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Abstract 

Textual Entailment Recognition is a se-

mantic inference task that is required in 

many natural language processing (NLP) 

applications. In this paper, we present our 

system for the third PASCAL recognizing 

textual entailment (RTE-3) challenge. The 

system is built on a machine learning 

framework with the following features de-

rived by state-of-the-art NLP techniques: 

lexical semantic similarity (LSS), named 

entities (NE), dependent content word pairs 

(DEP), average distance (DIST), negation 

(NG), task (TK), and text length (LEN). On 

the RTE-3 test dataset, our system achieves 

the accuracy of 0.64 and 0.6488 for the two 

official submissions, respectively. Experi-

mental results show that LSS and NE are 

the most effective features. Further analy-

ses indicate that a baseline dummy system 

can achieve accuracy 0.545 on the RTE-3 

test dataset, which makes RTE-3 relatively 

easier than RTE-2 and RTE-1. In addition, 

we demonstrate with examples that the cur-

rent Average Precision measure and its 

evaluation process need to be changed. 

1 Introduction 

Textual entailment is a relation between two text 

snippets in which the meaning of one snippet, 

called the hypothesis (H), can be inferred from the 

other snippet, called the text (T). Textual 

entailment recognition is the task of deciding 

whether a given T entails a given H. An example 

pair (pair id 5) from the RTE-3 development 

dataset is as follows: 

 

T: A bus collision with a truck in Uganda has resulted 

in at least 30 fatalities and has left a further 21 injured. 
H: 30 die in a bus collision in Uganda. 

 

Given such a pair, a recognizing textual entail-

ment (RTE) system should output its judgement 

about whether or not an entailment relation holds 

between them. For the above example pair, H is 

entailed by T. 

The PASCAL Recognizing Textual Entailment 

Challenge is an annual challenge on this task 

which has been held since 2005 (Dagan et al., 

2006; Bar-Haim et al. 2006). As textual entailment 

recognition is thought to be a common underlying 

semantic inference task for many natural language 

processing applications, such as Information Ex-

traction (IE), Information Retrieval (IR), Question 

Answering (QA), and Document Summarization 

(SUM), the PASCAL RTE Challenge has been 

gaining more and more attention in the NLP com-

munity. In the past challenges, various approaches 

to recognizing textual entailment have been pro-

posed, from syntactic analysis to logical inference 

(Bar-Haim et al. 2006). 

As a new participant, we have two goals by at-

tending the RTE-3 Challenge: first, we would like 

to explore how state-of-the-art language techniques 

help to deal with this semantic inference problem; 

second, we try to obtain a more thorough knowl-

edge of this research and its state-of-the-art. 

Inspired by the success of machine learning 

techniques in RTE-2, we employ the same strategy 

in our RTE-3 system. Several lexical, syntactical, 

and semantical language analysis techniques are 
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explored to derive effective features for determin-

ing textual entailment relation. Then, a general 

machine learning algorithm is applied on the trans-

formed data for training and prediction. Our two 

official submissions achieve accuracy 0.64 and 

0.6488, respectively.  

In the rest of this paper we describe the detail of 

our system and analyze the results. Section 2 gives 

the overview of our system, while Section 3 dis-

cusses the various features in-depth. We present 

our experiments and discussions in Section 4, and 

conclude in Section 5. 

2 System Description 

Figure 1 gives the architecture of our RTE-3 sys-

tem, which finishes the process of both training 

and prediction in two stages. At the first stage, a T-

H pair goes through language processing and fea-

ture extraction modules, and is finally converted to 

a set of feature-values. At the second stage, a ma-

chine learning algorithm is applied to obtain an 

inference/prediction model when training or output 

its decision when predicting. 

In the language processing module, we try to 

analyze T-H pairs with the state-of-the-art NLP 

techniques, including lexical, syntactical, and se-

mantical analyses. We first split text into sentences, 

and tag the Part of Speech (POS) of each word. 

The text with POS information is then fed into 

three separate modules: a named entities recog-

nizer, a word sense disambiguation (WSD) module, 

and a dependency parser. These language analyz-

ers output their own intermediate representations 

for the feature extraction module. 

We produce seven features for each T-H pair: 

lexical semantic similarity (LSS), named entities 

(NE), dependent content word pairs (DEP), aver-

age distance (DIST), negation (NG), task (TK), 

and text length (LEN). The last two features are 

extracted from each pair itself, while others are 

based on the results of language analyzers. 

The resources that we used in our RTE-3 system 

include: 

OAK: a general English analysis tool (Sekine 

2002). It is used for sentence splitting, POS tag-

ging, and named entities recognition. 

WordNet::SenseRelate::Allwords package: a 

word sense disambiguation (WSD) module for as-

signing each content word a sense from WordNet 

(Pedersen et al., 2005). It is used in WSD module. 

 
Figure 1. System Architecture. 

 

WordNet::Similarity package: a Perl module 

that implements a variety of semantic similarity 

and relatedness measures based on WordNet (Pe-

dersen et al., 2005). This package is used for deriv-

ing LSS and DIST features in feature extraction 

module. 

C&C parser: a powerful CCG parser (Clark 

and Curran 2004). We use C&C parser to obtain 

dependent content word pairs in dependency pars-

ing module. 

WEKA: the widely used data mining software 

(Witten&Frank 2005). We have experimented with 

several machine learning algorithms implemented 

in WEKA at the second stage. 

3 Features 

In this section, we explain the seven features that 

we employ in our RTE-3 system. 

3.1 Lexical Semantic Similarity (LSS) 

Let H={HW
 

1, HW
 

2, …, HW
 

m} be the set of words in 

a hypothesis, and T={TW
 

1, TW
 

2, …, TW
 

n} the set of 

words in a text, then the lexical semantic similarity 

feature LSS for a T-H pair is calculated as the fol-

lowing equation: 

∑
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where IDF(w) return the Inverse Document Fre-

quency (IDF) value of word w, and SSim is any 

function for calculating the semantic relatedness 

between two words. We use WordNet::Similarity 
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package to calculate the semantic similarity of two 

content words in WordNet (Fellbaum 1998). This 

package provides many different semantic related-

ness measures. In our system, we use the Lesk re-

latedness measure for function SSim, as it can be 

used to make comparisons between concepts of 

different parts of speech (POS) (Baner-

jee&Pedersen, 2002). Because the value of SSim 

may be larger than 1, we normalize the original 

value from the WordNet::Similarity package to 

guarantee it fall between 0 and 1. 

For the words out of WordNet, e.g. new proper 

nouns, we use the following strategy: if two words 

match exactly, the similarity between them is 1; 

otherwise, the similarity is 0. 

It needs to be pointed out that Equation (1) is a 

variant of the text semantic similarity proposed in 

(Mihalcea et al. 2006). However, in Equation (1), 

we take into account out of vocabulary words and 

normalization for some word-to-word similarity 

metrics that may be larger than 1. 

In addition, we use an IDF dictionary from 

MEAD (Radev et al. 2001; http://www.summari-

zation.com/mead/) for retrieving the IDF value for 

each word. For the words out of the IDF diction-

ary, we assign a default value 3.0. 

3.2 Named Entities (NE) 

Named Entities are important semantic information 

carriers, which convey more specific information 

than individual component words. Intuitively, we 

can assume that all named entities in a hypothesis 

would appear in a textual snippet which entails the 

hypothesis. Otherwise, it is very likely that the en-

tailment relation in a T-H pair doesn’t hold. Based 

on this assumption, we derive a NE feature for 

each T-H pair as follows: 
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Function NE_S derives the set of named entities 

from a textual snippet. When we search in T the 

counterpart of a named entity in H, we use a looser 

matching strategy: if a named entity neA in H is 

consumed by a named entity neB in T, neA and 

neB are thought to be matched. We use the English 

analysis tool OAK (Sekine 2002) to recognize 

named entities in textual snippets. 

3.3 Dependent Content Word Pairs (DEP) 

With the NE feature, we can capture some local 

dependency relations between words, but we may 

miss many dependency relations expressed in a 

long distance. These missed long distance depend-

ency relations may be helpful for determining 

whether entailment holds between H and T. So, we 

design a DEP feature as follows: 
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Function DEP_S derives the set of dependent 

content word pairs from a textual snippet. We re-

quire that the two content words of each pair 

should be dependent directly or linked with at most 

one function word. We use C&C parser (Clark and 

Curran 2004) to parse the dependency structure of 

a textual snippet and then derive the dependent 

content word pairs. We don’t consider the type of 

dependency relation between two linked words. 

3.4 Average Distance (DIST) 

The DIST feature measures the distance between 

unmapped tokens in the text. Adams (2006) uses a 

simple count of the number of unmapped tokens in 

the text that occur between two mapped tokens, 

scaled to the length of the hypothesis. Our system 

uses a different approach, i.e. measuring the aver-

age length of the gaps between mapped tokens. 

The number of tokens in the text between each 

consecutive pair of mapped tokens is summed up, 

and this sum is divided by the number of gaps 

(equivalent to the number of tokens – 1). In this 

formula, consecutive mapped tokens in the text 

count as gaps of 0, so a prevalence of consecutive 

mapped tokens lowers the value for this feature. 

The purpose of this approach is to reduce the effect 

of long appositives, which may not be mapped to 

the hypothesis but should not rule out entailment. 

3.5 Negation (NG) 

The Negation feature is very simple. We simply 

count the occurrences of negative words from a list 

in both the hypothesis (nh) and the text (nt). The list 

includes some common negating affixes. Then the 

value is: 







=
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3.6 Task (TK) 

The Task feature is simply the task domain from 

which the text-hypothesis pair was drawn. The 

values are Question Answering (QA), Information 

Retrieval (IR), Information Extraction (IE), and 

Multi-Document Summarization (SUM).  

3.7 Text Length (LEN) 

The Text Length feature is drawn directly from the 

length attribute of each T-H pair. Based on the 

length of T, its value is either “short” or “long”. 

4 Experiments and Discussions 

We run several experiments using various datasets 

to train and test models, as well as different com-

binations of features. We also experiment with 

several different machine learning algorithms, in-

cluding support vector machine, decision tree, k-

nearest neighbor, naïve bayes, and so on. Decision 

tree algorithm achieves the best results in all ex-

periments during development. Therefore, we 

choose to use decision tree algorithm (J48 in 

WEKA) at the machine learning stage. 

4.1 RTE-3 Datasets 

RTE-3 organizers provide two datasets, i.e. a de-

velopment set and a test set, each consisting of 800 

T-H pairs. In both sets pairs are annotated accord-

ing to the task the example was drawn from and its 

length. The length annotation is introduced in this 

year’s competition, and has a value of either 

“long” or “short.” In addition, the development set 

is annotated as to whether each pair is in an en-

tailment relation or not. 

In order to aid our analysis, we compile some 

statistics on the datasets of RTE-3. Statistics on the 

development dataset are given in Table 1, while 

those on the test dataset appear in Table 2. 

From these two tables, we found the distribution 

of different kinds of pairs is not balanced in both 

the RTE-3 development dataset and the RTE-3 test 

dataset. 412 entailed pairs appear in the develop-

ment dataset, where 410 pairs in the test dataset are 

marked as “YES”. Thus, the first baseline system 

that outputs all “YES” achieves accuracy 0.5125. 

If we consider task information (IE, IR, QA, and 

SUM) and assume the two datasets have the same 

“YES” and “NO” distribution for each task, we 

will derive the second baseline system, which can 

get accuracy 0.5450. Similarly, if we further con-

sider length information (short and long) and as-

sume the two datasets have the same “YES” and 

“NO” distribution for each task with length infor-

mation, we will derive the third baseline system, 

which can also get accuracy 0.5450. 

Table 1. Statistical Information of the RTE-3 De-

velopment Dataset. 

Table 2. Statistical Information of the RTE-3 Test 

Dataset. 

As different kinds of pairs are evenly distributed 

in RTE-1 and RTE-2 datasets, the baseline system 

for RTE-1 and RTE-2 that assumes all “YES” or 

all “NO” can only achieve accuracy 0.5. The rela-

tively higher baseline performance for RTE-3 data-

sets (0.545 vs. 0.5) makes us expect that the aver-

age accuracy may be higher than those in previous 

RTE Challenges. 

Another observation is that the numbers of long 

pairs in both datasets are very limited. Only 

NO 11 1.38% 
IE 

YES 17 2.13% 

NO 22 2.75% 
IR 

YES 21 2.63% 

NO 20 2.50% 
QA 

YES 27 3.38% 

NO 4 0.50% 

Long 

(135) 

SUM 
YES 13 1.63% 

NO 80 10.00% 
IE 

YES 92 11.50% 

NO 89 11.13% 
IR 

YES 68 8.50% 

NO 73 9.13% 
QA 

YES 80 10.00% 

NO 89 11.13% 

Short 

(665) 

SUM 
YES 94 11.75% 

NO 11 1.38% 
IE 

YES 8 1.00% 

NO 31 3.88% 
IR 

YES 23 2.88% 

NO 13 1.63% 
QA 

YES 22 2.75% 

NO 4 0.50% 

Long 

(117) 

SUM 
YES 5 0.63% 

NO 84 10.50% 
IE 

YES 97 12.13% 

NO 82 10.25% 
IR 

YES 64 8.00% 

NO 81 10.13% 
QA 

YES 84 10.50% 

NO 84 10.50% 

Short 

(683) 

SUM 
YES 107 13.38% 
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16.88% and 14.63% pairs are long in the develop-

ment dataset and the test dataset respectively. 

4.2 Evaluation Measures 

Systems are evaluated by simple accuracy as in 

Equation (2); that is, the number of pairs (C) clas-

sified correctly over the total number of pairs (N). 

This score can be further broken down according 

to task.  

N

C
Accuracy = .                                      (2) 

There is another scoring available for ranked re-

sults, Average Precision, which aims to evaluate 

the ability of systems to rank all the T-H pairs in 

the test set according to their entailment confi-

dence (in decreasing order from the most certain 

entailment to the least certain). It is calculated as in 

Equation (3).  

∑=

=

N

i i

iNepiE

R
AvgP

1

)(*)(1
.                        (3) 

Where R is the total number of positive pairs in 

the test set, E(i) is 1 if the i-th pair is positive and 0 

otherwise, and Nep(i) returns the number of posi-

tive pairs in the top i pairs. 

Table 3. Our Official RTE-3 Run Results. 

4.3 Official RTE-3 Results 

The official results for our system are shown in 

Table 3. For our first run, the model was trained on 

all the datasets from the two previous challenges as 

well as the RTE-3 development set, using only the 

LSS, NE, and TK features. This feature combina-

tion achieves the best performance on the RTE-3 

development dataset in our experiments. For the 

second run, the model was trained only on the 

RTE-3 development dataset, but adding other two 

features LEN and DIST. We hope these two fea-

tures may be helpful for differentiating pairs with 

different length. 

RUN2 with five features achieves better results 

than RUN1. It performs better on IE, QA and SUM 

tasks than RUN1, but poorer on IR task. Both runs 

obtain the best performance on QA task, and per-

form very poor on IE task. For the IE task itself, a 

baseline system can get accuracy 0.525. RUN1 

cannot beat this baseline system on IE task, while 

RUN2 only has a trivial advantage over it. In fur-

ther analysis on the detailed results, we found that 

our system tends to label all IE pairs as entailed 

ones, because most of the IE pairs exhibit higher 

lexical overlapping between T and H. In our opin-

ion, word order and long syntactic structures may 

be helpful for dealing with IE pairs. We will ex-

plore this idea and other methods to improve RTE 

systems on IE pairs in our future research. 

Table 4. Accuracy by task and selected feature set 

on the RTE-3 Test dataset (Trained on the RTE-3 

development dataset). 

4.4 Discussions 

4.4.1 Feature Analysis 

Table 4 lays out the results of using various feature 

combinations to train the classifier. All of the 

models were trained on the RTE 3 development 

dataset only. 

It is obvious that the LSS and NE features have 

the most utility. The DIST and LEN features seem 

useless for this dataset, as these features them-

selves can not beat the baseline system with accu-

racy 0.545. Systems with individual features per-

form similarly on SUM pairs except NG, and on IE 

pairs except NG and DEP features. However, on 

IR and QA pairs, they behave quite differently. For 

example, system with NE feature achieves accu-

racy 0.78 on QA pairs, while system with DEP 

feature obtains 0.575. NE and LSS features have 

similar effects, but NE is more useful for QA pairs. 

Accuracy by Task 
RUN 

Overall 
Accuracy 

IE IR QA SUM 

1 0.6400 0.5100 0.6600 0.7950 0.5950 

2 0.6488 0.5300 0.6350 0.8050 0.6250 

Accuracy by Task 
Feature Set 

IE IR QA SUM 

Acc. 

LSS 0.530 0.660 0.720 0.595 0.6263 

NE 0.520 0.620 0.780 0.580 0.6250 

         DEP 0.495 0.625 0.575 0.570 0.5663 

          TK 0.525 0.565 0.530 0.560 0.5450 

                    DIST 0.525 0.435 0.530 0.560 0.5125 

          NG 0.555 0.505 0.590 0.535 0.5463 

                    LEN 0.525 0.435 0.530 0.560 0.5125 

LSS+NE 0.525 0.645 0.805 0.585 0.6400 

LSS+NE+DEP 0.520 0.650 0.810 0.580 0.6400 

LSS+NE+TK 0.530 0.625 0.805 0.595 0.6388 

LSS+NE+TK+LEN 0.530 0.630 0.805 0.625 0.6475 

LSS+NE+TK+DEP 0.530 0.625 0.805 0.620 0.6450 

LSS+NE+TK+DEP+NG 0.460 0.625 0.785 0.655 0.6313 

LSS+NE+TK+LEN+DEP 0.525 0.615 0.790  0.600 0.6325 

LSS+NE+TK+LEN+DIST 

(run2) 
0.530 0.635 0.805 0.625 0.6488 

All Features 0.500 0.590 0.790 0.630 0.6275 
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It is interesting to note that some features im-

prove the score in some combinations, but in oth-

ers they decrease it. For instance, although DEP 

scores above the baseline at 0.5663, when added to 

the combination of LSS, NE, TK, and LEN it low-

ers the overall accuracy by 1.5%. 

4.4.2 About Average Precision Measure 

As we mentioned in section 4.2, Average Precision 

(AvgP) is expected to evaluate the ranking ability 

of a system according to confidence values. How-

ever, we found that the current evaluation process 

and the measure itself have some problems and 

need to be modified for RTE evaluation. 

On one hand, the current evaluation process 

doesn’t consider tied cases where many pairs may 

have the same confidence value. It is reasonable to 

assume that the order of tied pairs will be random. 

Accordingly, the derived Average Precision will 

vary. 

Let’s look at a simple example: suppose we 

have two pairs c and d, and c is the only one posi-

tive entailment pair. Here, R=1, N=2 for Equation 

(3). Two systems X and Y output ranked results as 

{c, d} and {d,c} respectively. According to Equa-

tion (3), the AvgP value of system X is 1, where 

that of system Y is 0.5. If these two systems assign 

same confidence value for both pairs, we can not 

conclude that system X is better than system Y. 

To avoid this problem, we suggest requiring that 

each system for ranked submission output its con-

fidence for each pair. Then, when calculating Av-

erage Precision measure, we first re-rank the list 

with these confidence values and true answers for 

each pair. For tied pairs, we rank pairs with true 

answer “NO” before those with positive entailment 

relation. By this way, we can produce a stable and 

more reasonable Average Precision value. For ex-

ample, in the above example, the modified average 

precisions for both systems will be 0.5. 

On the other hand, from the Equation (3), we 

know that the upper bound of Average Precision is 

1. At the same time, we can also derive a lower 

bound for this measure as in Equation (4). It corre-

sponds to the worst system which places all the 

negative pairs before all the positive pairs. The 

lower bound of Average Precision for RTE-3 test 

dataset is 0.3172. 

∑
−

−

=

−

=

1

0

1
_

R

j jN

jR

R
AvgPLB .                       (4) 

As the values of N and R change, the lower 

bound of Average Precision will vary. Therefore, 

the original Average Precision measure as in Equa-

tion (3) is not an ideal one for comparison across 

datasets. 

To solve this problem, we propose a normalized 

Average Precision measure as in Equation (5). 

AvgPLB

AvgPLBAvgP
AvgPNorm

_1

_
_

−

−

= .            (5) 

5 Conclusion and Future Work 

In this paper, we report our RTE-3 system. The 

system was built on a machine learning framework 

with features produced by state-of-the-art NLP 

techniques. Lexical semantic similarity and Named 

entities are the two most effective features. Data 

analysis shows a higher baseline performance for 

RTE-3 than RTE-1 and RTE-2, and the current 

Average Precision measure needs to be changed. 

As T-H pairs from IE task are the most difficult 

ones, we will focus on these pairs in our future re-

search. 
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