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Abstract

It is a widely accepted belief in natural lan-
guage processing research that naturally oc-
curring data is the best (and perhaps the only
appropriate) data for testing text mining sys-
tems. This paper compares code coverage us-
ing a suite of functional tests and using a large
corpus and finds that higher class, line, and
branch coverage is achieved with structured
tests than with even a very large corpus.

1 Introduction

In 2006, Geoffrey Chang was a star of the protein
crystallography world. That year, a crucial compo-
nent of his code was discovered to have a simple
error with large consequences for his research. The
nature of the bug was to change the signs (positive
versus negative) of two columns of the output. The
effect of this was to reverse the predicted “handed-
ness” of the structure of the molecule—an impor-
tant feature in predicting its interactions with other
molecules. The protein for his work on which Chang
was best known is an important one in predicting
things like human response to anticancer drugs and
the likelihood of bacteria developing antibiotic re-
sistance, so his work was quite influential and heav-
ily cited. The consequences for Chang were the
withdrawal of 5 papers in some of the most presti-
gious journals in the world. The consequences for
the rest of the scientific community have not been
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quantified, but were substantial: prior to the retrac-
tions, publishing papers with results that did not
jibe with his model’s predictions was difficult, and
obtaining grants based on preliminary results that
seemed to contradict his published results was dif-
ficult as well. The Chang story (for a succinct dis-
cussion, see (Miller, 2006), and see (Chang et al.,
2006) for the retractions) is an object illustration of
the truth of Rob Knight’s observation that “For sci-
entific work, bugs don’t just mean unhappy users
who you’ll never actually meet: they mean retracted
publications and ended careers. It is critical that
your code be fully tested before you draw conclu-
sions from results it produces” (personal communi-
cation). Nonetheless, the subject of software testing
has been largely neglected in academic natural lan-
guage processing. This paper addresses one aspect
of software testing: the monitoring of testing efforts
via code coverage.

1.1 Code coverage

Code coverage is a numerical assessment of the
amount of code that is executed during the running
of a test suite (McConnell, 2004). Although it is
by no means a completely sufficient method for de-
termining the completeness of a testing effort, it is
nonetheless a helpful member of any suite of met-
rics for assessing testing effort completeness. Code
coverage is a metric in the range 0-1.0. A value of
0.86 indicates that 86% of the code was executed
while running a given test suite. 100% coverage is
difficult to achieve for any nontrivial application, but
in general, high degrees of “uncovered” code should
lead one to suspect that there is a large amount of
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code that might harbor undetected bugs simply due
to never having been executed. A variety of code
coverage metrics exist. Line coverage indicates the
proportion of lines of code that have been executed.
It is not the most revealing form of coverage assess-
ment (Kaner et al., 1999, p. 43), but is a basic part
of any coverage measurement assessment. Branch
coverage indicates the proportion of branches within
conditionals that have been traversed (Marick, 1997,
p. 145). For example, for the conditional if $a
&& $b, there are two possible branches—one is tra-
versed if the expression evaluates to true, and the
other if it evaluates to false. It is more informative
than line coverage. Logic coverage (also known as
multicondition coverage (Myers, 1979) and condi-
tion coverage (Kaner et al., 1999, p. 44) indicates the
proportion of sets of variable values that have been
tried—a superset of the possible branches traversed.
For example, for the conditional if $a || $b,
the possible cases (assuming no short-circuit logic)
are those of the standard (logical) truth table for that
conditional. These coverage types are progressively
more informative than line coverage. Other types of
coverage are less informative than line coverage. For
example, function coverage indicates the proportion
of functions that are called. There is no guarantee
that each line in a called function is executed, and all
the more so no guarantee that branch or logic cov-
erage is achieved within it, so this type of coverage
is weaker than line coverage. With the advent of
object-oriented programming, function coverage is
sometimes replaced by class coverage—a measure
of the number of classes that are covered.

We emphasize again that code coverage is not
a sufficient metric for evaluating testing complete-
ness in isolation—for example, it is by definition
unable to detect “errors of omission,” or bugs that
consist of a failure to implement needed functional-
ity. Nonetheless, it remains a useful part of a larger
suite of metrics, and one study found that testing in
the absence of concurrent assessment of code cov-
erage typically results in only 50-60% of the code
being executed ((McConnell, 2004, p. 526), citing
Wiegers 2002).

We set out to question whether a dominant, if of-
ten unspoken, assumption of much work in contem-
porary NLP holds true: that feeding a program a
large corpus serves to exercise it adequately. We be-

gan with an information extraction application that
had been built for us by a series of contractors, with
the contractors receiving constant remote oversight
and guidance but without ongoing monitoring of the
actual code-writing. The application had benefitted
from no testing other than that done by the develop-
ers. We used a sort of “translucent-box” or “gray-
box” paradigm, meaning in this case that we treated
the program under test essentially as a black box
whose internals were inaccessible to us, but with the
exception that we inserted hooks to a coverage tool.
We then monitored three types of coverage—line
coverage, branch coverage, and class coverage—
under a variety of contrasting conditions:

• A set of developer-written functional tests ver-
sus a large corpus with a set of semantic rules
optimized for that corpus.

• Varying the size of the rule set.

• Varying the size of the corpus.

We then looked for coverage differences between
the various combinations of input data and rule sets.
In this case, the null hypothesis is that no differences
would be observed. In contrast with the null hypoth-
esis, the unspoken assumption in much NLP work
is that the null hypothesis does not hold, that the
primary determinant of coverage will be the size of
the corpus, and that the observed pattern will be that
coverage is higher with the large corpus than when
the input is not a large corpus.

2 Methods and materials

2.1 The application under test
The application under test was an information ex-
traction application known as OpenDMAP. It is de-
scribed in detail in (Hunter et al., 2008). It achieved
the highest performance on one measure of the
protein-protein interaction task in the BioCreative
II shared task (Krallinger et al., 2007). Its use in
that task is described specifically in (Baumgartner
Jr. et al., In press). It contains 7,024 lines of code
spread across three packages (see Table 1). One
major package deals with representing the seman-
tic grammar rules themselves, while the other deals
with applying the rules to and extracting data from
arbitrary textual input. (A minor package deals with
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Component Lines of code
Parser 3,982
Rule-handling 2,311
Configuration 731
Total 7,024

Table 1: Distribution of lines of code in the application.

the configuration files and is mostly not discussed in
this paper.)

The rules and patterns that the system uses are
typical “semantic grammar” rules in that they allow
the free mixing of literals and non-terminals, with
the non-terminals typically representing domain-
specific types such as “protein interaction verb.”
Non-terminals are represented as classes. Those
classes are defined in a Protégé ontology. Rules typ-
ically contain at least one element known as a slot.
Slot-fillers can be constrained by classes in the on-
tology. Input that matches a slot is extracted as one
of the participants in a relation. A limited regular
expression language can operate over classes, liter-
als, or slots. The following is a representative rule.
Square brackets indicate slots, curly braces indicate
a class, the question-mark is a regular expression op-
erator, and any other text is a literal.

{c-interact} := [interactor1]
{c-interact-verb} the?
[interactor2]

The input NEF binds PACS-2 (PMID 18296443)
would match that rule. The result would be the
recognition of a protein interaction event, with in-
teractor1 being NEF and interactor2 being PACS-2.
Not all rules utilize all possibilities of the rule lan-
guage, and we took this into account in one of our
experiments; we discuss the rules further later in the
paper in the context of that experiment.

2.2 Materials
In this work, we made use of the following sets of
materials.

• A large data set distributed as training data for
part of the BioCreative II shared task. It is de-
scribed in detail in (Krallinger et al., 2007).
Briefly, its domain is molecular biology, and
in particular protein-protein interactions—an
important topic of research in computational

Test type Number of tests
Basic 85
Pattern/rule 67
Patterns only 90
Slots 9
Slot nesting 7
Slot property 20
Total 278

Table 2: Distribution of functional tests.

bioscience, with significance to a wide range
of topics in biology, including understanding
the mechanisms of human diseases (Kann et
al., 2006). The corpus contained 3,947,200
words, making it almost an order of mag-
nitude larger than the most commonly used
biomedical corpus (GENIA, at about 433K
words). This data set is publicly available via
biocreative.sourceforge.net.

• In conjunction with that data set: a set of 98
rules written in a data-driven fashion by man-
ually examining the BioCreative II data de-
scribed just above. These rules were used in the
BioCreative II shared task, where they achieved
the highest score in one category. The set of
rules is available on our SourceForge site at
bionlp.sourceforge.net.

• A set of functional tests created by the primary
developer of the system. Table 2 describes the
breakdown of the functional tests across vari-
ous aspects of the design and functionality of
the application.

2.3 Assessing coverage

We used the open-source Cobertura tool
(Mark Doliner, personal communication;
cobertura.sourceforge.net) to mea-
sure coverage. Cobertura reports line coverage and
branch coverage on a per-package basis and, within
each package, on a per-class basis1.

The architecture of the application is such that
Cobertura’s per-package approach resulted in three

1Cobertura is Java-specific. PyDEV provides code coverage
analysis for Python, as does Coverage.py.
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sets of coverage reports: for the configuration file
processing code, for the rule-processing code, and
for the parser code. We report results for the appli-
cation as a whole, for the parser code, and for the
rule-processing code. We did note differences in the
configuration code coverage for the various condi-
tions, but it does not change the overall conclusions
of the paper and is omitted from most of the discus-
sion due to considerations of space and of general
interest.

3 Results

We conducted three separate experiments.

3.1 The most basic experiment: test suite
versus corpus

In the most basic experiment, we contrasted
class, line, and branch coverage when running the
developer-constructed test suite and when running
the corpus and the corpus-based rules. Tables 3 and
4 show the resulting data. As the first two lines
of Table 3 show, for the entire application (parser,
rule-handling, and configuration), line coverage was
higher with the test suite—56% versus 41%—and
branch coverage was higher as well—41% versus
28% (see the first two lines of Table 3).

We give here a more detailed discussion of the re-
sults for the entire code base. (Detailed discussions
for the parser and rule packages, including granular
assessments of class coverage, follow.)

For the parser package:

• Class coverage was higher with the test suite
than with the corpus—88% (22/25) versus 80%
(20/25).

• For the entire parser package, line coverage
was higher with the test suite than with the
corpus—55% versus 41%.

• For the entire parser package, branch cover-
age was higher with the test suite than with the
corpus—57% versus 29%.

Table 4 gives class-level data for the two main
packages. For the parser package:

• Within the 25 individual classes of the parser
package, line coverage was equal or greater

with the test suite for 21/25 classes; it was not
just equal but greater for 14/25 classes.

• Within those 21 of the 25 individual classes
that had branching logic, branch coverage was
equal or greater with the test suite for 19/21
classes, and not just equal but greater for 18/21
classes.

For the rule-handling package:

• Class coverage was higher with the test suite
than with the corpus—100% (20/20) versus
90% (18/20).

• For the entire rules package, line coverage was
higher with the test suite than with the corpus—
63% versus 42%.

• For the entire rules package, branch coverage
was higher with the test suite than with the
corpus—71% versus 24%.

Table 4 gives the class-level data for the rules
package:

• Within the 20 individual classes of the rules
package, line coverage was equal or greater
with the test suite for 19/20 classes, and not just
equal but greater for 6/20 classes.

• Within those 11 of the 20 individual classes
that had branching logic, branch coverage was
equal or greater with the test suite for all
11/11 classes, and not just equal but greater for
(again) all 11/11 classes.

3.2 The second experiment: Varying the size of
the rule set

Pilot studies suggested (as later experiments veri-
fied) that the size of the input corpus had a negligible
effect on coverage. This suggested that it would be
worthwhile to assess the effect of the rule set on cov-
erage independently. We used simple ablation (dele-
tion of portions of the rule set) to vary the size of the
rule set.

We created two versions of the original rule set.
We focussed only on the non-lexical, relational pat-
tern rules, since they are completely dependent on
the lexical rules. Each version was about half the
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Metric Functional tests Corpus, all rules nominal rules verbal rules
Overall line coverage 56% 41% 41% 41%
Overall branch coverage 41% 28% 28% 28%
Parser line coverage 55% 41% 41% 41%
Parser branch coverage 57% 29% 29% 29%
Rules line coverage 63% 42% 42% 42%
Rules branch coverage 71% 24% 24% 24%
Parser class coverage 88% (22/25) 80% (20/25)
Rules class coverage 100% (20/20) 90% (18/20)

Table 3: Application and package-level coverage statistics using the developer’s functional tests, the full corpus with
the full set of rules, and the full corpus with two reduced sets of rules. The highest value in a row is bolded. The final
three columns are intentionally identical (see explanation in text).

Package Line coverage >= Line coverage > Branch coverage >= Branch coverage >

Classes in parser package 21/25 14/25 19/21 18/21
Classes in rules package 19/20 6/20 11/11 11/11

Table 4: When individual classes were examined, both line and branch coverage were always higher with the functional
tests than with the corpus. This table shows the magnitude of the differences. >= indicates the number of classes that
had equal or greater coverage with the functional tests than with the corpus, and > indicates just the classes that had
greater coverage with the functional tests than with the corpus.

size of the original set. The first consisted of the
first half of the rule set, which happened to consist
primarily of verb-based patterns. The second con-
sisted of the second half of the rule set, which corre-
sponded roughly to the nominalization rules.

The last two columns of Table 3 show the
package-level results. Overall, on a per-package ba-
sis, there were no differences in line or branch cov-
erage when the data was run against the full rule set
or either half of the rule set. (The identity of the last
three columns is due to this lack of difference in re-
sults between the full rule set and the two reduced
rule sets.) On a per-class level, we did note minor
differences, but as Table 3 shows, they were within
rounding error on the package level.

3.3 The third experiment: Coverage closure

In the third experiment, we looked at how cover-
age varies as increasingly larger amounts of the cor-
pus are processed. This methodology is compara-
ble to examining the closure properties of a corpus
in a corpus linguistics study (see e.g. Chapter 6 of
(McEnery and Wilson, 2001)) (and as such may be
sensitive to the extent to which the contents of the
corpus do or do not fit the sublanguage model). We

counted cumulative line coverage as increasingly
large amounts of the corpus were processed, rang-
ing from 0 to 100% of its contents. The results for
line coverage are shown in Figure 1. (The results for
branch coverage are quite similar, and the graph is
not shown.) Line coverage for the entire application
is indicated by the thick solid line. Line coverage
for the parser package is indicated by the thin solid
line. Line coverage for the rules package is indi-
cated by the light gray solid line. The broken line
indicates the number of pattern matches—quantities
should be read off of the right y axis.

The figure shows quite graphically the lack of ef-
fect on coverage of increasing the size of the cor-
pus. For the entire application, the line coverage is
27% when an empty document has been read in, and
39% when a single sentence has been processed; it
increases by one to 40% when 51 sentences have
been processed, and has grown as high as it ever
will—41%—by the time 1,000 sentences have been
processed. Coverage at 191,478 sentences—that is,
3,947,200 words—is no higher than at 1,000 sen-
tences, and barely higher, percentagewise, than at a
single sentence.

An especially notable pattern is that the huge rise
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Figure 1: Increase in percentage of line coverage as in-
creasing amounts of the corpus are processed. Left y axis
is the percent coverage. The x axis is the number of sen-
tences. Right y axis (scale 0-12,000) is the number of
rule matches. The heavy solid line is coverage for the en-
tire package, the thin solid line is coverage for the parser
package, the light gray line is coverage for the rules pack-
age, and the broken line is the number of pattern matches.

in the number of matches to the rules (graphed by
the broken line) between 5,000 sentences and 191K
sentences has absolutely no effect on code coverage.

4 Discussion

The null hypothesis—that a synthetic test suite
and a naturalistic corpus provide the same code
coverage—is not supported by the data shown here.
Furthermore, the widely, if implicitly, held assump-
tion that a corpus would provide the best testing data
can be rejected, as well. The results reported here
are consistent with the hypothesis that code cover-
age for this application is not affected by the size of
the corpus or by the size of the rule set, and that run-
ning it on a large corpus does not guarantee thorough
testing. Rather, coverage is optimized by traditional
software testing.

4.1 Related work
Although software testing is a first-class research
object in computer science, it has received little at-
tention in the natural language processing arena. A
notable exception to this comes from the grammar

engineering community. This has produced a body
of publications that includes Oepen’s work on test
suite design (Oepen et al., 1998), Volk’s work on test
suite encoding (Volk, 1998), Oepen et al.’s work on
the Redwoods project (Oepen et al., 2002), Butt and
King’s discussion of the importance of testing (Butt
and King, 2003), Flickinger et al.’s work on “seman-
tics debugging” with Redwoods data (Flickinger et
al., 2005), and Bender et al.’s recent work on test
suite generation (Bender et al., 2007). Outside of
the realm of grammar engineering, work on test-
ing for NLP is quite limited. (Cohen et al., 2004)
describes a methodology for generating test suites
for molecular biology named entity recognition sys-
tems, and (Johnson et al., 2007) describes the de-
velopment of a fault model for linguistically-based
ontology mapping, alignment, and linking systems.
However, when most researchers in the NLP com-
munity refer in print to “testing,” they do not mean
it in the sense in which that term is used in soft-
ware engineering. Some projects have publicized as-
pects of their testing work, but have not published on
their approaches: the NLTK project posts module-
level line coverage statistics, having achieved me-
dian coverage of 55% on 116 Python modules2 and
38% coverage for the project as a whole; the MAL-
LET project indicates on its web site that it en-
courages the production of unit tests during devel-
opment, but unfortunately does not go into details
of their recommendations for unit-testing machine
learning code3.

4.2 Conclusions
We note a number of shortcomings of code cov-
erage. For example, poor coding conventions
can actually inflate your line coverage. Con-
sider a hypothetical application consisting only
of the following, written as a single line of code
with no line breaks: if (myVariable ==
1) doSomething elsif (myVariable
== 2) doSomethingElse elsif
(myVariable = 3) doYetAnotherThing
and a poor test suite consisting only of inputs that
will cause myVariable to ever have the value 1.
The test suite will achieve 100% line coverage for

2nltk.org/doc/guides/coverage
3mallet.cs.umass.edu/index.php/

Guidelines for writing unit tests
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this application—and without even finding the error
that sets myVariable to 3 if it is not valued 1
or 2. If the code were written with reasonable line
breaks, code coverage would be only 20%. And,
as has been noted by others, code coverage can not
detect “sins of omission”—bugs that consist of the
failure to write needed code (e.g. for error-handling
or for input validation). We do not claim that code
coverage is wholly sufficient for evaluating a test
suite; nonetheless, it is one of a number of metrics
that are helpful in judging the adequacy of a testing
effort. Another very valuable one is the found/fixed
or open/closed graph (Black, 1999; Baumgartner Jr.
et al., 2007).

While remaining aware of the potential shortcom-
ings of code coverage, we also note that the data
reported here supports its utility. The developer-
written functional tests were produced without mon-
itoring code coverage; even though those tests rou-
tinely produced higher coverage than a large corpus
of naturalistic text, they achieved less than 60% cov-
erage overall, as predicted by Wiegers’s work cited
in the introduction. We now have the opportunity to
raise that coverage via structured testing performed
by someone other than the developer. In fact, our
first attempts to test the previously unexercised code
immediately uncovered two showstopper bugs; the
coverage analysis also led us to the discovery that
the application’s error-handling code was essentially
untested.

Although we have explored a number of dimen-
sions of the space of the coverage phenomenon, ad-
ditional work could be done. We used a relatively
naive approach to rule ablation in the second experi-
ment; a more sophisticated approach would be to ab-
late specific types of rules—for example, ones that
do or don’t contain slots, ones that do or don’t con-
tain regular expression operators, etc.—and monitor
the coverage changes. (We did run all three experi-
ments on a separate, smaller corpus as a pilot study;
we report the results for the BioCreative II data set
in this paper since that is the data for which the rules
were optimized. Results in the pilot study were en-
tirely comparable.)

In conclusion: natural language processing appli-
cations are particularly susceptible to emergent phe-
nomena, such as interactions between the contents
of a rule set and the contents of a corpus. These

are especially difficult to control when the evalua-
tion corpus is naturalistic and the rule set is data-
driven. Structured testing does not eliminate this
emergent nature of the problem space, but it does
allow for controlled evaluation of the performance
of your system. Corpora also are valuable evalua-
tion resources: the combination of a structured test
suite and a naturalistic corpus provides a powerful
set of tools for finding bugs in NLP applications.
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