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Abstract

Theories of human language acquisition as-
sume that learning to understand sentences is
a partially-supervised task (at best). Instead
of using ‘gold-standard’ feedback, we train
a simplified “Baby” Semantic Role Labeling
system by combining world knowledge and
simple grammatical constraints to form a po-
tentially noisy training signal. This combina-
tion of knowledge sources is vital for learn-
ing; a training signal derived from a single
component leads the learner astray. When this
largely unsupervised training approach is ap-
plied to a corpus of child directed speech, the
BabySRL learns shallow structural cues that
allow it to mimic striking behaviors found in
experiments with children and begin to cor-
rectly identify agents in a sentence.

1 Introduction

Sentence comprehension involves assigning seman-
tic roles to sentence constituents, determining who
does what to whom. How do young children be-
gin learning to interpret sentences? The structure-
mapping view of early verb and syntax acquisition
proposes that children treat the number of nouns
in the sentence as a cue to its semantic predicate-
argument structure (Fisher, 1996), and represent lan-
guage experience in an abstract format that promotes
generalization to new verbs (Gertner et al., 2006).

Theories of human language acquisition assume
that learning to understand sentences is naturally
a partially-supervised task: the fit of the learner’s
predicted meaning with the referential context and

background knowledge provides corrective feed-
back (e.g., Pinker (1989)). But this feedback must
be noisy; referential scenes provide ambiguous in-
formation about the semantic roles of sentence par-
ticipants. For example, the same participant could
be construed as an agent who ’fled’ or as a patient
who is ’chased’.

In this paper, we address this problem by de-
signing a Semantic Role Labeling system (SRL),
equipped with shallow representations of sentence
structure motivated by the structure-mapping ac-
count, that learns with no gold-standard feedback at
all. Instead, the SRL provides its own internally-
generated feedback based on a combination of world
knowledge and linguistic constraints. As a sim-
ple stand-in for world knowledge, we assume that
the learner has animacy information for some set of
nouns, and uses this knowledge to determine their
likely roles. In terms of linguistic constraints, the
learner uses simple knowledge about the possible ar-
guments verbs can appear with.

This approach has two goals. The first is to in-
form theories of language learning by investigating
the utility of the proposed internally-generated feed-
back as one component of the human learner’s tools.
Second, from an NLP and Machine Learning per-
spective we propose to inject information into a su-
pervised learning algorithm through a channel other
than labeled training data. From both perspectives,
our key question is whether the algorithm can use
these internally labeled examples to extract general
patterns that can be applied to new cases.

By building a model that uses shallow representa-
tions of sentences and minimal feedback, but that
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mimics features of language development in chil-
dren, we can explore the nature of initial representa-
tions of syntactic structure.

1.1 Background

The structure-mapping account of early verb and
syntax acquisition makes strong predictions. First,
it predicts early use of simple structural cues to sen-
tence interpretation. As soon as children can iden-
tify some nouns, they should assign different in-
terpretations to transitive and intransitive sentences,
simply by assuming that each noun in the sentence
bears a distinct semantic role. Similarly, language-
specific syntactic learning should transfer rapidly to
new verbs. Second, however, this account predicts
striking errors. In “Fred and Ginger danced”, an
intransitive verb occurs with two nouns. If chil-
dren interpret any two-noun sentence as if it were
transitive, they should mistakenly interpret the order
of two nouns in such conjoined-subject intransitive
sentences as agent-patient. Experiments with young
children support these predictions. 21-month-olds
use the number of nouns to understand sentences
containing new verbs (Yuan et al., 2007), generalize
what they have learned about transitive word-order
to new verbs (Gertner et al., 2006), and make the
predicted error, treating intransitive sentences con-
taining two nouns as if they were transitive (Gert-
ner and Fisher, 2006). By 25 months, children have
learned enough about English syntax to interpret
conjoined-subject intransitives differently from tran-
sitives (Naigles, 1990).

Our previous computational experiments with a
system for automatic semantic role labeling (Con-
nor et al., 2008) suggest that it is possible to learn
to assign basic semantic roles based on the simple
representations proposed by the structure-mapping
view. The classifier’s features were limited to lexical
information (nouns and verbs only) and the number
and order of nouns in the sentence, and trained on a
sample of child-directed speech annotated in Prop-
Bank (Kingsbury and Palmer, 2002) style. Given
this training, our classifier learned to label the first
of two nouns as an agent and the second as a patient.
Even amid the variability of casual speech, simply
representing the target word as the first or the second
of two nouns significantly boosts SRL performance
(relative to a lexical baseline) on transitive sentences

containing novel verbs. This result depends on key
assumptions of the structure-mapping view, includ-
ing abstract representations of semantic roles, and
abstract but simple representations of sentence struc-
ture. Another approach was taken by (Alishahi and
Stevenson, 2007). Their model learned to assign se-
mantic roles without prior knowledge of abstract se-
mantic roles. Instead, it relied on built-in syntactic
knowledge and a rich hierarchical representation of
semantic knowledge to learn links between sentence
structure and meaning.

However, our previous experimental design has
a serious drawback that limits its relevance to the
study of how children learn their first language.
In training, our SRL received gold standard feed-
back consisting of correctly labeled sentences. Thus
when the SRL made a mistake in identifying the se-
mantic role of any noun in a sentence, it received
feedback about the ‘true’ semantic role of this noun.
As noted above, this is an unrealistic assumption for
the input to human learners.

Here we ask whether an SRL could learn to in-
terpret simple sentences even without gold-standard
feedback by relying on world knowledge to gen-
erate its own feedback. This internally-generated
feedback was based on the following assumptions.
First, nouns referring to animate entities are likely
to be agents, and nouns referring to inanimate en-
tities are not. Second, each predicate takes at most
one agent. Such role uniqueness constraints are typ-
ically included in linguistic discussions of thematic
roles (Bresnan, 1982; Carlson, 1998). The animacy
heuristic is not always correct, of course. For ex-
ample, in “The door hit you”, an inanimate object
is the agent of action, and an animate being is the
patient. Nevertheless, it is useful for two reasons.
First, there is a strong cross-linguistic association
between agency and animacy (Aissen, 1999; Dowty,
1991). Second, from the first year of life, children
have strong expectations about the capacities of an-
imate and inanimate entities (Baillargeon et al., in
press). Given the universal tendency for speakers to
talk about animate action on less animate objects,
many sentences will present useful training data to
the SRL: In ordinary sentences such as ”You broke
it,” feedback generated based on animacy will re-
semble gold-standard feedback.
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2 Learning Model

Our learning task is similar to the full SRL task (Car-
reras and M̀arquez, 2004), except that we classify
the roles of individual words rather than full phrases.
A full automatic SRL system (e.g. (Punyakanok et
al., 2005a)) typically involves multiple stages to 1)
parse the input, 2) identify arguments, 3) classify
those arguments, and then 4) run inference to make
sure the final labeling for the full sentence does not
violate any linguistic constraints. Our simplified
BabySRL architecture essentially replaces the first
two steps with developmentally plausible heuris-
tics. Rather than identifying arguments via a learned
classifier with access to a full syntactic parse, the
BabySRL treats each noun in the sentence as a can-
didate argument and assigns a semantic role to it. A
simple heuristic collapsed compound or sequential
nouns to their final noun, an approximation of the
head noun of the noun phrase. For example, ‘Mr.
Smith’ was treated as the single noun ‘Smith’. Other
complex noun phrases were not simplified in this
way. Thus, a phrase such as ‘the toy on the floor’
would be treated as two separate nouns, ‘toy’ and
‘floor’. This represents the assumption that young
children know ‘Mr. Smith’ is a single name, but
they do not know all the predicating terms that may
link multiple nouns into a single noun phrase. The
simplified learning task of the BabySRL implements
a key assumption of the structure-mapping account:
that at the start of multiword sentence comprehen-
sion children can tell which words in a sentence are
nouns (Waxman and Booth, 2001), and treat each
noun as a candidate argument.

We further simplify the SRL task such that clas-
sification is between two macro-roles: A0 (agent)
and A1 (non-agent; all non-A0 arguments). We did
so because we reason that this simplified feedback
scheme can be primarily informative for a first stage
of learning in which learners identify how their lan-
guage identifies agents vs. non-agents in sentences.
In addition, this level of role granularity is more con-
sistent across verbs (Palmer et al., 2005).

For argument classification we use a linear clas-
sifier trained with a regularized perceptron update
rule (Grove and Roth, 2001). This learning algo-
rithm provides a simple and general linear classifier
that works well in other language tasks, and allows

us to inspect the weights of key features to determine
their importance for classification.

For the final predictions, the classifier uses
predicate-level inference to ensure coherent argu-
ment assignments. In our task the only active con-
straints are that all nouns require a tag, and that they
have unique labels, which for this restricted case of
A0 vs. not A0 means there will be only one agent.

2.1 Training and Feedback

The key feature of our BabySRL lies in the way
feedback is provided. Ordinarily, during training,
SRL classifiers predict a semantic label for an argu-
ment and receive gold-standard feedback about its
correct semantic role. Such accurate feedback is not
available for the child learner. Children must rely on
their own error-prone interpretation of events to sup-
ply feedback. This internally-generated feedback
signal is presumably derived from multiple infor-
mation sources, including the plausibility of partic-
ular combinations of argument-roles given the cur-
rent situation (Chapman and Kohn, 1978). Here
we model this process by combining background
knowledge with linguistic constraints to generate
a training signal. The ‘unsupervised’ feedback is
based on: 1) nouns referring to animate entities are
assumed to be agents, while nouns referring to inan-
imate entities are non-agents and 2) each predicate
can have at most one agent.

This internally-generated feedback bears some
similarities to Inference Based Training (Pun-
yakanok et al., 2005b). In both cases the feedback to
local supervised classifiers depends on global con-
straints. With IBT, feedback for mistakes is only
considered after global inference, but for BabySRL
the global inference is applied to the feedback itself.
Figure 1 gives an overview of the training and test-
ing procedure, making clear the distinction between
training and testing inference.

The training data were samples of parental speech
to one child (‘Sarah’; (Brown, 1973), available
via Childes (MacWhinney, 2000)). We trained
on parental utterances in samples 1 through 80,
recorded at child age 2;3-3;10 years. All verb-
containing utterances without symbols indicating
long pauses or unintelligible words were automat-
ically parsed with the Charniak parser (Charniak,
1997) and annotated using an existing SRL sys-
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tem (Punyakanok et al., 2005a). In this initial
pass, sentences with parsing errors that misidenti-
fied argument boundaries were excluded. Role la-
bels were hand-corrected using the PropBank anno-
tation scheme. The child-directed speech training
set consists of about 8300 tagged arguments over
4700 sentences, of which a majority had a single
verb and two labeled nouns1. The annotator agree-
ment on this data set ranged between 95-97% at the
level of arguments. In the current paper these role-
tagged examples provide a comparison point for the
utility of animacy-based feedback during training.

Our BabySRL did not receive these hand-
corrected semantic roles during training. Instead,
for each training example it generated its own feed-
back based in part on an animacy table. To ob-
tain the animacy table we coded the 100 most fre-
quent nouns in our corpus (which constituted less
than 15% of the total number of nouns, but 65%
of noun occurrences). We considered 84 of these
nouns to be unambiguous in animacy: Personal pro-
nouns and nouns referring to people were coded as
animate (30). Nouns referring to objects, body parts,
locations, and times, were coded as inanimate (54).
The remaining 16 nouns were excluded because they
were ambiguous in animacy (e.g., dolls, actions).

We test 3 levels of feedback representing increas-
ing amounts of linguistic knowledge used to gener-
ate internal interpretations of the sentences. Using
the animacy table, Animacy feedback (Feedback 1)
was generated as follows: for each noun in training,
if it was coded as animate it was labeled A0, if it was
coded as inanimate it was labeled A1, otherwise no
feedback was given. Because of the frequency of an-
imate nouns this gives a skewed distribution of 4091
animate agents and 1337 inanimate non-agents.

(Feedback 2) builds on Feedback 1 by adding an-
other linguistic constraint: if a noun was not found
in the animacy-table and there is another noun in the
sentence that is labeled A0, then the unknown noun
is an A1. In the training set this adds non-agent
training examples, yielding 4091 A0 and 2627 A1
examples.

Feedback 1 and Feedback 2 allow two nouns in
a sentence to be labeled with A0.Feedback 3pre-

1Corpus available athttp://l2r.cs.uiuc.edu/

˜ cogcomp

vents this; it implements a unique agent constraint
that incorporates bootstrapping to make an ‘intelli-
gent guess’ about which noun is the correct agent.
This decision is made based on the current predic-
tions of the classifier. Given a sentence with multi-
ple animate nouns, the classifier predicts a label for
each, and the one with the highest score for A0 is
declared the true agent and the rest are classified as
non-agent. Note that we cannot apply role unique-
ness to the A1 (not A0) role, given that this label en-
compasses multiple non-agent roles. This feedback
scheme, allowing at most one agent per sentence, re-
duces the number of A0 examples and increases the
number of A1 examples to 3019 A0 and 3699 A1.

2.2 Feature Sets

The basic feature we propose is the noun pattern fea-
ture (NPattern). We hypothesize that children use
the number and order of nouns to represent argument
structure. The NPattern feature indicates how many
nouns there are in the sentence and which noun the
target is. For example, in the two-noun sentence
‘Did you see it?’, ‘you’ has a feature active indicat-
ing that it is the first noun of two. Likewise, for ‘it’ a
feature is active indicating that it is the second of two
nouns. This feature is easy to compute once nouns
are identified, and does not require fine-grained part-
of-speech distinctions.

We compare the noun pattern feature to a baseline
lexical feature set (Words): the target noun and the
root form of the predicate. The NPattern feature set
includes lexical features as well as features indicat-
ing the number and order of the noun (first of two,
second of three, etc.). With gold-standard role feed-
back, (Connor et al., 2008) found that the NPattern
feature allowed the BabySRL to generalize to new
verbs: it increased the system’s tendency to predict
that the first of two nouns was A0 and the second of
two nouns A1 for verbs not seen in training.

To the extent that in child-directed speech the first
of two nouns tends to be an agent, and agents tend
to be animate, we anticipate that with the NPat-
tern feature the BabySRL will learn the same thing,
even when provided with internally-generated feed-
back based on animacy. In Connor et al. (2008) we
showed that, because this NPattern feature set repre-
sents only the number and order of nouns, with this
feature set the BabySRL reproduced the errors chil-
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Algorithm BABY SRL TRAINING

INPUT: Unlabeled Training Sentences
OUTPUT: Trained Argument Classifier

For each training sentence
Generate Internal Feedback:Find interpreted meaning

Feedback 1:Apply Animacy Heuristic
For each argument in the sentence (noun)

If noun is animate→ mark as agent
If noun is inanimate→mark as non-agent
else leave unknown

end

Feedback 2:Known agent constraint
Beginning with Feedback 1
If an agent was found

Mark all unknown arguments as non-agent

Feedback 3:Unique agent constraint
Beginning with Feedback 2
If multiple agents found

Find argument with highest agent prediction
Leave this argument an agent, mark rest as non-agent

Train Supervised Classifier
Present each argument to classifier
Update if interpreted meaning does not match
classifier prediction

end

(a) Training

Algorithm BABY SRL TESTING

INPUT: Unlabeled Testing Sentences
OUTPUT: Role labels for each argument

For each test sentence
Predict roles for each argument
Test Inference:

Find assignment to whole sentence with highest sum of
predictions that doesn’t violate uniqueness constraint

end

(b) Testing

Figure 1: BabySRL training and testing procedures. In-
ternal feedback is generated using animacy plus optional
constraints. This feedback is fed to a supervised learning
algorithm to create an agent-identification classifier.

dren make as noted in the Introduction, mistakenly
assigning agent- and non-agent roles to the first and
second nouns in intransitive test sentences contain-
ing two nouns. In the present paper, the linguistic
constraints provide an additional cause for this er-
ror. In addition, as a first step in examining recov-
ery from the predicted error, Connor et al. (2008)
added a verb position feature (VPosition) specifying
whether the target noun is before or after the verb.
Given these features, the BabySRL’s classification

of transitive and two-noun intransitive test sentences
diverged, because the gold-standard training sup-
ported the generalization that pre-verbal nouns tend
to be agents, and post-verbal nouns tend to be pa-
tients. In the present paper we include the VPosition
feature for comparison to Connor et al. (2008).

2.3 Testing

To evaluate the BabySRL we tested it with both a
held-out sample of child-directed speech, and with
constructed sentences containing novel verbs, like
those used in the experiments with children de-
scribed above. These sentences provide a more
stringent test of generalization than the customary
test on a held-out section of the data. Although the
held-out section of data contains unseen sentences,
it may contain few unseen verbs. In a held out sec-
tion of our data, 650 out of 696 test examples contain
a verb that was encountered in training. Therefore,
the customary test cannot tell us whether the system
generalizes what it learned to novel verbs.

All constructed test sentences contained a novel
verb (‘gorp’). We constructed two test sentence tem-
plates: ‘A gorps B’ and ‘A and B gorp’, where A and
B were replaced with nouns that appeared more than
twice in training. For each test sentence template we
built a test set of 100 sentences by randomly sam-
pling nouns in two different ways described next.

Full distribution : The first nouns in the test sen-
tences (A) are chosen from the set of all first nouns
in our corpus, taking their frequency into account
when sampling. The second nouns in the sentences
(B) are chosen from the set of nouns appearing as
second nouns in the sentence of our corpus. This
way of sampling the nouns will maximize the SRL’s
test performance based on the baseline feature set
of lexical information alone (Words). This is so be-
cause in our data many sentences have an animate
first noun and an inanimate second noun. Based on
these words alone the SRL could learn to predict an
A0-A1 role sequence for our test sentences. Nev-
ertheless, we expect that when the BabySRL is also
given the NPattern feature it should be able to per-
form better than this high lexical baseline.

Two animate nouns: In these test sentences the
A and B nouns are chosen from our list of animate
nouns. We chose nouns from this list that were
fairly frequent (ranging from 8 to 240 uses in the
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corpus), and that occurred roughly equally as the
first and second noun. This mimics the sentences
used in the experiments with children (e.g., “The
girl is kradding the boy!”). The lexical baseline sys-
tem’s tendency to assign an A0-A1 sequence to these
nouns should be much lower for these test sentences.
We therefore expect the contribution of the NPattern
feature to be more apparent in these test sentences.

The test sentences with novel verbs ask whether
the classifier transfers its learning about argument
role assignment to unseen verbs. Does it assume
the first of two nouns in a simple transitive sentence
(’A gorps B’) is the agent (A0) and the second is
not an agent (A1)? In (Connor et al., 2008) we
showed that a system with the same feature and rep-
resentations also over-generalized this rule to two-
noun intransitives (‘A and B gorp’), mimicking chil-
dren’s behavior. In the present paper this error is
over-determined, because the classifier learns only
an agent/non-agent contrast, and the linguistic con-
straints forbid duplicate agents in a sentence. How-
ever, for comparison to the earlier paper we test our
system on the ‘A and B gorp’ sentences as well.

3 Experimental Results

Our experiments use internally-generated feedback
to train simple, abstract structural features: the
NPattern features that proved useful with gold-
standard training in Connor et al. (2008). Sec-
tion 3.1 tests the system on agent-identification in
held-out sentences from the corpus, and demon-
strates that the animacy-based feedback is useful,
yielding SRL performance comparable to that of a
system trained with 1000 sentences of gold-standard
feedback. Section 3.2 presents the critical novel-
verb test data, demonstrating that this system repli-
cates key findings of (Connor et al., 2008) with no
gold standard feedback. Using only noisy internally-
generated feedback, the BabySRL learned that the
first of two nouns is an agent, and generalized this
knowledge to sentences with novel verbs.

3.1 Comparing Self Generated Feedback with
Gold Standard Feedback

Table 1 reports for the varying feedback schemes,
the A0 F1 performance for a system with either lex-
ical baseline feature (Words) or structural features

Feedback Words +NPattern
1. Just Animacy 0.72 0.73
2. + non A0 Inference 0.74 0.75
3. + unique A0 bootstrap 0.70 0.74
10 Gold 0.43 0.47
100 Gold 0.61 0.65
1000 Gold 0.75 0.76

Table 1: Agent identification results (A0 F1) on held-
out sections of the Sarah Childes corpus. We compare
a classifier trained with various amounts of gold labeled
data (averaging over 10 different samples at each level
of data). For noun pattern features the internally gener-
ated bootstrap feedback provides comparable accuracy to
training with between 100-1000 fully labeled examples.

(+NPattern) when tested on a held-out section of
the Sarah Childes corpus section 84-90, recorded
at child ages 3;11-4;1 years. Agent identification
based on lexical features is quite accurate given an-
imacy feedback alone (Feedback 1). As expected,
because many agents are animate, the animacy tag-
ging heuristic itself is useful. As linguistic con-
straints are added via non-A0 inference (Feedback
2), performance increases for both the lexical base-
line and NPattern feature-set, because the system ex-
periences more non-A0 training examples.

When the unique A0 constraint is added (Feed-
back 3), the lexical baseline performance decreases,
because for the first time animate nouns are being
tagged as non-agents. With this feedback the NPat-
tern feature set yields a larger improvement over lex-
ical baseline, showing that it extracts more general
patterns. We discuss the source of these feedback
differences in the novel-verb test section below.

We compared the usefulness of the internally-
generated feedback to gold-standard feedback by
training a classifier equipped with the same features
on labeled sentences. We reduced the SRL labeling
for the training sentences to the binary agent/non-
agent set, and trained the classifier with 10, 100,
or 1000 labeled examples. Surprisingly, the simple
feedback derived from 84 nouns labeled with ani-
macy information yields performance equivalent to
between 100 and 1000 hand-labeled examples.
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Full Distribution Nouns Animate Nouns
Feedback Words NPattern VPosition Words NPattern VPosition

‘A gorps B’
1. Animacy 0.86 0.86 0.87 0.76 0.79 0.70
2. + non A0 Inference 0.87 0.92 0.90 0.63 0.86 0.85
3. + unique A0 bootstrap 0.87 0.95 0.89 0.63 0.82 0.66

‘A and B gorp’
1. Animacy 0.86 0.86 0.84 0.76 0.79 0.68
2. + non A0 Inference 0.87 0.92 0.85 0.63 0.86 0.66
3. + unique A0 bootstrap 0.87 0.95 0.86 0.63 0.82 0.63

Table 2: Percentage of sentences interpreted as agent first (%A0-A1) by the BabySRL when trained on unlabeled data
with the 3 internally-generated feedback schemes described in the text. Two different two-noun sentence structures
were used (‘A gorps B’, ‘A and B gorp’), along with two different methods of sampling the nouns (Full Distribution,
Animate Nouns) to create test sets with 100 sentences each.

3.2 Comparing Structural Features with
Lexical Features

The previous section shows that the BabySRL
equipped with simple structural features can use
internally generated feedback to learn a simple
agent/non-agent classification, and apply it to un-
seen sentences. In this section we probe what the
SRL has learned by testing generalization to new
verbs in constructed sentences. Table 2 summarizes
these experiments. The results are broken down both
by what sentence structure is used in test (‘A gorps
B’, ‘A and B gorp’) and how the nouns ‘A’ and
‘B’ are sampled (Full Distribution, Animate Nouns).
The results are presented in terms of %A0A1: the
percentage of test sentences that are assigned an
Agent role for ‘A’ and a non-Agent role for ‘B’.

For the transitive ‘A gorps B’ sentences, A0A1 is
the correct interpretation; A should be the agent. As
predicted, when A and B are sampled from the full
distribution of nouns, simply basing classification on
the Words feature-set already strongly predicts this
A0A1 ordering for the majority of cases. This is be-
cause the data (language in general, child directed
speech in particular here) are naturally distributed
such that particular nouns that refer to animates tend
to be agents, and tend to appear as first nouns, and
those that refer to inanimates tend to be non-agents
and second nouns. Thus, a learner representing sen-
tence information in terms of words only succeeds
with full-distribution ’A gorps B’ test sentences even
with the simplest animacy feedback (Feedback 1);

the A and B nouns in these test sentences reproduce
the learned distribution. Also as predicted, given this
simple feedback, the additional higher-level features
(NPattern, VPosition) do not improve much upon
the lexical baseline. This is due to the strictly lexical
nature of the animacy feedback: each lexical item
(e.g., ’you’ or ’it’) will always either be animate or
inanimate and therefore either A0 or A1. Therefore,
in this case lexical features are the best predictors.

Also as expected, higher-level features (NPat-
tern, and VPosition) improve performance with a
more sophisticated self-generated feedback scheme.
Adding inferred feedback to label unknown nouns
as A1 when the sentence contains a known animate
noun (Feedback 2) decreases the ratio of A0 to non-
A0 arguments. This feedback is less lexically deter-
mined: for nouns whose animacy is unknown, feed-
back will be provided only if there is another ani-
mate noun in the sentence. This leaves room for the
abstract structural features to play a role.

Next we test a form of the unique-A0 constraint.
In (Feedback 3), in addition to the non-A0 inference
added in (Feedback 2), the BabySRL intelligently
selects one noun as A0 in sentences with multiple
animate nouns. With this feedback we see a striking
increase in test performance based on the noun pat-
tern features over the lexical baseline. In principle,
this feedback mechanism might permit the classifier
to start to learn that animate nouns are not always
agents. Early in training, the noun pattern feature
learns that first nouns tend to be animate (and there-
fore interpreted as agents), and it feeds this informa-
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tion back into subsequent training examples, gen-
erating new feedback that continues to interpret as
agents those animate nouns that appear first in sen-
tences containing two animates.

For the nouns sampled from the full distribution
we see that structural features improve over the lex-
ical baseline despite the high performance of the
lexical baseline. This finding tells us that simple
representations of sentence structure can be use-
ful in learning to interpret sentences even with no
gold-standard training. Provided only with sim-
ple internally-generated feedback based on animacy
knowledge and linguistic constraints, the BabySRL
learned that the first of two nouns tends to be an
agent, and the second of two does not.

The results for the ‘A B gorp’ test sentences
demonstrate an important way in which predictions
based on different simple structure representations
can diverge. As expected, the NPattern feature
makes the same overgeneralization error seen by
children and the system in (Connor et al., 2008).
However, when the VPosition feature is added, dif-
ferent results are obtained for the ‘A gorp B’ and
‘A and B gorp’ sentences. The SRL predicts fewer
A0A1 for ‘A and B gorp’ (it cannot predict the ex-
pected A0A0 because of the uniqueness constraint
used in test inference).

Next, we replicate our findings by performing the
same experiments with test sentences in which both
‘A’ and ‘B’ are animate. Because lexical features
alone cannot determine if ‘A’ or ‘B’ should be the
agent, it is a more sensitive test of generalization.

When we look at the lexical baseline for animate
sentences, the agent-first percentage is lower com-
pared to the full distribution results, because the
word features indicate nearly evenly that both nouns
should be agents, so the Words baseline model must
rely on small, chance differences in its experience
with particular words. This percentage is still well
above chance due to the method used to apply in-
ference during testing. Recall that the classifier uses
predicate-level inference at test to ensure that only
one argument is labeled A0. This inference is imple-
mented using a beam search that looks at arguments
in a fixed order and roles from A0 up. Thus in the
case of ties there is a preference for first seen solu-
tions, meaning A0A1 in this case. This bias has a
large effect on the SRL’s baseline performance with

the test sentences containing two animate nouns.
Despite this high baseline, however, because lexical
features alone cannot determine if ‘A’ or ‘B’ should
be the agent, we are able to see more clearly the im-
provement gained by including structural features.

Regardless of our testing scheme, we see that as
the feedback incorporates more information, both
added linguistic constraints and the SRL’s own prior
learning, the noun pattern structural feature is better
used to identify agents beyond the lexical baseline.
The largest improvement over this lexical baseline is
obtained by combining knowledge of animacy with
a single-agent constraint and bootstrapping predic-
tions based on prior learning.

4 Conclusion and Future Work

Conventional approaches to supervised learning re-
quire creating large amounts of hand-labeled data.
This is labor-intensive, and limits the relevance of
the work to the study of how children learn lan-
guages. Children do not receive perfect feedback
about sentence interpretation. Here we found that
our simple SRL classifier can, to a surprising de-
gree, attain performance comparable to training with
1000 sentences of labeled data. This suggests that
fully labeled training data can be supplemented by a
combination of simple world knowledge (animates
make good agents) and linguistic constraints (each
verb has only one agent). The combination of these
sources provides an informative training signal that
allows our BabySRL to learn a high-level seman-
tic task and generalize beyond the training data we
provided to it. The SRL learned, based on the dis-
tribution of animates in sentences of child-directed
speech, that the first of two nouns tends to be an
agent. It did so based on representations of sentence
structure as simple as the ordered set of nouns in
the sentence. This demonstrates that it is possible to
learn how to correctly assign semantic roles based
on these very simple cues. This together with exper-
imental work (e.g. (Fisher, 1996) suggests that such
representations might play a role in children’s early
sentence comprehension.
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