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Abstract

An adaptable relation extraction system for the
biomedical domain is presented. The system
makes use of a large set of contextual and shal-
low syntactic features, which can be automati-
cally optimised for each relation type. The sys-
tem is tested on three different relation types;
protein-protein interactions, tissue expression
relations and fragment to parent protein rela-
tions.

1 Introduction

In biomedical information extraction, research in
named entity recognition (ner) and relation extrac-
tion (re) has tended to focus on the extracting pro-
teins and their interactions, with less thought given
to how to adapt such systems to other entities and
relations of biomedical interest. This is especially
true for re, where there is very little work on rela-
tions other than protein-protein interactions. Nev-
ertheless, in order to create applications of use to
biologists such as curation assistants and improved
information extraction and retrieval systems it will
be necessary to treat a broader range of semantic re-
lations. The recent release of the Genia event corpus
(Kim et al., 2008) will help to drive this research.

The aim of this paper is to address the problem of
how to create an re system, which can be adapted to
different biomedical re problems with a minimum of
manual intervention. Since this paper focuses on re-
lation extraction, it will be assumed that the named
entities are given, in other words the human anno-
tated entities are used in all experiments. The ap-
proach taken to re is to treat it as a supervised
classification problem on relation candidates, using
a large collection of shallow syntactic and contextual
features. Relation candidates are pairs of entities,
picked out using an appropriate candidate generation
strategy. The use of shallow (as opposed to deep)
syntactic features means that the system can rely

on relatively robust linguistic tools such as part-of-
speech taggers and chunkers, rather than more brit-
tle and less widely available tools such as parsers.
The difficulty with feature-based methods is, how-
ever, how to select the best performing feature set,
as simply adding all possible features does not nec-
essarily give the best results (Guyon and Elisseeff,
2003). The approach taken here is to implement a
large feature set and then use a greedy search to
explore the feature set and select the best subset
of features. This method of feature set optimisa-
tion is not new (for example, it was applied by one
team (Ganchev et al., 2007) on the BioCreative II
Gene Mention task ), but in this work a comparison
of search starting points and feature groupings will
be presented.

All re systems require a human-annotated corpus
for testing, and since a supervised machine learning
approach is employed, a corpus is also required for
training the system. The experiments described in
this paper make use of the ITI TXM corpora (Alex
et al., 2008), which include the ppi corpus address-
ing protein-protein interactions, and the te corpus
addressing tissue expression. Both corpora consist of
approximately 200 full-text biomedical research pa-
pers annotated with entities, normalisations of enti-
ties to standard databases, relations, and with en-
riched information added to the relations. Only the
entities and relations will be considered here.

This paper is organised as follows: after reviewing
related work in the following section, the re system
is described in Section 3, including a description of
the corpora, the relation candidate extraction strate-
gies, the features employed, the feature optimisation
methods and the evaluation method. In Section 4
the results of the optimisation experiments are pre-
sented and discussed, with some concluding remarks
in Section 5.
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2 Related Work

Recent interest in the extraction of protein-protein
interactions has been given added impetus by shared
tasks such as the Language Learning in Logic
(Cussens and Nédellec, 2005), and the BioCreative
II Interaction Pairs Subtask (Krallinger et al., 2008).
It should be noted that the latter task, rather than
being concerned with the extraction of specific inter-
action relation mentions, required systems to list the
(curatable) interactions at a document level. Many
teams, however, extracted the interaction mentions
as a first step and then processed these to give the
document level list of curatable interactions.

The extraction of protein-protein interactions has
also been helped by the availability of annotated cor-
pora, such as AIMed (Bunescu et al., 2005), which
consists of around 1000 Medline abstracts annotated
with proteins and their interactions. In common with
the LLL corpus, the AIMed corpus only contains
intra-sentential relations, and is somewhat smaller
than the corpus used in the current work. In addi-
tion to the work by the corpus creators (Bunescu and
Mooney, 2007), other authors have achieved good re-
sults on AIMed by making use of dependency parses
in different ways (Erkan et al., 2007; Katrenko and
Adriaans, 2006). It is not clear, however, how well
these techniques would transfer to other, similar, re

problems, and how much work would be involved in
tuning the systems for a new problem.

Supervised learning based on shallow syntactic fea-
tures has also been applied to the biomedical do-
main, again focusing on protein-protein interactions
(Nielsen, 2006; Giuliano et al., 2006). A system-
atic exploration of a set of such features for protein-
protein interaction extraction was recently provided
by Jiang and Zhai (2007), who also used features de-
rived from the Collins parser. They did not, however,
experiment with the automated optimisation of the
feature sets. In the news domain, the best reported
results on the ACE dataset1 have been achieved by
a composite kernel which depends partially on a full
parse, and partially on a collection of shallow syn-
tactic features (Zhou et al., 2007).

Aside from protein-protein interactions, there has
been little work directed at other types of relations
in the biomedical domain. Recent corpus annota-
tion projects such as Genia (Kim et al., 2008) and
BioInfer (Pyysalo et al., 2007) include multiple types
of relations, however many of the relation types are
represented in fairly small quantities. In earlier work
(Skounakis et al., 2003), the extraction of cell local-
isation relations was studied using an automatically
created corpus.

1http://www.nist.gov/speech/tests/ace/

3 Methods

3.1 Corpora

The ITI TXM corpora contain annotations related
to protein-protein interactions (in the ppi corpus),
and annotations related to tissue expression exper-
iments (in the te corpus). Each corpus consists of
biomedical research articles, selected from PubMed
and PubMedCentral either because they contain ex-
perimentally proven protein-protein interactions (for
the ppi corpus), or because they contain tissue ex-
pression experiments (for the te corpus).

The articles were annotated by a team of quali-
fied biologists. The annotations consisted of entities
(Table 1), normalisations of selected entities to stan-
dard databases, relations (Table 2) and enrichment
of relations with additional information of interest
to curators. For each corpus, the entities marked
were those involved in the relation which formed the
principal focus of that corpus (either ppi or te), and
those which could affect this relation. In the te cor-
pus, te relations were marked when the text stated
that a particular gene or gene product was present or
absent in a particular tissue, whilst ppi relations were
marked whenever a statement (positive or negative)
was made about the interaction of a pair of Proteins,
Mutants, Fragments, Complexes or Fusions. In ad-
dition, both corpora were annotated with frag re-
lations which connect Fragments and Mutants with
their parent Proteins.

Corpus Entities

ppi CellLine, Complex, DrugCompound,
ExperimentalMethod, Fragment, Fusion,
Modification, Mutant, Protein

te Complex, DevelopmentalStage, Disease,
DrugCompound, ExperimentalMethod,
Fragment, Fusion, GOMOP, Gene,
Mutant, Protein, Tissue, mRNAcDNA

Table 1: The entity types in the te and ppi corpora.
Note that GOMOP stands for “Gene or mRNAcDNA
or Protein” and was used when the annotators felt the
author was using the term in an ambiguous way.

In order to monitor annotation quality, and to
measure of the difficulty of the task, some documents
were multiply annotated. The counts of the numbers
of unique documents in each section, together with
the numbers of annotated documents are shown in
Table 3. Note that the multiply annotated docu-
ments were not reconciled, but the multiple copies
were included in the corpus. Each corpus was split
into three sections – train, devtest and test –
with the first two sections being used for system de-
velopment, and the last reserved for final testing.
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Corpus Relation
type

Entity 1 Types Entity 2 Types Count

ppi ppi Protein, Fusion, Mutant, Fragment or
Complex

Protein, Fusion, Mutant, Fragment or
Complex

11,523

frag Protein Mutant or Fragment 16,002
te te Gene, Protein, mRNAcDNA, GOMOP,

Fusion, Mutant, Complex or Fragment
Tissue 12,426

frag Protein Mutant or Fragment 4,735

Table 2: Relation types in each corpus.

Corpus Segment Unique Doc-
uments

Annotated
Documents

ppi train 133 221
devtest 39 58
train 45 57

te train 151 221
devtest 41 48
test 46 59

Table 3: Counts of documents and annotations in each
corpus.

Corpus Relation Intra Inter

ppi ppi 10,607(92.1%) 916(7.9%)
frag 10,176(63.6%) 5,826(36.4%)

te te 10,356(83.3%) 2,070(16.7%)
frag 3,335(70.4%) 1,400(29.6%)

Table 4: Counts of inter and intra-sentential relations.

Annotators were permitted to mark relations
between entities in the same sentence (intra-

sentential), or between entities in different sentences
(inter-sentential). The majority of relations were
intra-sentential, with frag relations showing the
highest proportion of inter-sententials. Table 4 shows
the counts of inter/intra-sentential relations of each
type.

Some examples of each type of relation will now
be presented. The first example is from PubMed
16436664, and is a te relation:

Our recent observations that 〈αvβ5〉1 is up-
regulated in 〈scleroderma fibroblasts〉1 and
that the transient overexpression of αvβ5
increases the human 〈α2(I) collagen〉2 gene
expression in normal 〈fibroblasts〉2 . . .

There are two different te relations in this sentence
fragment, indicated by the numerical subscripts; the
first connects a Tissue and a Complex, and the sec-
ond connects a Tissue with a Gene. Another example
from the same paper shows a frag relation.

Because 〈β5〉1 has a 〈cytoplasmic domain〉1
highly homologous to that of β6-subunit, 42

we made a hypothesis that αvβ5 activates
SLC by the nonproteolytic pathway.

The annotators could also mark negative te and ppi

relations, as shown in the following example of a ppi

relation taken from PubMedCentral 1075921.

It was also previously reported that two
truncated versions of 〈p53〉1,2, consisting
of residues 〈2-45〉1,3 and 〈46-71〉2,4, do not
bind 〈hRPA70〉3,4 (47)

Here the ppi relations connect the two Fragments
(“2-45” and “46-71”) to the Protein “hRPA70”,
whilst frag relations connect the Fragments with
their parent Protein “p53”.

In contrast with the straightforward intra-
sentential relations shown above, the following (from
PubMed 16399077) is an example of an inter-
sentential te relation (only the related entities are
shown).

To test whether SPE can activate Toll sig-
naling, we expressed activated SPE in 〈S2
cells〉1 and in flies, and we then assayed
the expression of the gene for Drosomycin
(Drs), an antifungal peptide known to be
induced by Toll signaling in response to mi-
crobial infection (Lemaitre et al., 1996). In
both cases, 〈Drs〉2 expression was signifi-
cantly induced in the absence of infection,

In this example, the annotator has connected a Tis-
sue on the first sentence, with an mRNAcDNA in
the second.

The multiply annotated documents in the corpus
were used to calculate the inter-annotator agreement
(iaa), by scoring different versions of the annota-
tion of the same document against each other. For
each corresponding pair of annotations, one anno-
tator was selected as the “gold”, and the other an-
notator scored against the first using precision, re-
call and F1 on relations. Only relations where both
annotators agreed on the participating entities were
considered. The scores for each annotated document
pair were then micro-averaged (where each example
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Corpus Type Intra Inter All

ppi ppi 69.7 41.1 67.0
frag 90.5 73.9 84.6
All 78.7 67.3 76.1

te te 72.8 59.4 70.1
frag 89.7 69.0 84.0
All 77.4 62.7 74.1

Table 5: iaa for relation annotation, split by inter- and
intra-sentential

is given equal weight) to produce overall iaa scores
for the corpus, shown in Table 5.

The main observations from Table 5 are that te

and ppi relations are harder to annotate than frag

relations, and that inter-sentential are harder than
intra-sentential. In particular, the iaa for intra-
sentential frag relations is very high, probably be-
cause many of these are very straightforward con-
structions such as “Fragment of Protein”. Inter-
sentential relations are often less clear as they in-
volve linking information between several sentences,
for example using coreferences.

Both corpora were pre-processed before re was
applied. The pre-processing involved tokenisation,
sentence boundary detection, lemmatising. part-of-
speech tagging, head word detection and chunking.
The part-of-speech tagging uses the Curran & Clark
maximum entropy Markov model tagger (Curran and
Clark, 2003) trained on MedPost data (Smith et
al., 2004), whilst the other preprocessing stages are
all rule-based. The tokenisation, sentence bound-
ary detection, head word identification and chunk-
ing components were implemented with the lt-xml2

tools (Grover and Tobin, 2006), and the lemmatisa-
tion used morpha (Minnen et al., 2000).

3.2 The Relation Extraction System

Relation extraction is treated a classification prob-
lem, by generating candidate relations, and classify-
ing them as either true or false. In the optimisa-
tion experiments described in this paper, Zhang Le’s
maximum entropy (maxent) classifier2 was used,
since its performance was very competitive and its
fast training time permitted extensive feature exper-
imentation. The Gaussian prior was set to 0.1, and
the maximum training iterations to 100. In order to
assess the performance of the final system, maxent

was compared with support vector machines (svm)

using the SVM
light toolkit (Joachims, 1999). Since

both the classifiers assign a confidence to each pre-
diction, a varying threshold can be applied to the
output of the classifier to provide a precision-recall

2http://homepages.inf.ed.ac.uk/s0450736/maxent_

toolkit.html

tradeoff.
Candidate relations were generated by consider-

ing entity pairs of the appropriate type, taking into
account the distance between the entities. It was
thought that inter-sentential and intra-sentential re-
lations would require different feature sets and differ-
ent models, so inter- and intra-sentential candidates
were generated separately. For intra-sentential rela-
tions, all entity pairs of the appropriate type (as in
Table 2) in the same sentence were permitted as can-
didates, with the sole exclusion being that any enti-
ties contained in a Fusion entity were not allowed to
participate in candidate te relations. This restric-
tion was in place in the annotation guidelines, so no
such relations were annotated. For intra-sentential
relations in the training data, around 25-30% of the
candidate relations are actual relations.

Generating inter-sentential candidates is more
problematic, as measures must be taken to limit the
number of candidates. Inter-sentential frag candi-
dates are restricted to a distance of no more than 5
sentences, whilst inter-sentential ppi and te candi-
dates are restricted to participants in adjacent sen-
tences. Inter-sentential re is performed after intra-
sentential re, so the candidate generation strategy
has access to the annotated intra-sentential relations
(in training) and the predicted intra-sentential rela-
tions (in testing). For te and ppi, candidates are
only created for those entities not already in a rela-
tion, and for frag candidates are only created if the
Mutant or Fragment is not already in a relation. Fur-
thermore, for frag relations, if there is more than
one Protein instance with the same lexical form in
the 5 sentence window, then a candidate relation is
only created between a given Fragment/Mutant and
the nearest occurrence of this Protein. For inter-
sentential frag relations, around 20% of the candi-
dates are actual relations, however for te and ppi,
only about 1% of the candidate relations are actual
relations.

3.3 Features

Each candidate relation is mapped to a feature rep-
resentation, where the features are binary or real-
valued functions of relations. The majority of the
features are binary, although these are actually spe-
cial cases of real-valued functions, taking values 0 or
1. A feature representation of a relation is normally
written as a sequence of strings, each corresponding
to a different feature, and the presence or absence of
a binary feature indicating whether it is on or off. In
order that the relation extractor could be applied to
different problems and optimised, a large number of
features were implemented, with the intention that
the feature space could be automatically searched to
find the best subset.
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Features are normally grouped into feature tem-

plates and, as is common in the literature, the feature
templates may also be referred to as features. For in-
stance, a feature template may be “the token to the
right of the second entity in the relation”, which then
gives rise to a set of boolean features with the pre-
fix ctxt-w-rf1-. One such feature in this set is the
feature which indicates that the token to the right
of the second entity is “the”, i.e. ctxt-w-rf1-the.
The feature templates are then collected into fea-

ture groups, such as “context features”, which are
really just a convenient way of conceptualising, im-
plementing and managing the features, and do not
necessarily reflect any common behaviour amongst
the features in a group.

The following is a comprehensive list of the feature
implemented in the re system with features listed
by group, and the possible options for each feature
group given. The options are used to turn on or off
feature templates in the group, or change templates,
and may be boolean or numerical. The nature of
the options will be important in the feature explo-
ration experiments since they influence the type of
search operations which may be used to explore the
feature space. The features are virtually all domain
independent, except for perhaps the SignSlashSign
feature which is specific to te. The RelationKey-
wordFeature can easily be ported to a new domain
by generating a list of keywords appropriate for the
given relation.

In the feature group descriptions which follow, the
term “participants” refers to the entities within the
candidate relation. Some of the features make use of
the “vlw backoff”, which for a given token is defined
as the verb stem, backing off to the lemma if that is
not available, backing off to the token itself.

Chunk This group has three optional templates; one
which adds the concatenated sequence of chunk types
between the participants, and two templates which
add the count of chunks between the participants as
binary and numeric features, respectively. So if the
chunk count is, for example 4, the binary feature
would be chunk-bwcount-4 and the numeric feature
would have name chunk-bwcount and value 4.

EntitiesBetween This has templates to indicate the
type and relative position of the entities between the
two participants. For te relations, only Tissue en-
tities are considered, whilst for other relations only
Proteins are considered.

Entity Features derived from the participating enti-
ties are added by the templates in this group, which
has options to turn on the entity’s text, class and
bigrams of these. There is also a feature template
which adds all words in the entities as separate fea-
tures, and one that adds all words in the second en-
tity only, plus options to add features which indicate

when the two entities have the same textual form, or
when one is a substring of the other.

EntityContext The entity context can include to-
kens, part-of-speech tags, chunk tags and vlw back-
offs, each within window sizes determined by numer-
ical options. A further option can switch on a tem-
plate which adds the concatenation of all vlw back-
offs in the context, on either side of each entity, and
there is also an option to convert all tokens and vlw
backoffs to lower case before creating the features.

EntityDistance Options on this group allow the ad-
dition of the token distance and sentence distance
between the entities, as numeric or binary features.
There is also an option to add a coarse three-way
classification of the token distance.

EntityFrequency Counts are made of the number of
occurrences of each entity surface form in the docu-
ment, limited to Tissue entities for te relations, and
Proteins for frag and ppi relations. The only option
for this feature group adds a template which gener-
ates a binary feature indicating the frequency rank
of the participants’ surface forms in the document.

EntityPattern The entity pattern for a given intra-
sentential candidate relation shows how its partic-
ipants lie with respect to the other entities in the
sentence. The pattern is a concatenated sequence
of the entity types in the sentence, with the par-
ticipants in upper case and other entities in lower
case. Only entity types which are valid participants
in the relation in question are included. For example
protein-PROTEIN-TISSUE would indicate a relation
between a Protein and a Tissue, with another Pro-
tein occurring first in the sentence. Options in this
group add the patterm, the total number of entities
in the sentence, and the numbers of entities for each
type.

Frame The frame is the concatenation of the tokens
between the two participants. Two boolean options
on this group specify whether or not to include the
token concatenation, and whether or not to include
the part-of-speech concatenation. A further numeric
option is used to limit the maximum frame length;
when this is set to a non-zero value longer frames are
discarded.

HeadWord All the headwords of the chunks in the
sentences containing and between the participants
are listed and used to construct the features in this
group. Options specify whether to include head
nouns and/or head verbs, and whether to convert
the headwords to lower case or replace them by their
vlw backoffs. A further option allows an additional
marker to be added to each headword feature to in-
dicate whether it is before, between or after the par-
ticipants.

NestedEntity This feature indicates whether the
participants are contained in other entities, or in each
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other. The first option adds a feature template which
indicates which type of entity containing the two par-
ticipants, if they are both contained. The second op-
tion adds a feature to indicate whether one of the
entities is contained within the other, and the third
adds a feature to indicate whether or not there is any
whitespace between the two entities.

Ngram Three options specify what type of ngrams
to add; whether to add unigrams of the tokens in
the sentences containing the participants, whether to
add bigrams of the same tokens, and whether to add
cross-bigrams, which are bigrams of tokens before
and between the participants, and of tokens between
and after the participants. Additional options spec-
ify whether to convert tokens to vlw backoff or lower
case and whether to replace all sequences of digits
by “0”. Further options can be used to indicate that
only ngrams in between the participants should be
added, that each ngram feature should be marked as
before, between or after, or that all entities should
replaced in the text by their type.

RelationKeyword Relation keywords are terms an-
notated as relation indicators for ppi and te, and
linked to relations. For ppi they are interaction
words, and for te they are expression level words.
Keywords are matched from a list generated during
training and there are feature options to match these
keywords before, between and after the participants,
and to add templates for the existence of a keyword,
the text of the keyword, and whether or not it is a
head word.

RelativeEntityPosition The only option on this
group specifies whether or not to sort the partici-
pant entities, alphabetically by entity type. Binary
features are added indicating whether the first entity
in the candidate relation is the first in the document,
whether it is the second, whether the participants
overlap or whether they coincide.

SignSlashSign This group is only used for te re-
lations and is designed to detected the presence of
indicators like +/+ and −/+ in the sentence(s) con-
taining the relation. Options allow the existence and
type of the one of these expressions to be indicated,
and also its position relative to the participants, and
whether it is adjacent to one of the participants.

3.4 Optimisation

Feature selection methods include wrapper methods
where feature sets are assessed according to their ef-
fectiveness for a given learner, and filter methods
where features are removed using some criterion be-
fore being passed to the learner (Guyon and Elisseeff,
2003). In building the re system, it was found that
filter methods did not work well, probably due to the
large number of interactions between the features, so

a wrapper optimisation method was employed, con-
sisting of greedy search through the space of possible
feature sets.

In the greedy search method, an initial feature set
is selected and a model trained on the train set
and tested on the devtest set. A series of search
operators (see below) are applied to the feature set
to produce a list of proposed new feature sets, one
corresponding to each operator, and the new feature
sets are tested in the same way. If any of these new
feature sets produces better results than the origi-
nal initial set, then the best set replaces the initial
feature set and the process is iterated. The greedy
search terminates when none of the search operators
leads to an improvement. Three types of search oper-
ators are used in the greedy search, defined in terms
of the feature set structure described in Section 3.3:

1. The deletion of a feature group.
2. The increase or decrease of a numerical option

on a feature group (e.g. context size), where the
size of the change is not greater than 2.

3. The flipping of a boolean option on a feature
group.

In theory search operators which add or remove in-
dividual features could be used, but due to the large
number of features the use of such operators is not
practical. In addition, it may have been possible
to achieve more robust results using cross-validation
rather than heldout testing, but that would also re-
sult in a large increase in search time.

3.5 Evaluation

In all re experiments, the annotated entities were
assumed as given so that only re performance was
being assessed. The performance was measured us-
ing precision-recall break-even point (bep), which is
found by adjusting the decision boundary (thresh-
old) of the classifier until the precision and recall are
equal then taking the value of the F1 at this thresh-
old. The bep has the advantage over F1 that its
definition is independent of the choice of threshold,
but it can still be compared easily to the iaa and is
based on the familiar concepts of precision and recall.

4 Results

Performance of the re system on each of the four re-
lation types was optimised using the greedy feature
exploration method described in Section 3.4. Inter
and intra-sentential relations were treated separately,
with intra-sentential relation performance optimised
first. The inter-sentential performance was then as-
sessed using a “pipeline” consisting of the best intra-
sentential relation extractor, and the inter-sentential
system being optimised.

The greedy search experiments for intra-sentential
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relations used two different starting feature sets, an
all set in which all features groups and options were
switched on, and the context sizes in EntityContext

were set to 3, and a base set which used just Ngram

and RelativeEntityPosition features. The models
were trained on train and scored on devtest us-
ing bep. In the calculation of bep, all relations
of the appropriate type were considered, including
inter-sententials. The results of the greedy search on
intra-sentential relations are shown in Table 6.

Corpus Relation
Type

Initial
Features

Initial
bep

Final
bep

ppi ppi base 36.8 52.2
all 51.6 53.4

frag base 49.2 56.0
all 55.9 57.4

te te base 45.9 51.9
all 50.6 53.8

frag base 53.7 62.7
all 60.1 61.2

Table 6: Greedy search feature exploration for intra-
sentential relations. Performance is measured on all re-
lations, testing on devtest.

For all relation types, the greedy search improves
the performance over the base and all feature sets,
usually reaching the highest performance when start-
ing from all. Comparing the results in Table 6
with the iaa figures provided in Table 5 shows that
the system performance is around 75-80% of iaa,
with the lowest relative performances observed for
frag relations. These relations include a higher pro-
portion of inter-sententials, so systems which ignore
inter-sententials suffer a larger loss in performance.

After choosing the best system for intra-sentential
relations, the same greedy optimisation was per-
formed on the inter-sentential relations using virtu-
ally the same initial feature sets. The only differ-
ence in the feature sets is that additional options are
added to the EntityDistance feature to indicate the
sentential distance between the entities. The result
of the greedy search on the inter-sentential relations
is shown in Table 7.

The inter-sentential relation optimisation is only
really successful for the frag relations in the ppi

corpus. For te and ppi inter-sentential relations, the
number of negative examples dwarfs the few posi-
tive examples making it very difficult for the ma-
chine learner. For frag relations in both corpora,
some progress is made on the performance on inter-
sentential relations (detailed breakdown not shown)
but in the te corpus this does not translate to an
overall improvement in bep. This is because the
inter- and intra-sentential probabilities have quite

Corpus Relation
Type

Initial
Features

Initial
bep

Final
bep

ppi ppi base 53.4 53.4
all 53.4 53.4

frag base 59.6 62.2
all 61.7 62.5

te te base 53.9 54.0
all 53.9 54.0

frag base 60.4 62.8
all 62.6 62.7

Table 7: Greedy search feature exploration for inter-
sentential relations. Performance is measured on all re-
lations, testing on devtest.

different ranges for frag relations meaning that the
threshold probabilities would have to be chosen sep-
arately to give the best F1 score.

The greedy search results just presented were
based on a partitioning of the feature sets into groups
which correspond to the way in which the features
were implemented. Since the search operators apply
at group granularity, and are not able to select fea-
tures from within a group, the way in which the fea-
tures are grouped is likely to have a bearing on the
performance of the best system found by the algo-
rithm. The next set of experiments investigates the
effective the feature grouping by conducting greedy
search with groups chosen randomly.

Corpus Relation
Type

Initial
bep

Final bep Ensemble
bep

ppi ppi 51.1 52.9, 52.4, 52.7,
52.8, 52.6

52.5

frag 55.7 56.3, 56.1, 56.1,
56.3, 56.4

56.3

te te 51.4 52.0 , 51.8, 52.5,
51.9, 52.9

52.1

frag 60.1 60.8, 60.5, 60.4,
60.7, 60.5

60.4

Table 8: Greedy search feature exploration with random
feature groupings for intra-sentential relations. The ini-
tial feature set is a slightly modified all in each case, and
the search was run 5 times, testing on devtest. The
ensemble system combines the 5 optimised feature sets
using the geometric mean probability.

Using a variant of the all feature set where the con-
text sizes in EntityContext were set to 5, a greedy
search for the best performing system was imple-
mented by first dividing the feature set randomly
into 50 groups, and at each iteration testing the
performance with each group added and removed
in turn. The search was iterated until no further
improvement in performance was obtained, where
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performance was measured using bep. As for the
previous greedy feature optimisations, the relation
extractor was trained on train and tested on de-

vtest. The results for intra-sentential relations are
shown in Table 8, where the experiment was repeated
several times with different (randomly chosen) par-
titions. After performing the five random knockout
searches of the feature space, an ensemble system
was created for each relation type by training a sys-
tem with each feature set and combining the five by
taking the geometric mean of the probabilities. The
performance of the ensemble system is shown in the
final column of Table 8.

Comparing the results in Table 8 with the corre-
sponding results for intra-sentential relations in Ta-
ble 6, it can be seen that splitting the features into re-
lated groups works better than random groups. The
ensemble does not improve on the individual scores,
probably because the systems in the ensemble are
not diverse enough (Dietterich, 2000)

To see how well the best feature sets generalise to
unseen data, re systems were trained on train and
devtest combined, and tested on test using dif-
ferent feature sets; the baseline sets (base and all),
and the fully optimised set (best). In addition, to
ensure that the greedy feature optimisation was not
biasing the feature set towards the particular learner
employed (i.e. maxent), systems were also trained
and tested using svm. The maxent system had its
Gaussian prior optimised on the devtest set, whilst
svm was found to work best with a linear kernel, and
its cost factor was optimised on devtest. The value
of the decision function was used for thresholding the
svm model in order to calculate the bep. The com-
parison of all systems on test is shown in Table 9.

Corpus
Relation
Type

Learner
Feature Set

base all best

ppi ppi maxent 39.7 48.3 49.1
svm 39.6 49.2 49.9

ppi frag maxent 56.9 68.0 69.4
svm 54.9 68.2 69.5

te te maxent 39.0 47.9 46.8
svm 39.6 49.8 50.1

te frag maxent 60.1 63.4 68.9
svm 59.7 67.7 70.4

Table 9: The performance of the system trained on train

and devtest, and tested on test. Performance is com-
pared across the baseline feature sets (base and all) and
the optimised feature set (best) using each classifier.

The results in Table 9 show that, in general, both
classifiers perform better with the all feature set than
with the base feature set, and best of all with the
best feature set. The svm classifier preserves this

ordering throughout, and actually performs better
than the maxent classifier overall, even though the
features were optimised for maxent. For maxent,
the best model outperforms all in three out of four
cases, with the exception being te.

5 Conclusions

It has been shown that a relation extraction system
based on a supervised classifier and a large collection
of shallow linguistic features can be applied to three
different types of relations in two different biomedical
corpora. Automated feature optimisation produced
small gains in performance which were still apparent
on a blind test set. Even though a wrapper method
was used using a specific classifier (maxent), the
feature set optimisations were still valid for an svm

classifier.
Since the greedy search through feature space is

essentially a beam search with a beam size of one, it
could be extended by using a larger beam-size, run-
ning the feature set comparisons in parallel to reduce
total running time to a manageable size. Ad-hoc ex-
periments have suggested that better results could
be obtained by restarting the feature optimisation
in different positions, indicating that local optima
could be a problem, but a thorough investigation
of the search space nature has been left for future
work. Furthermore, the hyperparameter optimisa-
tion of the classifiers (for example the Gaussian prior
in maxent) could be incorporated into the search.

Whilst the relation extractor was successful on
intra-sentential relations, it is less successful on inter-
sentential relations, perhaps becuase of the lingusitic
complexity of these, and the sparsity of positive ex-
amples. The split into inter- and inter-sentential
examples in the current system seems justified as
they have quite different characteristic, but there
may also be a case for splitting the intra-sententials
further, into intra- and inter-clausals, as suggested
by Maslennikov and Chua (2007), and then treating
inter-clausals and inter-sententials together. Whilst
intra-clausals are more likely to use simple construc-
tions and be amenable to modelling with shallow lin-
guistic features, inter-sententials and inter-clausals
are more likely to use complex linguistic phenomena
such as corefereces.
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