
Building a Large-scale Commercial NLG System for an EMR

Mary Dee Harris
Catalis, Inc.

7801 N. Capital of Texas Hwy., Ste. 260
Austin, TX 78731

mdharris@thecatalis.com

Abstract

Natural language generation technology is
mature enough for implementing an NLG sys-
tem in a commercial environment, but the cir-
cumstances differ significantly from building
a research system. This paper describes the
challenges and rewards of building a commer-
cial NLG component for an electronic medical
records system. While the resulting NLG sys-
tem has been successfully completed, the path
to that success could have been somewhat
smoother knowing the issues in advance.

1 Introduction

In 2002 I was hired by a small start-up company to
add narrative generation to their electronic medical
records (EMR) system under development. After
six months, we had a first-cut system producing
narrative based on a doctor's selection of items
from the graphical interface during an encounter
with a patient. This paper describes the rewards
and challenges of building such a system in a
commercial environment, in hopes the lessons I
learned can contribute to successful future com-
mercial systems for natural language generation.

The company has always been funded by invest-
ment money with some recent revenue income.
The founders were both medical doctors, with little
corporate experience and even less knowledge of
technology. They had the vision; the rest of us did
the work. The company's product is a general-
purpose EMR system on a tablet PC with hand-

writing recognition and extensive graphical repre-
sentation of human anatomy. Its foundation is an
elaborate database of medical content, outlining
specific requirements for information collection.
Much of this medical information is arranged in
templates, one for each complaint. When a patient
comes into the doctor's office complaining of chest
pains, the template for Chest Pain provides the ap-
propriate selections for the doctor to record perti-
nent information related to that condition. Other
parts of the system deal with physical examina-
tions, procedures, prescription of medication, or-
ders for lab tests and procedures, and so on.

My mission was to implement a narrative genera-
tion system to record the doctor/patient encounter,
following the traditional narrative created by the
doctor's dictation, which is then transcribed into a
narrative. These narratives serve as a legal record
of the encounter and are used in court in malprac-
tice suits. Thus the narrative is an extremely im-
portant part of the patient record and must be
complete and accurate. Otherwise the doctor – and
our company – could be liable for malpractice.

2 Challenges

The challenges of designing the narrative system
were many. The narrative must be completely
accurate to avoid liability. While the initial targets
were small practices and clinics, the system would
expand into larger clinics and hospitals. So the
system had to be scalable. The scope of the project
also had to be scalable. Beginning with hundreds
of medical templates often with multiple names,

157

there are now thousands for many specialties with
different requirements for format and style.

Another challenge was the naïveté of the company
and its staff. The CEO had a grand vision, but lit-
tle concept of the technology for language genera-
tion. He believed the automated narrative was
possible, but there was little understanding of the
extent of commitment of staff, time, and money for
building such a system.

One less obvious challenge is the difference be-
tween research and commercial applications. Our
limited finances allowed us few available commer-
cial products. However, the freely available re-
sources that academics rely on were usually
available only for research. In our field of health
care technology, the UMLS was the primary re-
source available to us. The Unified Medical Li-
brary System1 developed at the National Library of
Medicine has resources which include a medically-
oriented dictionary of English called SPECIALIST
and tools to access it, a semantic network related
to health care, and a Metathesaurus -- "a very
large, multi-purpose, and multi-lingual vocabulary
database that contains information about biomedi-
cal and health related concepts, their various
names, and the relationships among them." This
lack of resources was a mixed blessing: all our
tools and program components belong to the com-
pany with no financial or licensing strings at-
tached.

One usual way to start any NLP project is to ac-
quire a large sample of the texts to be processed.
However because of privacy issues, we had no
"live" data representing medical narratives. The
two doctors wrote some imaginary scenarios to
serve as samples and provided feedback on our
guesses of what the medical language should be.
So the project started with no outside resources,
little support, no samples, but a lot of enthusiasm.

3 Plan of Attack

Despite the challenges, I knew NLG technology
would be able to fulfill the requirements for this
application so the planning began. The original
idea was to follow a standard development model:

1 http://www.nlm.nih.gov/research/umls/

proof-of-concept (POC) system, prototype, and
production system. The POC would have simple
sentences and a restricted vocabulary, but enough
to convince the company that the technology could
provide a feasible solution. The prototype would
extend the capability, adding a grammar and a
more extensive vocabulary as well as being robust
enough to handle more data. The POC was built in
about six months with a Java developer assisting
me with the design – it sounded like a second
grader had written the narrative, but it was accurate
and proved that we could do it.

The prototype never got built due to management
decisions and some bad luck. We had no internal
staff to devote to the task. To make matters more
complicated, Steve Shipman, the original Java de-
veloper who knew some computational linguistics,
was replaced by a developer with no real knack for
linguistics whose English was a second language.
I had to teach him the linguistic terminology and
the language structures before he could write the
code to handle them.

The next problem arose when the management saw
the narrative output -- simple as it was -- and im-
mediately started adding templates for us to han-
dle. Despite my protests that it wasn't ready for
deployment, we had to add additional features such
as aggregation and negation to this simple-minded
version. It took several years before we got the go-
ahead to write the full-blown system, by which
time we had several thousand templates in the sys-
tem. We finally spent six months on the new sys-
tem, followed by nearly a year of testing. Because
the POC had been put into production, we had to
establish a dual model that ran both old and new
versions. We are still trying to get all the original
parts converted to work on the full-blown produc-
tion system so we can eliminate the POC section.

4 System Architecture

The architecture of the Narrative Engine followed
the basic design described in Reiter and Dale
(2000) for an NLG system, with adaptations to fit
our data model. Because the narrative output had
to be so accurate and the style so sophisticated to
satisfy the physician client base, I doubted that
completely automated generation would be suffi-

158

http://www.nlm.nih.gov/research/umls/

cient. So following the lead of machine transla-
tion, I chose to implement human-assisted com-
puter generation. That seemed the only
appropriate approach, used similarly by CoGenTex
in their Exemplars method (White and Caldwell,
1998). We considered using Exemplars, but they
are Java-based which was not appropriate for our
situation. Most of our NLG staff didn't know Java
since we hired liberal arts and linguistics majors.

We developed a plan language called Linguo, after
Lisa Simpson's robot by that name. Linguo helps
us write plans to describe the translation from
medical findings for a particular patient into ap-
propriate medical language for an encounter. The
plan writers select the predicate best suited for
each finding in a template. That predicate then
determines the semantic structure, following
Jackendoff (1990; 1991). These plans are general-
ized to handle many similar findings, rather than
being a one-to-one translation. The basic design
for the Narrative Engine held up well through the
various implementations, with only minor adjust-
ments required. 2

Figure 1 Architecture of Narrative Engine

5 Proof of Concept

The initial POC was string-based, for speed of de-
velopment – a decision I would come to regret, but
probably necessary to get the project underway.
The POC system had no separate grammar, but
handled syntactic and morphological issues in the

2 This paper does not detail the technology specifically as it is
proprietary. The company has patent applications pending for
much of the design. This is another important contrast with
the research community where sharing ideas is the norm.

code. We created two XML files for the transla-
tion into English: predicate templates and clause
templates. The predicate templates define the se-
mantic roles for each predicate in our restricted
vocabulary, while the clause templates match the
semantic forms to syntactic structures. The final
stage of processing was the Sentence Realizer that
converted the syntactic structures into English.
The Narrative Engine was a separate module in the
application that received medical findings (the in-
dividual items that the doctor selected) and that
output English text to the application for the note.

5 Commercial Development

The commercial version of the Narrative Engine
was called Component-Based Processing (CBP) to
distinguish it from the string-based POC. We now
had two lexicons: a semantic one containing the
finding names for all the medical templates and the
UMLS SPECIALIST syntactic lexicon. We added
bracketed forms to specify language structures for
each finding name, to go with the basic syntactic
information. For example, the phrase "the right
shoulder" would be represented as [np [det the][adj
right][n shoulder]]. We hired a computational lexi-
cographer, Ken Litkowski, to help produce the
bracketed forms for the 60,000 plus entries. Creat-
ing these forms was not trivial since the finding
phrases vary from a single word to a complex noun
phrase to a complete clause.

Using the bracketed forms allowed us to extend
our aggregation capability to a linguistically solid
method of analyzing the component structure to
identify corresponding parts to coordinate. We
also added a means for asymmetric aggregation,
known as hypotactic aggregation (Shaw, 2002).
Besides being able to coordinate similar items, as

The patient described the pain as sharp and throbbing,

we can now combine dissimilar findings, as in

The skin was closed with 14 2-0 monofilament sutures
using continuous stitch.

One major addition to the Narrative Engine was
the syntactic grammar set up as a properties file
allowing modification of the grammar without
code changes. We can test new features easily and

159

try extensions to the language with no impact on
the overall system. The clause templates used in
the POC were replaced with verb templates since
much of that work was now handled by the gram-
mar. Verb templates describe the alternation pat-
terns (Levin, 1993) and include the irregular forms.

Another change was the integration of the narrative
process into the application more completely. This
integration was not simply a code change, but a
change in perception of the project as a whole.
The company came to understand that adding the
narrative capability had increased the value of the
EMR in the marketplace. At this time, ours is the
only EMR with real natural language generation,
not handled by templates or canned text.

6 Recommendations

Many of the choices made during development of
this system would be changed, if I had the luxury
of starting over. I would like to offer up some
suggestions for others to avoid the difficulties I
faced. Consider these ideas before you start.

• Educate your clients. Your clients are mostly

in your own company. Not everyone is going
to understand the importance of the work and
the need for resources or have the basic lin-
guistic knowledge to comprehend the require-
ments. I gave many tutorials to help our staff
understand what we were doing.

• Be clear about the costs of building the NLG
system. Your estimates will be wrong, almost
by definition, but you have to start somewhere.
Since the uninitiated cannot imagine the poten-
tial until they see it, they will have many more
ideas of how to apply the technology once they
see it, thus extending the requirements. Here
again, educate the company regarding the staff
requirements (developers, linguists, quality as-
surance, marketing) and the training needed to
make them productive. Consider the data de-
velopment requirements as well as the coding.

• Be careful how you plan out the development
stages. A proof-of-concept system is a great
idea to demonstrate that the technology is fea-
sible, but it is tempting to take it and run with
it. You need to build the system in stages, but
make sure the staging is spelled out in advance

with an understanding from management of
the process.

• Deployment and customer acceptance is the
goal, not completion of the code. We found
that the customers were gratified by the ability
to eliminate the dictation and transcription
process, but they do have opinions about the
wording sometimes. We work with specialists
to develop the medical templates and the narra-
tive before we implement.

• Remember that a commercial system is not
cutting-edge technology, no matter what man-
agement thinks. A commercial system should
use time-proven, reliable methods robust
enough for inevitable modifications. Some
features will be untested, but the basic founda-
tion of the system must be reliable.

• Make sure you have the funding to complete
the project. A champion within the company
can help fight your battles.

None of these recommendations should preclude
anyone from trying to build a large-scale commer-
cial product, but knowing in advance where the
pitfalls lie can ease the process. It takes more than
a good idea and a knowledge of the technology to
make it work, but the effort can be worthwhile in
the end. The language component of our EMR
system has helped doctors increase their ability to
see more patients by reducing the time required to
take notes, dictate them, and pay for their tran-
scription. So the doctors appreciate the automated
narrative capability even though they have no idea
how it is accomplished.

References
Ray Jackendoff. 1990. Semantic Structures. MIT Press.
Ray Jackendoff. 1991. Parts and Boundaries. Lexical

and Conceptual Structures. Blackwell.
Beth Levin. 1993. English Verb Classes and Alterna-

tions: A Preliminary Investigation. University of
Chicago Press.

Ehud Reiter and Robert Dale. 2000. Building Natural
Language Generation Systems. Cambridge Univer-
sity Press.

James C. Shaw. Clause Aggregation. Dissertation,
Columbia University. 2002.
Michael White and Ted Caldwell. 1998. Exemplars:

Practical, Extensible Framework for Dynamic Text
Generation. Proceedings of the Ninth International
Workshop on Natural Language Generation.

160

