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Abstract

Two analyses of Māori passives and gerunds
have been debated in the literature. Both as-
sume that the thematic consonants in these
forms are unpredictable. This paper reports
on three computational experiments designed
to test whether this assumption is sound. The
results suggest that thematic consonants are
predictable from the phonotactic probabilities
of their active counterparts. This study has
potential implications for allomorphy in other
Polynesian languages. It also exemplifies the
benefits of using computational methods in
linguistic analyses.

1 Introduction

The Māori passive is perhaps the most famous prob-
lem in Polynesian linguistics. It has received atten-
tion from Williams (1971, first published in 1844),
Biggs (1961), Hohepa (1967), Hale (1968; 1973;
1991), Kiparsky (1971), Kaye (1975), Kenstowicz
and Kisseberth (1979), McCarthy (1981), Moorfield
(1988), Sanders (1990; 1991), Harlow (1991; 2001;
2007), Bauer (1993), Blevins (1994), Kibre (1998),
de Lacy (2004), and Boyce (2006). Some represen-
tative examples of active and passive verbs are given
in Table 1 (Ryan, 1989).

Two types of analysis have been proposed for
these data (Hale, 1968). These are known as the
‘morphological’ and ‘phonological’ analyses. For
the subset of passives with thematic consonants, the
analyses parse the data differently into stems and
suffixes. To illustrate this, the examples from Table
1 have been parsed in Table 2 with hyphens inserted

Active Passive Gloss
/FeRa/ /FeRahia/ ‘to spread’
/oma/ /omakia/ ‘to run’
/inu/ /inumia/ ‘to drink’
/eke/ /ekeNia/ ‘to climb’
/tupu/ /tupuRia/ ‘to grow’
/aFi/ /aFitia/ ‘to embrace’
/huna/ /hunaia/ ‘to conceal’
/kata/ /kataina/ ‘to laugh’
/ako/ /akona/ ‘to teach’
/heke/ /hekea/ ‘to descend’

Table 1: Examples of active and passive verbs in Māori.

between the stems and suffixes. The thematic con-
sonants have also been flagged.

In both types of analysis, the qualities of the the-
matic consonants are assumed to be unpredictable
and are therefore lexicalized. To cite just one ex-
ample, Blevins writes that “a consonant of unpre-
dictable quality appears in the passive and gerundial
forms, but this consonant is absent when the verb
occurs unsuffixed” (Blevins, 1994, p. 29, my em-
phasis).

In the phonological analysis, the thematic con-
sonants are lexicalized with the rest of the stem.
The active forms are derived by a rule that deletes
stem-final consonants. Although less obvious, the
morphological analysis also lexicalizes the thematic
consonants by allowing stems to be stored with ‘dia-
critic features’. The reason for the diacritic features
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MOR PHON THEME
/FeRa-hia/ /FeRah-ia/ /h/
/oma-kia/ /omak-ia/ /k/
/inu-mia/ /inum-ia/ /m/
/eke-Nia/ /ekeN-ia/ /N/
/tupu-Ria/ /tupuR-ia/ /R/
/aFi-tia/ /aFit-ia/ /t/
/huna-ia/ /huna-ia/ none
/kata-ina/ /kata-ina/ none
/ako-na/ /ako-na/ none
/heke-a/ /heke-a/ none

Table 2: Morphological analyses (MOR), phonological
analyses (PHON), and thematic consonants (THEME).

is to constrain the free combination of stems and suf-
fixes, which, if unconstrained, would over-generate
unattested passive forms. As an illustration, if we
assume the exhaustive association of /inu/ with the
diacritic feature [+m], then the stem would be al-
lowed to combine with /-mia/, but not with any
other suffixes. (In short, to store the diacritic fea-
ture is to lexicalize the quality of the thematic con-
sonant.) Although lack of a diacritic feature is al-
lowed for stems that take ‘default’ suffixes (/-tia/,
/-ia/, or /-a/, depending on stem’s size and compo-
sition), this would only be one thematic consonant
(out of six) that would not be lexicalized; the phono-
logical analysis could still be seen as lexicalizing the
majority of the thematic consonants. Furthermore, a
case could be made that the contrastive absence of
a [+t] diacritic feature effectively lexicalizes /-tia/,
too. Finally, it is worth noting that the purpose of the
default suffixes is to provide analyses for previously
unseen stems, such as nonce words or borrowings; in
other words, the purpose of defaults is not to make
/-tia/ non-lexical.

In this paper, I want to question the assumption
that thematic consonants are unpredictable in Māori
passives. To do so, I will focus on the phonotac-
tic probabilities of active verbs as predictive of their
passive and gerundial forms. I implemented the
analysis as an artificial neural network, which I de-
scribe below. This follows from a rich tradition of
using neural networks in phonology and morphol-

ogy, as exemplified by the English past tense models
of Rumelhart and McClelland (1987) and Plunkett
and Marchman (1991). Incidentally, I chose neu-
ral networks to implement my analysis because of
their computational properties, not because of an ar-
gument for the biological plausibility of my analy-
sis. I suspect that similar results could have been
obtained from another statistical formalism, like the
k-nearest neighbor approach of TiMBL (Daelemans
and van den Bosch, 2005).

The paper is laid out as follows. The network
is described in section 2, the data and experimen-
tal methodology are presented in section 3, and the
experimental results are reported in section 4. The
discussion and conclusion follow in sections 5 and
6, respectively.

2 Network architecture and settings

The network I used in this study was designed to
model a function from the representation of an active
verb in Māori (alternatively, from a verb stem in the
morphological analysis) to a set of output categories
corresponding to passive formations (i.e., to a set of
passive suffixes in the morphological analysis).

For the simulations in this study, I used a 3-layer
feed-forward architecture with 199 input units, 100
hidden units, and 10 output units. The connectiv-
ity between adjacent layers was all-to-all. One fully
activated bias unit was connected to every unit in
the hidden and output layers (to model a threshold-
ing effect and to aid learning). Figure 1 provides a
rough blueprint of the network in ‘slab’ notation.

Figure 1: Network architecture; all-to-all connections be-
tween units in adjacent layers; bias unit not shown.

To calculate the output or activation of a node i in
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the network, I used a sigmoid function

ai =
1

1 + e−neti
, (1)

where e is the exponential and neti is the net input to
node i. As usual, the net input to node i was defined
as

neti =
∑
j

wijaj , (2)

where wij refers to the weights on the connections
from nodes j to node i, and where aj refers to the
activations of nodes j (Plunkett and Elman, 1997).
Learning was achieved using back-propagation and
a learning rate of 0.1 (Werbos, 1974). No momen-
tum was used. Let us turn now to the design of each
layer in the network’s architecture.

2.1 The input layer
There were 199 input units, where the number of in-
put units was chosen to allow up to 18 segments in
the input. Each segment was transformed into an 11-
bit vector according to the feature encodings in Ta-
ble 3. The unaccounted-for unit was used to tell the
model if it was learning a passive or a gerund func-
tion; it can be thought of as specifying the semantic
value PASS or NMLZ.
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/a/ 1 0 0 0 1 0 0 0 0 0 0
/a:/ 1 1 0 0 1 0 0 0 0 0 0
/e/ 1 0 0 0 0 0 0 0 0 0 0
/e:/ 1 1 0 0 0 0 0 0 0 0 0
/i/ 1 0 0 1 0 0 0 0 0 0 0
/i:/ 1 1 0 1 0 0 0 0 0 0 0
/o/ 1 0 1 0 0 0 0 0 0 0 0
/o:/ 1 1 1 0 0 0 0 0 0 0 0
/u/ 1 0 1 1 0 0 0 0 0 0 0
/u:/ 1 1 1 1 0 0 0 0 0 0 0
/p/ 0 0 0 0 0 1 0 0 1 0 0
/t/ 0 0 0 0 0 0 1 0 1 0 0
/k/ 0 0 0 0 0 0 0 1 1 0 0
/F/ 0 0 0 0 0 1 0 0 0 1 0
/h/ 0 0 0 0 0 0 0 0 0 1 0
/m/ 0 0 0 0 0 1 0 0 0 0 1
/n/ 0 0 0 0 0 0 1 0 0 0 1
/N/ 0 0 0 0 0 0 0 1 0 0 1
/R/ 0 0 0 0 0 0 1 0 0 0 0
/w/ 0 0 0 0 0 1 0 0 0 0 0
// 0 0 0 0 0 0 0 0 0 0 0

Table 3: Māori phonemes and feature encodings.

I approached the representation of active verbs
empirically. Three coding schemes were considered,

one of which was segment-based and two of which
were syllable-based. Table 4 provides a handful of
examples in the segmental coding scheme. Notice
that each representation is right-aligned within the
matrix and that there are no gaps between the seg-
ments. Null phonemes were used to fill the empty
cells so that each input vector would be exactly 199
bits long.

6 5 4 3 2 1
/a:/ 7→ a:
/uhi/ 7→ u h i
/waiho/ 7→ w a i h o
/inoi/ 7→ i n o i
/tia/ 7→ t i a

Table 4: Examples of segmental coding.

For both syllabic coding schemes, I used a 3-cell
sequence to represent a CVV syllable template. To
illustrate this, the examples from Table 4 have been
reanalyzed in Table 5 to be consistent with both syl-
labic coding schemes.

Syll Syll
C V V C V V

/a:/ 7→ a:
/uhi/ 7→ u h i
/waiho/ 7→ w a i h o
/inoi/ 7→ i n o i
/tia/ 7→ t i a

Table 5: Examples of syllabic coding.

Within each syllable sequence (Syll) in Table 5,
the first position (C) was reserved for an onset, the
second position (V) was reserved for the primary
vowel, and the third position (V) was reserved for
the second vowel of a diphthong. Again, every
representation was right-aligned. Any sequence of
short vowels in an active verb was treated as a diph-
thong, unless the vowels were equal in quality or the
second vowel was lower than the first. For exam-
ple, /ei/ and /eo/ would be diphthongs, but /ee/
and /ea/ would be analyzed as hiatus.

The syllabic coding schemes differed in their
treatment of a long vowel followed by a short vowel,
where the two vowels had non-identical qualities
and the second was not lower than the first (i.e.,
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where they would be diphthongs if both were phone-
mically short). The first coding treated these se-
quences as diphthongs (Coding 1); the second did
not (Coding 2). Table 6 contrasts the two syl-
labic schemes for the word /ta:oRo/ ‘to break down’.
Since de Lacy (2004) advanced the analysis on
which I based Coding 2, I shall sometimes distin-
guish these schemes by referring to Coding 2 as ‘the
de Lacy analysis’.

Syll Syll Syll
C V V C V V C V V

Coding 1 t a: o R o
Coding 2 t a: o R o

Table 6: Two syllabic codings for /ta:oRo/.

In the section on experiments below, I report on
which of these three schemes worked best. For now,
my aim has been to motivate the network’s input
layer. Notice that 199 input units provides space for
input representations of up to 6 syllables (6 sylla-
bles × 3 prosodic positions × 11 features = 198),
with room for the semantic unit mentioned above.
None of the active verbs in the passive dataset re-
quired more than 6 syllables in any of the coding
schemes.

2.2 The output layer
Since there were 10 passive categories in my dataset
(corresponding to the passive suffixes in the mor-
phological analysis, illustrated in Figure 2), 10 out-
put units were employed in the network. It was con-
sidered appropriate to model membership to each
category independently, as many verbs show multi-
ple passive forms (as /motu/ ‘to separate, wound’
does in its passive forms /motu-hia/ and /motu-
kia/). The key to reading the model’s passive
output can be given as the vector [/-hia/, /-kia/,
/-mia/, /-Nia/, /-Ria/, /-tia/, /-ia/, /-ina/, /-na/,
/-a/]. Although the model represents its outputs as
bits, they can be interpreted by reference to this key.
For example, the passive output for /tapa/ ‘to name’
should be [1, 0, 0, 0, 0, 0, 1, 1, 0, 0], since Ryan’s
dictionary attests /tapa-hia/, /tapa-ia/, and /tapa-
ina/. Note that these alternative outputs are taken
to represent ‘free’ variation within a single speaker,
rather than dialectical variation between speakers.

While the main focus of the model is the Māori
passive, the network can also be used to associate ac-
tive verbs (alternatively, morphological verb stems)
with their gerundial forms (i.e., gerund suffixes, in a
morphological analysis). Although there are fewer
gerund suffixes than passive suffixes, there is a well-
known parallel between the existing gerund suffixes
and the subset of passive suffixes with thematic
consonants. Consider the vector [/-haNa/, /-kaNa/,
/-maNa/, /-Na/, /-RaNa/, /-taNa/, /-aNa/, N/A, N/A,
N/A], which can be used as the key for interpreting
gerund outputs in the network. Notice that the pas-
sive and gerund keys both order the thematic con-
sonants as in the vector [/h/, /k/, /m/, /N/, /R/,
/t/, //, N/A, N/A, N/A]. (Here, the null segment //
has parallels in both keys.) So, interpretation of the
gerundial output can also be performed by lookup.
For example, the target output for /Fi:tiki/ ‘to tie
up’ on the gerund task is [0, 0, 0, 0, 1, 0, 0, 0, 0,
0], since the dataset from Ryan’s dictionary attests
/Fi:tiki-RaNa/. Finally, output activations for the last
three nodes are undefined in the gerund task. I would
have interpreted a significant activation for any of
them as a false prediction.

2.3 The hidden layer
In general, too few hidden units do not provide a
network with enough computational power to learn
a desired function; too many units will result in the
network overfitting the data, in which case its abil-
ity to generalize will suffer. Given the dimensions
of the input and output layers, I was able to esti-
mate the required number of hidden units empiri-
cally. Starting with a conservatively small number
of hidden units, I trained the network for 100 epochs
on 371 patterns in the passive dataset (i.e., approxi-
mately 80% of 464 patterns, which did not contain
any known loanwords), and then froze the network’s
weights and tested its predictions on 46 of the with-
held patterns (i.e., approximately 10% of the pas-
sive dataset), measuring the mean squared error. I
repeated this procedure for increasingly populated
hidden layers, until a trend emerged suggesting an
optimum number of hidden units to minimize the
mean squared error on the test set. For this task,
100 hidden units seemed to work well. The results
for the estimation of hidden units have been graphed
in Figure 2.
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Figure 2: Minimizing error in the network.

3 Methodology

3.1 Data
The passive data in this study were drawn from the
Māori-English section of The Revised Dictionary of
Modern Māori (Ryan, 1989). This provided 476
passive patterns, 12 of which were flagged as En-
glish borrowings.

Active Passive Gloss
/taRaiwa/ /taRaiwa-tia/ ‘drive’
/Raka/ /Raka-ina/ ‘lock’
/paeRa/ /paeRa-tia/ ‘boil’
/wepu/ /wepu-a/ ‘whip’
/peRehi/ /peRehi-tia/ ‘press, print’
/pauRa/ /pauRa-tia/ ‘powder’
/Faka-ho:noRe/ /Faka-ho:noRe-tia/ ‘honor’
/pauna/ /pauna-tia/ ‘to weigh’ (< pound)
/paRau/ /paRau-tia/ ‘plough’
/minita/ /minita-tia/ ‘minister’
/Faka-Rapihi/ /Faka-Rapihi-tia/ ‘to make rubbish of’
/paRai/ /paRai-tia/ ‘fry’

Table 7: 12 English borrowings with their passive forms.

Since I only found two gerund patterns in Ryan’s
dictionary (viz. /hu:pana-taNa/ and /Fi:tiki-RaNa/), I
also searched the Māori Broadcast Corpus (MBC)
for words ending as if they had gerundial suffixes
(Boyce, 2006). This turned up 1537 gerund-like to-
kens, which reduced to 139 gerund-like types.

An overview of the data is provided in Tables 8
and 9. Table 8 shows that 464 passive patterns map
to 28 output categories, the most populous of which
contains 188 members. In other words, 188 verb
stems take the passive suffix /-a/ and no other. By
contrast, only one verb stem takes either /-tia/ or
/-na/ as its passive suffixes. Similarly, Table 9
shows that 233 gerund-like patterns map to 16 out-

put categories. For example, 120 (presumed) verb
stems take the gerund suffix /-taNa/.

Category Members Category Members
{/-a/} 188 {/-Nia/, /-a/} 2
{/-tia/} 112 {/-Ria/, /-tia/} 2
{/-hia/} 33 {/-hia/, /-ia/, /-ina/} 1
{/-na/} 27 {/-hia/, /-kia/} 1
{/-Nia/} 19 {/-hia/, /-mia/} 1
{/-ia/} 17 {/-ia/, /-ina/, /-a/} 1
{/-Ria/} 16 {/-ina/, /-a/} 1
{/-ina/} 13 {/-Nia/, /-ia/} 1
{/-kia/} 6 {/-Nia/, /-Ria/} 1
{/-tia/, /-a/} 6 {/-Nia/, /-tia/} 1
{/-mia/} 4 {/-Nia/, /-tia/, /-a/} 1
{/-ia/, /-a/} 3 {/-Ria/, /-ia/} 1
{/-hia/, /-a/} 2 {/-tia/, /-ina/} 1
{/-hia/, /-tia/} 2 {/-tia/, /-na/} 1

Table 8: 464 passive patterns map to 28 output categories.

Category Members Category Members
{/-taNa/} 120 {/-Na/, /-taNa/} 2
{/-haNa/} 35 {/-RaNa/, /-taNa/} 2
{/-Na/} 21 {/-haNa/, /-aNa/} 1
{/-aNa/} 20 {/-haNa/, /-kaNa/} 1
{/-RaNa/} 16 {/-haNa/, /-maNa/} 1
{/-kaNa/} 6 {/-Na/, /-aNa/} 1
{/-maNa/} 3 {/-Na/, /-RaNa/} 1
{/-haNa/, /-taNa/} 2 {/-RaNa/, /-aNa/} 1

Table 9: 233 gerund-like patterns map to 16 categories.

3.2 Procedure
For the various experiments conducted, different
subsets of the collected corpus were employed. In
general, a sub-corpus was selected and then (ran-
domly) split into training and testing sets. The size
of these sets differed for the different experiments,
since different amounts of relevant data were avail-
able. In every case, the stimuli consisted of input
vectors and their corresponding target vectors.

Before training, the weights in the network were
initialized using a random seed. Stimuli from the
training set were then presented to the network ran-
domly without replacement, so that each stimulus
was seen once per epoch. Training lasted for 100
epochs. The weights were then frozen before each
of the training stimuli were presented to the network
again in order to validate the network’s performance.
The validated network was then presented with the
test stimuli and its predictions were compared with
the activations of the targets. In every experiment,
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the networks were run 5 times using 5 different ran-
dom seeds to initialize the weights. I did this so
that the results would be a little more robust. Perfor-
mance was evaluated by taking the average percent
correct over the 5 runs and variability was measured
by calculating the standard deviation of the 5 runs.

Outputs were evaluated by fist rounding their acti-
vations to 0 or 1, before comparing them to the target
patterns. It should be noted that this is a relatively
liberal measure of the network’s performance, given
such alternatives as measuring the distance from out-
put to target using a deviation < 0.1. Nonetheless,
evaluation by rounding was justified on grounds that
the only meaningful output patterns for the network
were the non-negative integers 0 and 1.

I used chance as the null hypothesis when it was
required for comparison with the network’s perfor-
mance, as chance represents the baseline for unpre-
dictability. The chance of guessing the output acti-
vations correctly was calculated by assuming binary
activations for the outputs (which is fair given the
rounding of network outputs to 0 and 1). For 10 out-
put nodes, 210 = 1024 possible guesses were pos-
sible. In such cases, the probability of guessing the
correct output pattern for any stimulus was calcu-
lated as 1

1024 × 100 = 0.1%. Except where other-
wise noted, the chance of guessing the right output
patterns for n stimuli was calculated as n

1024 × 100.
In some cases, I used other calculations as com-

parisons against the network’s performance. I will
introduce these where applicable.

4 Experimental results

4.1 Segmental and syllabic representations
As mentioned above, the question of input represen-
tation is an empirical one. I introduced three coding
schemes in section 2.1 (a segmental one and two syl-
labic ones). In order to compare the schemes’ abil-
ity to predict the passive forms (including the the-
matic consonants), a sub-corpus of 464 patterns was
selected (i.e., the full set of 476 passives found in
Ryan’s dictionary minus the 12 loanwords). Since
these stimuli had already been randomly split into
80%-10%-10% subsets to estimate the number of
hidden units in the network, I started by reusing this
split. The 10% used as a test set for the hidden units
task were then lumped back into the training set, re-

sulting in a random 90%-10% split (i.e., 418 training
patterns and 46 test patterns). Each coding scheme
was then applied to the same training and test sets,
and the network was run as described in the methods
section.

The results are summarized numerically in Table
10 and graphically in Figure 3. They suggest that
either syllabic coding scheme is better than the seg-
mental one, and that the de Lacy analysis is bet-
ter than the alternative syllabic coding scheme (i.e.,
Coding 2 beats Coding 1). This suggests that it is
better to represent a long vowel followed by a short
vowel in Māori as two syllables.

Coding Scheme % Correct Standard deviation
Segmental 90.43 2.92
Syllable 1 91.74 2.83
Syllable 2 93.91 1.82

Table 10: Representation experiment results, rounded to
the nearest hundredth.

Figure 3: Test results for different representations of the
stems, 5 runs apiece; error bars show standard deviations.

The results also challenge the assumption that the-
matic consonants are strongly unpredictable (i.e.,
governed by chance). I note that 30 of the test pat-
terns did not take a suffix with a thematic conso-
nant, while 15 did. So, of the 15 relevant test cases,
the null hypothesis would have guessed 23.44% cor-
rect (i.e., 15

26 × 100); I adjusted the calculation of
the null hypothesis here to reflect the focus on just
6 of the 10 output patterns (i.e., the ones with the-
matic consonants). Without adjusting the calcula-
tion, the null hypothesis would have done much
worse (cf. 15

210 × 100). By contrast, the network pre-
dicts 46.67% correct (i.e., 7

15 × 100), since it cor-
rectly predicted 7 out of the 15 patterns. So, the
network correctly predicted 23.23% more of the the-
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matic consonant patterns than chance. This suggests
that lexicalization is not the only way to address
thematic consonants in Māori. Since the problem
can be specified in terms of active and passive verbs
(rather than in terms of stems and suffixes), this also
suggests that the Māori passive need not be framed
in terms of the ‘morphological’ and ‘phonological’
analyses of Hale (1968).

The model also does well predicting the passive
form of a verb in general. Note that the null hy-
pothesis would only get 4.49% of the 46 test stim-
uli correct (i.e., 46

1024 × 100). Using the de Lacy
analysis, the network correctly predicted 93.91% of
the 46 test stimuli, which is a massive difference of
89.42%. Moreover, the network also outperforms a
‘majority choice’ strategy, whereby all verb stems
take the most frequent output category (i.e., {/-a/}).
Majority choice correctly predicts 40.52% of the
464 passive patterns (i.e., 188

464 ), which is 53.39% less
than the network’s coverage.

4.2 Gerunds
To test beyond the passive dataset, two sets of
gerunds were considered. The idea was to see if
training a network on a dataset of passives would
be able to predict the suffix patterns of gerunds.

By training the network on the entire passive
dataset 5 different times, and then testing each one
on the 2 gerunds found in Ryan’s dictionary, the net-
work predicted the 100% of the results correct for all
5 runs. (For 2 test items, the null hypothesis would
have only guessed 2

1024 × 100 = 0.2% correct.)
Using the same training set, but testing the net-

work on the 139 gerund-like words in the MBC, the
network correctly predicted an average of 90.36%
correct (with a standard deviation of 0.82). For 139
test patterns, the null hypothesis would only predict
13.57% correct. In both cases, the model does no-
ticeably better than chance.

4.3 Loanwords
When new verbs enter the Māori language, speakers
generalize their knowledge about the passive end-
ings to them. How well does the network do at mod-
eling this ability? 12 loanwords were flagged in the
passive dataset. By training the network on the 464
non-loanword passives and then testing it on the 12
loanwords, the network got 100% correct for all 5

runs. Chance would only predict 1.17% of this test
set correctly (i.e., 12

1024 × 100).
The network also outperforms majority choice on

this task, since majority choice for the 12 loanwords
predicts 83.33% (i.e., 10

12 ). (The most common out-
put category for the 12 loanwords is {/-tia/}.)

In this case, however, there is probably a more
charitable null hypothesis against which to compare
the network’s performance. I refer to the default
analysis, where verbs take /-tia/, /-ia/, or /-a/. On
this analysis, any stem containing more than two
morae takes /-tia/ as its default, any stem containing
fewer than three morae and ending with /a/ takes
/-ia/ as its default, and any other stem (i.e., one con-
taining fewer than three morae and not ending with
/a/) takes /-a/. (Incidentally, one single-mora stem
exists in my database; it is /ko/ ‘to dig’, which takes
/-ia/.)

So, how does the default analysis compare with
the network’s analysis? Of the 12 loanwords in the
passive database, the default analysis gets 91.67%
correct (i.e., 11

12 ). Again, the network gets 100%
correct every time, for 5 runs. Interestingly, all
but one of the 12 loanwords takes /-tia/, /-ia/, or
/-a/. Furthermore, the exception, /Raka-ina/ (< En-
glish lock), would appear to be a systematic hole in
the default analysis, since analogous examples exist,
such as /tia-ina/ (< English steer) (Paul de Lacy,
personal communication). Since both of these stems
consist of fewer than three morae and end with /a/,
the default analysis incorrectly predicts that their
passive forms should be */Raka-ia/ and */tia-ia/, re-
spectively. In other words, while the network only
outperformed the default analysis by one example
from the dataset, that one example would appear to
be representative of a class of stems that the default
analysis necessarily gets wrong, but which the neu-
ral network analysis could possibly get right. How-
ever, since the network needs to be run in order to
see what it actually predicts, additional work would
be needed to address this further.

5 Discussion

Thus far, the model has been evaluated on its perfor-
mance. But while a model that performs well on a
task is valuable in its own right, one would also like
to understand how the model is succeeding. Neu-
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Figure 4: Hinton diagram for a typical weight matrix from input units (x-axis) to hidden units (y-axis).

ral network simulations are sometimes critiqued for
being black box solutions, where a problem can be
solved but the solution cannot be understood. There-
fore, in this discussion section, I would like to begin
to address the question of what properties in stem
representations are responsible for the prediction of
their output categories.

A few relevant sub-regularities have already been
reported in the Māori literature, which are worth re-
view. Citing Moorfield (1988, p. 66), Harlow re-
ports that /-ina/ only occurs after words ending with
/a/, while /-mia/ only occurs after words ending
with /o/ and /u/ (i.e., the [+round] vowels); his
examples, with the stem-final vowels underlined,
are /hua-ina/ ‘be named’, /aRoha-ina/ ‘be loved’,
/Faka-NaRo-mia/ ‘be made to disappear’, and /inu-
mia/ ‘be drunk’ (Harlow, 2007, p. 117). Although
these observations provide necessary but not suffi-
cient conditions for inferring a passive suffix from
a verb stem, they exemplify the type of pattern that
one might like to find. The problem is to find better
patterns in the verb stems.

For ideas of what to investigate, we might look
inside one of the trained networks. Figure 4 illus-
trates the weights from input units to hidden units
in a network trained on the Māori passive data using
the de Lacy coding scheme (from section 4.1). No-
tice the dark vertical bands around inputs 176, 141,
and 113 (there are fainter bands around input 78 and
43, and faint and narrow bands around input 190

and 155). These bands represent stronger weights
(both positive and negative) between the two layers
in the network. In order to understand the network’s
performance, we might ask what these bands rep-
resent. Given that the syllabic coding scheme or-
ganizes the segments into vowels and consonants in
a similar pattern, one hypothesis would be that the
vertical bands represent vowels in the input; a com-
plementary hypothesis would hold that they repre-
sent consonants in the input. While this is a rather
crude distinction to make, it begins to narrow down
the hypothesis space.

To test such hypotheses, we may use ‘degraded’
inputs. For example, to test one hypothesis, one
might replace all consonants in the input represen-
tations with null phonemes; to test the other hypoth-
esis, one might replace all vowels in the input repre-
sentations with null phonemes. An example of these
degraded input representations is given in Table 11
for the word /FeRa/ ‘to spread’.

In a preliminary study (running the network just
once), I found that the model with vowel-only input
outperformed the model with consonant-only input
by a slight margin. Further investigation is surely
needed. But the methodological use of degraded in-
puts provides a way to probe which parts of these
representations contribute most to the model’s per-
formance.

Additional studies might use degraded inputs with
only the final syllables represented compared with
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Syll Syll
C V V C V V

All segments F e R a
No consonants e a
No vowels F R

Table 11: Three representations of /FeRa/ ‘to spread’.
The top one is an uncorrupted input using the de Lacy
syllabic coding. The bottom two are degraded in differ-
ent ways: one has no consonants, the other has no vowels.

ones in which only the penultimate or antipenul-
timate syllables are represented; they might even
narrow down which phonetic features predict which
passive and gerundial categories.

6 Conclusion

The work described here is clearly preliminary with
respect to the problem of predicting passives and
gerunds in Māori. But the experimental results are
suggestive, especially as they challenge the long-
held assumption that thematic consonants cannot be
predicted. This research has implications for fu-
ture investigations of allomorphy in Māori and other
Polynesian languages, since Polynesian allomorphy
has never before been explored using phonotactic
probabilities (at least to the best of my knowledge).

In general, a computational approach makes it
much easier to run complex statistical analyses over
large datasets (compared with manual analyses us-
ing paper and pen). The success of utilizing statistics
in this study exemplify the benefits of using compu-
tational methods in linguistics.
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Māori. Heinemann Education, Auckland, third edi-
tion.

Gerald Sanders. 1990. On the analysis and implications
of Maori verb alternations. Lingua, 80:149–196.

G. Sanders. 1991. Levelling and reanalysis in the his-
tory of Polynesian passive formations. Journal of the
Polynesian Society, 100:71–91.

Paul J. Werbos. 1974. Beyond Regression: New Tools for
Prediction and Analysis in the Behavioral Sciences.
Ph.D. thesis, Harvard University.

H.W. Williams. 1971. A Dictionary of the Maori Lan-
guage. Government Printer, Wellington, seventh edi-
tion. Originally published in 1844.

48


