments,
the following two annotations are both legitimate:

(Type:Binding, Theme:TRAF2, Theme:CD40)
(Type:Binding, Theme:TRAF2,

Theme:CD40 cytoplasmic domain)

The two can be seen as specifying the same event
at different levels of specificity1. Although both al-
ternatives are reasonable, the need to have consis-
tent training and evaluation data requires a consis-
tent choice to be made for the shared task.

Thus, we fix the types of all non-event
primary arguments to be proteins (specifically
GGPs). For GENIA event annotations involving
themes other than proteins, additional argument
types were introduced, for example, as follows:

1In the GENIA event annotation guidelines, annotators are
instructed to choose the more specific alternative, thus the sec-
ond alternative for the example case in Fig. 2(a).
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(a)

TRAF2 is a … which bindsto the CD40 cytoplasmic domain
GGP GGP PDR

(b)
HMG-I bindsto GATA motifs
GGP DDR

(c)
alpha B2 boundthe PEBP2 site within the GM-CSF promoter
GGP GGPDDR DDR

Figure 2: Entity annotation to example sentences
from (a) PMID10080948, (b) PMID7575565, and (c)
PMID7605990 (simplified).

(a)
Ah receptor recognizes the B cell transcription factor, BSAP

(b)
Grf40 binds to linker for activation of T cells (LAT)

(c)
expression of p21(WAF1/CIP1) and p27(KIP1)

(d)
included both p50/p50 and p50/p65 dimers

(e)
IL-4 Stat, also known as Stat6

Figure 3: Equivalent entities in example sentences from
(a) PMID7541987 (simplified), (b) PMID10224278, (c)
PMID10090931, (d) PMID9243743, (e) PMID7635985.

(Type:Binding, Theme1:TRAF2, Theme2:CD40,
Site2:cytoplasmic domain)

Note that the protein, CD40, and its domain, cyto-
plasmic domain, are associated by argument num-
bering. To resolve issues related to the mapping
between proteins and related entities systematically,
we introduced partial static relation annotation for
relations such as Part-Whole, drawing in part on
similar annotation of the BioInfer corpus (Pyysalo
et al., 2007). For details of this part of the revision
process, we refer to (Pyysalo et al., 2009).

Figure 2 shows some challenging cases. In (b),
the siteGATA motifsis not identified as an argument
of the binding event, because the protein containing
it is not stated. In (c), among the two sites (PEBP2
site and promoter) of the geneGM-CSF, only the
more specific one,PEBP2, is annotated.

3.3 Equivalent entity references

Alternative names for the same object are fre-
quently introduced in biomedical texts, typically
through apposition. This is illustrated in Figure 3(a),
where the two expressionsB cell transcription fac-
tor and BSAP are in apposition and refer to the

same protein. Consequently, in this case the fol-
lowing two annotations represent the same event:

(Type:Binding, Theme:Ah receptor,
Theme:B cell transcription factor)

(Type:Binding, Theme:Ah receptor, Theme:BSAP)

In the GENIA event corpus only one of these is an-
notated, with preference given to shorter names over
longer descriptive ones. Thus of the above exam-
ple events, the latter would be annotated. How-
ever, as both express the same event, in the shared
task evaluation either alternative was accepted as
correct extraction of the event. In order to im-
plement this aspect of the evaluation, expressions
of equivalent entities were annotated as follows:

Eq (B cell transcription factor, BSAP)

The equivalent entity annotation in the revised GE-
NIA corpus covers also cases other than simple ap-
position, illustrated in Figure 3. A frequent case in
biomedical literature involves use of the slash sym-
bol (“/”) to state synonyms. The slash symbol is
ambiguous as it is used also to indicate dimerized
proteins. In the case ofp50/p50, the twop50 are
annotated as equivalent because they represent the
same proteins at the same state. Note that although
rare, also explicitly introduced aliases are annotated,
as in Figure 3(e).

4 Evaluation

For the evaluation, the participants were given the
test data with gold annotation only for proteins. The
evaluation was then carried out by comparing the
annotation predicted by each participant to the gold
annotation. For the comparison, equality of anno-
tations is defined as described in Section 4.1. The
evaluation results are reported using the standard
recall/precision/f-score metrics, under different cri-
teria defined through the equalities.

4.1 Equalities and Strict matching

Equality of events is defined as follows:

Event Equality equality holds between any two
events when (1) the event types are the same,
(2) the event triggers are the same, and (3) the
arguments are fully matched.
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A full matching of arguments between two events
means there is a perfect 1-to-1 mapping between the
two sets of arguments. Equality of individual argu-
ments is defined as follows:

Argument Equality equality holds between any
two arguments when (1) the role types are the
same, and (2-1) both are t-entities and equality
holds between them, or (2-2) both are events
and equality holds between them.

Due to the condition (2-2), event equality is defined
recursively for events referring to events. Equality
of t-entities is defined as follows:

T-entity Equality equality holds between any two
t-entities when (1) the entity types are the same,
and (2) the spans are the same.

Any two text spans(beg1, end1) and(beg2, end2),
are the same iffbeg1 = beg2 and end1 = end2.
Note that the event triggers are also t-entities thus
their equality is defined by the t-entity equality.

4.2 Evaluation modes

Various evaluation modes can be defined by varying
equivalence criteria. In the following, we describe
three fundamental variants applied in the evaluation.
Strict matching Thestrict matchingmode requires
exact equality, as defined in section 4.1. As some
of its requirements may be viewed as unnecessarily
precise, practically motivated relaxed variants, de-
scribed in the following, are also applied.
Approximate span matching The approximate
span matchingmode is defined by relaxing the
requirement for text span matching for t-entities.
Specifically, a given span is equivalent to a gold
span if it is entirely contained within an extension
of the gold span by one word both to the left and
to the right, that is,beg1 ≥ ebeg2 and end1 ≤
eend2, where(beg1, end1) is the given span and
(ebeg2, eend2) is the extended gold span.
Approximate recursive matching In strict match-
ing, for a regulation event to be correct, the events it
refers to as theme or cause must also be be strictly
correct. Theapproximate recursive matchingmode
is defined by relaxing the requirement for recursive
event matching, so that an event can match even
if the events it refers to are only partially correct.

Event Release date
Announcement Dec 8
Sample data Dec 15
Training data Jan 19→ 21, Feb 2 (rev1), Feb 10 (rev2)
Devel. data Feb 7
Test data Feb 22→Mar 2
Submission Mar 2→Mar 9

Table 3: Shared task schedule. The arrows indicate a
change of schedule.

Specifically, for partial matching, only Theme argu-
ments are considered: events can match even if re-
ferred events differ in non-Theme arguments.

5 Schedule

The BioNLP task was held for 12 weeks, from the
sample data release to the final submission. It in-
cluded 5 weeks ofsystem design periodwith sam-
ple data, 6 weeks ofsystem development periodwith
training and development data, and a 1 weektest pe-
riod. The system development period was originally
planned for 5 weeks but extended by 1 week due to
the delay of the training data release and the revi-
sion. Table 3 shows key dates of the schedule.

6 Supporting Resources

To allow participants to focus development efforts
on novel aspects of event extraction, we prepared
publicly available BioNLP resources readily avail-
able for the shared task. Several fundamental
BioNLP tools were provided through U-Compare
(Kano et al., 2009)2, which included tools for to-
kenization, sentence segmentation, part-of-speech
tagging, chunking and syntactic parsing.

Participants were also provided with the syntactic
analyses created by a selection of parsers. We ap-
plied two mainstream Penn Treebank (PTB) phrase
structure parsers: the Bikel parser3, implementing
Collins’ parsing model (Bikel, 2004) and trained
on PTB, and the reranking parser of (Charniak
and Johnson, 2005) with the self-trained biomed-
ical parsing model of (McClosky and Charniak,
2008)4. We also applied the GDep5, native de-
pendency parser trained on the GENIA Treebank

2http://u-compare.org/
3http://www.cis.upenn.edu/∼dbikel/software.html
4http://www.cs.brown.edu/∼dmcc/biomedical.html
5http://www.cs.cmu.edu/∼sagae/parser/gdep/
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NLP Task
Team Task Org Word Chunking Parsing Trigger Argument Ext. Resources

UTurku 1-- 3C+2BI Porter MC SVM SVM (SVMlight)
JULIELab 1-- 1C+2L+2B OpenNLP OpenNLP GDep Dict+Stat SVM(libSVM) UniProt, Mesh,

Porter ME(Mallet) GOA, UMLS
ConcordU 1-3 3C Stanford Stanford Dict+Stat Rules WordNet, VerbNet,

UMLS
UT+DBCLS 12- 2C Porter MC Dict MLN(thebeast)

CCG
VIBGhent 1-3 2C+1B Porter, Stanford Dict SVM(libSVM)
UTokyo 1-- 3C GTag GDep, Dict ME(liblinear) UIMA

Enju
UNSW 1-- 1C+1B GDep CRF Rules WordNet, MetaMap
UZurich 1-- 3C LingPipe, LTChunk Pro3Gres Dict Rules

Morpha
ASU+HU+BU 123 6C+2BI Porter BioLG, Dict Rules Lucene

Charniak Rules
Cam 1-- 3C Porter RASP Dict Rules

UAntwerp 12- 3C GTag GDep MBL MBL(TiMBL)
Rules

UNIMAN 1-- 4C+2BI Porter GDep Dict, CRF SVM MeSH, GO
GTag Rules

SCAI 1-- 1C Rules
UAveiro 1-- 1C+1L NooJ NooJ Rules BioLexicon
USzeged 1-3 3C+1B GTag Dict, VSM C4.5(WEKA) BioScope

Rules
NICTA 1-3 4C GTag ERG CRF(CRF++) Rules JULIE

CNBMadrid 12- 2C+1B Porter, GTag CBR
GTag Rules

CCP-BTMG 123 7C LingPipe LingPipe OpenDMAP LingPipe, CM Rules GO, SO, MIO,
UIMA

CIPS-ASU 1-- 3C MontyTagger Custom Stanford CRF(ABNER) Rules,
NB(WEKA)

UMich 1-- 2C Stanford MC Dict SVM(SVMlight)
PIKB 1-- 5C+2B MIRA MIRA

KoreaU 1-- 5C GTag GDep Rules, ME ME WSJ

Table 4: Profiles of the participants: GTag=GENIAtagger, MLN=Markov Logic Network, UMLS=UMLS SPE-
CIALIST Lexicon/tools, MC=McClosky-Charniak, GDep=Genia Dependency Parser, Stanford=Stanford Parser,
CBR=Case-Based Reasoning, CM=ConceptMapper.

(Tateisi et al., 2005), and a version of the C&C CCG
deep parser6 adapted to biomedical text (Rimell and
Clark, 2008).

The text of all documents was segmented and to-
kenized using the GENIA Sentence Splitter and the
GENIA Tagger, provided by U-Compare. The same
segmentation was enforced for all parsers, which
were run using default settings. Both the native out-
put of each parser and a representation in the popular
Stanford Dependency (SD) format (de Marneffe et
al., 2006) were provided. The SD representation was
created using the Stanford tools7 to convert from the
PTB scheme, the custom conversion introduced by
(Rimell and Clark, 2008) for the C&C CCG parser,
and a simple format-only conversion for GDep.

7 Results and Discussion

7.1 Participation

In total, 42 teams showed interest in the shared task
and registered for participation, and 24 teams sub-

6http://svn.ask.it.usyd.edu.au/trac/candc/wiki
7http://nlp.stanford.edu/software/lex-parser.shtml

mitted final results. All 24 teams participated in the
obligatory Task 1, six in each of Tasks 2 and 3, and
two teams completed all the three tasks.

Table 4 shows a profile of the 22 final teams,
excepting two who wished to remain anonymous.
A brief examination on the team organization (the
Org column) shows a computer science background
(C) to be most frequent among participants, with
less frequent participation from bioinformaticians
(BI), biologists (B) and liguists (L). This may be
attributed in part to the fact that the event extrac-
tion task required complex computational modeling.
The role of computer scientists may be emphasized
in part due to the fact that the task was novel to most
participants, requiring particular efforts in frame-
work design and implementation and computational
resources. This also suggests there is room for im-
provement from more input from biologists.

7.2 Evaluation results

The final evaluation results of Task 1 are shown in
Table 5. The results on the five event types involv-
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Team Simple Event Binding Regulation All
UTurku 64.21 / 77.45 / 70.21 40.06 / 49.82 / 44.41 35.63 / 45.87 / 40.11 46.73 / 58.48 / 51.95

JULIELab 59.81 / 79.80 / 68.38 49.57 / 35.25 / 41.20 35.03 / 34.18 / 34.60 45.82 / 47.52 / 46.66
ConcordU 49.75 / 81.44 / 61.76 20.46 / 40.57 / 27.20 27.47 / 49.89 / 35.43 34.98 / 61.59 / 44.62

UT+DBCLS 55.75 / 72.74 / 63.12 23.05 / 48.19 / 31.19 26.32 / 41.81 / 32.30 36.90 / 55.59 / 44.35
VIBGhent 54.48 / 79.31 / 64.59 38.04 / 38.60 / 38.32 17.36 / 31.61 / 22.41 33.41 / 51.55 / 40.54
UTokyo 45.69 / 72.19 / 55.96 34.58 / 50.63 / 41.10 14.22 / 34.26 / 20.09 28.13 / 53.56 / 36.88
UNSW 45.85 / 69.94 / 55.39 23.63 / 37.27 / 28.92 16.58 / 28.27 / 20.90 28.22 / 45.78 / 34.92
UZurich 44.92 / 66.62 / 53.66 30.84 / 37.28 / 33.75 14.82 / 30.21/ 19.89 27.75 / 46.60 / 34.78

ASU+HU+BU 45.09 / 76.80 / 56.82 19.88 / 44.52 / 27.49 05.20 / 33.46 / 09.01 21.62 / 62.21 / 32.09
Cam 39.17 / 76.40 / 51.79 12.68 / 31.88 / 18.14 09.98 / 37.76 / 15.79 21.12 / 56.90 / 30.80

UAntwerp 41.29 / 65.68 / 50.70 12.97 / 31.03 / 18.29 11.07 / 29.85 / 16.15 22.50 / 47.70 / 30.58
UNIMAN 50.00 / 63.21 / 55.83 12.68 / 40.37 / 19.30 04.05 / 16.75/ 06.53 22.06 / 48.61 / 30.35

SCAI 43.74 / 70.73 / 54.05 28.82 / 35.21 / 31.70 12.64 / 16.55 / 14.33 25.96 / 36.26 / 30.26
UAveiro 43.57 / 71.63 / 54.18 13.54 / 34.06 / 19.38 06.29 / 21.05/ 09.69 20.93 / 49.30 / 29.38
Team 24 41.29 / 64.72 / 50.41 22.77 / 35.43 / 27.72 09.38 / 19.23/ 12.61 22.69 / 40.55 / 29.10
USzeged 47.63 / 44.44 / 45.98 15.27 / 25.73 / 19.17 04.17 / 18.21 / 06.79 21.53 / 36.99 / 27.21
NICTA 31.13 / 77.31 / 44.39 16.71 / 29.00 / 21.21 07.80 / 18.12 /10.91 17.44 / 39.99 / 24.29

CNBMadrid 50.25 / 46.59 / 48.35 33.14 / 20.54 / 25.36 12.22 / 07.99 / 09.67 28.63 / 20.88 / 24.15
CCP-BTMG 28.17 / 87.63 / 42.64 12.68 / 40.00 / 19.26 03.09 / 48.11 / 05.80 13.45 / 71.81 / 22.66
CIPS-ASU 39.68 / 38.60 / 39.13 17.29 / 31.58 / 22.35 11.86 / 08.15 / 09.66 22.78 / 19.03 / 20.74

UMich 52.71 / 25.89 / 34.73 31.70 / 12.61 / 18.05 14.22 / 06.56 / 08.98 30.42 / 14.11 / 19.28
PIKB 26.65 / 75.72 / 39.42 07.20 / 39.68 / 12.20 01.09 / 30.51 / 02.10 11.25 / 66.54 / 19.25

Team 09 27.16 / 43.61 / 33.47 03.17 / 09.82 / 04.79 02.42 / 11.90/ 04.02 11.69 / 31.42 / 17.04
KoreaU 20.56 / 66.39 / 31.40 12.97 / 50.00 / 20.59 00.67 / 37.93/ 01.31 09.40 / 61.65 / 16.31

Table 5: Evaluation results of Task 1 (recall / precision / f-score).

Team All Site for Phospho.(56) AtLoc & ToLoc (65) All Second Args.
UT+DBCLS 35.86 / 54.08 / 43.12 71.43 / 71.43 / 71.43 23.08 / 88.24 / 36.59 32.14 / 72.41 / 44.52
UAntwerp 21.52 / 45.77 / 29.27 00.00 / 00.00 / 00.00 01.54 /100.00 / 03.03 06.63 / 52.00 / 11.76

ASU+HU+BU 19.70 / 56.87 / 29.26 00.00 / 00.00 / 00.00 00.00 / 00.00 / 00.00 00.00 / 00.00 / 00.00
Team 24 22.08 / 38.28 / 28.01 55.36 / 93.94 / 69.66 21.54 / 66.67 / 32.56 30.10 / 76.62 / 43.22

CCP-BTMG 13.25 / 70.97 / 22.33 30.36 /100.00 / 46.58 00.00 / 00.00 / 00.00 08.67 /100.00 / 15.96
CNBMadrid 25.02 / 18.32 / 21.15 85.71 / 57.14 / 68.57 32.31 / 47.73 / 38.53 50.00 / 09.71 / 16.27

Table 6: Evaluation results for Task 2.

ing only a single primary theme argument are shown
in one merged class, “Simple Event”. The broad per-
formance range (31% – 70%) indicates even the ex-
traction of simple events is not a trivial task. How-
ever, the top-ranked systems show encouraging per-
formance, achieving or approaching 70% f-score.

The performance ranges for Binding (5% – 44%)
and Regulation (1% – 40%) events show their ex-
traction to be clearly more challenging. It is in-
teresting that while most systems show better per-
formance for binding over regulation events, the
systems [ConcordU] and [UT+DBCLS] are better
for regulation, showing somewhat reduced perfor-
mance for Binding events. This is in particular con-
trast to the following two systems, [ViBGhent] and
[UTokyo], which show far better performance for
Binding than Regulation events. As one possible

explanation, we find that the latter two differentiate
binding events by their number of themes, while the
former two give no specific treatment to multi-theme
binding events. Such observations and comparisons
are a clear benefit of a community-wide shared task.

Table 6 shows the evaluation results for the teams
who participated in Task 2. The “All” column shows
the overall performance of the systems for Task 2,
while the “All Second Args.” column shows the
performance of finding only the secondary argu-
ments. The evaluation results show considerable
differences between the criteria. For example, the
system [Team 24] shows performance comparable
to the top ranked system in finding secondary argu-
ments, although its overall performance for Task 2
is more limited. Table 6 also shows the three sys-
tems, [UT+DBCLS], [Team 24] and [CNBMadrid],
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Team Negation Speculation
ConcordU 14.98 / 50.75 / 23.13 16.83 / 50.72 / 25.27
VIBGhent 10.57 / 45.10 / 17.13 08.65 / 15.79 / 11.18

ASU+HU+BU 03.96 / 27.27 / 06.92 06.25 / 28.26 / 10.24
NICTA 05.29 / 34.48 / 09.17 04.81 / 30.30 / 08.30

USzeged 05.29 / 01.94 / 02.84 12.02 / 03.88 / 05.87
CCP-BTMG 01.76 / 05.26 / 02.64 06.73 / 13.33 / 08.95

Table 7: Evaluation results for Task 3.
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Figure 4: Scatterplot of the evaluation results on the de-
velopment data during the system development period.

show performance at a practical level in particular in
finding specific sites of phosphorylation.

As shown in Table 7, the performance range for
Task 3 is very low although the representation of the
task is as simple as the simple events. We attribute
the reason to the fact that Task 3 is the only task of
which the annotation is not bound to textual clue,
thus no text-bound annotation was provided.

Figure 4 shows a scatter plot of the performance
of the participating systems during the system devel-
opment period. The performance evaluation comes
from the log of the online evaluation system on the
development data. It shows the best performance
and the average performance of the participating
systems were trending upwards up until the dead-
line of final submission, which indicates there is still
much potential for improvement.

7.3 Ensemble

Table 8 shows experimental results of a system en-
semble using the final submissions. For the ex-
periments, the top 3–10 systems were chosen, and
the output of each system treated as a weighted
vote8. Three weighting schemes were used; “Equal”
weights each vote equally; “Averaged” weights each

8We used the ‘ensemble’ function of U-Compare.

Ensemble Equal Averaged Event Type
Top 3 53.19 53.19 54.08
Top 4 54.34 54.34 55.21
Top 5 54.77 55.03 55.10
Top 6 55.13 55.77 55.96
Top 7 54.33 55.45 55.73
Top 10 52.79 54.63 55.18

Table 8: Experimental results of system ensemble.

vote by the overall f-score of the system; “Event
Type” weights each vote by the f-score of the sys-
tem for the specific event type. The best score,
55.96%, was obtained by the “Event Type” weight-
ing scheme, showing a 4% unit improvement over
the best individual system. While using the final
scores for weighting uses data that would not be
available in practice, similar weighting could likely
be obtained e.g. using performance on the devel-
opment data. The experiment demonstrates that an
f-score better than 55% can be achieved simply by
combining the strengths of the systems.

8 Conclusion

Meeting with the community-wide participation, the
BioNLP Shared Task was successful in introducing
fine-grained event extraction to the domain. The
evaluation results of the final submissions from the
participants are both promising and encouraging for
the future of this approach to IE. It has been revealed
that state-of-the-art performance in event extraction
is approaching a practically applicable level for sim-
ple events, and also that there are many remain-
ing challenges in the extraction of complex events.
A brief analysis suggests that the submitted data
together with the system descriptions are rich re-
sources for finding directions for improvements. Fi-
nally, the experience of the shared task participants
provides an invaluable basis for cooperation in fac-
ing further challenges.
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