
Proceedings of the Workshop on Textual Entailment and Paraphrasing, pages 159–164,
Prague, June 2007. c©2007 Association for Computational Linguistics

Machine Learning Based Semantic Inference: Experiments and Ob-

servations at RTE-3

Baoli Li1, Joseph Irwin1, Ernest V. Garcia2, and Ashwin Ram1

1 College of Computing

Georgia Institute of Technology

Atlanta, GA 30332, USA

baoli@gatech.edu

gtg519g@mail.gatech.edu

ashwin@cc.gatech.edu

2 Department of Radiology

School of Medicine, Emory University

Atlanta, GA 30322, USA

Ernest.Garcia@emoryhealthcare.org

Abstract

Textual Entailment Recognition is a se-

mantic inference task that is required in

many natural language processing (NLP)

applications. In this paper, we present our

system for the third PASCAL recognizing

textual entailment (RTE-3) challenge. The

system is built on a machine learning

framework with the following features de-

rived by state-of-the-art NLP techniques:

lexical semantic similarity (LSS), named

entities (NE), dependent content word pairs

(DEP), average distance (DIST), negation

(NG), task (TK), and text length (LEN). On

the RTE-3 test dataset, our system achieves

the accuracy of 0.64 and 0.6488 for the two

official submissions, respectively. Experi-

mental results show that LSS and NE are

the most effective features. Further analy-

ses indicate that a baseline dummy system

can achieve accuracy 0.545 on the RTE-3

test dataset, which makes RTE-3 relatively

easier than RTE-2 and RTE-1. In addition,

we demonstrate with examples that the cur-

rent Average Precision measure and its

evaluation process need to be changed.

1 Introduction

Textual entailment is a relation between two text

snippets in which the meaning of one snippet,

called the hypothesis (H), can be inferred from the

other snippet, called the text (T). Textual

entailment recognition is the task of deciding

whether a given T entails a given H. An example

pair (pair id 5) from the RTE-3 development

dataset is as follows:

T: A bus collision with a truck in Uganda has resulted

in at least 30 fatalities and has left a further 21 injured.
H: 30 die in a bus collision in Uganda.

Given such a pair, a recognizing textual entail-

ment (RTE) system should output its judgement

about whether or not an entailment relation holds

between them. For the above example pair, H is

entailed by T.

The PASCAL Recognizing Textual Entailment

Challenge is an annual challenge on this task

which has been held since 2005 (Dagan et al.,

2006; Bar-Haim et al. 2006). As textual entailment

recognition is thought to be a common underlying

semantic inference task for many natural language

processing applications, such as Information Ex-

traction (IE), Information Retrieval (IR), Question

Answering (QA), and Document Summarization

(SUM), the PASCAL RTE Challenge has been

gaining more and more attention in the NLP com-

munity. In the past challenges, various approaches

to recognizing textual entailment have been pro-

posed, from syntactic analysis to logical inference

(Bar-Haim et al. 2006).

As a new participant, we have two goals by at-

tending the RTE-3 Challenge: first, we would like

to explore how state-of-the-art language techniques

help to deal with this semantic inference problem;

second, we try to obtain a more thorough knowl-

edge of this research and its state-of-the-art.

Inspired by the success of machine learning

techniques in RTE-2, we employ the same strategy

in our RTE-3 system. Several lexical, syntactical,

and semantical language analysis techniques are

159

explored to derive effective features for determin-

ing textual entailment relation. Then, a general

machine learning algorithm is applied on the trans-

formed data for training and prediction. Our two

official submissions achieve accuracy 0.64 and

0.6488, respectively.

In the rest of this paper we describe the detail of

our system and analyze the results. Section 2 gives

the overview of our system, while Section 3 dis-

cusses the various features in-depth. We present

our experiments and discussions in Section 4, and

conclude in Section 5.

2 System Description

Figure 1 gives the architecture of our RTE-3 sys-

tem, which finishes the process of both training

and prediction in two stages. At the first stage, a T-

H pair goes through language processing and fea-

ture extraction modules, and is finally converted to

a set of feature-values. At the second stage, a ma-

chine learning algorithm is applied to obtain an

inference/prediction model when training or output

its decision when predicting.

In the language processing module, we try to

analyze T-H pairs with the state-of-the-art NLP

techniques, including lexical, syntactical, and se-

mantical analyses. We first split text into sentences,

and tag the Part of Speech (POS) of each word.

The text with POS information is then fed into

three separate modules: a named entities recog-

nizer, a word sense disambiguation (WSD) module,

and a dependency parser. These language analyz-

ers output their own intermediate representations

for the feature extraction module.

We produce seven features for each T-H pair:

lexical semantic similarity (LSS), named entities

(NE), dependent content word pairs (DEP), aver-

age distance (DIST), negation (NG), task (TK),

and text length (LEN). The last two features are

extracted from each pair itself, while others are

based on the results of language analyzers.

The resources that we used in our RTE-3 system

include:

OAK: a general English analysis tool (Sekine

2002). It is used for sentence splitting, POS tag-

ging, and named entities recognition.

WordNet::SenseRelate::Allwords package: a

word sense disambiguation (WSD) module for as-

signing each content word a sense from WordNet

(Pedersen et al., 2005). It is used in WSD module.

Figure 1. System Architecture.

WordNet::Similarity package: a Perl module

that implements a variety of semantic similarity

and relatedness measures based on WordNet (Pe-

dersen et al., 2005). This package is used for deriv-

ing LSS and DIST features in feature extraction

module.

C&C parser: a powerful CCG parser (Clark

and Curran 2004). We use C&C parser to obtain

dependent content word pairs in dependency pars-

ing module.

WEKA: the widely used data mining software

(Witten&Frank 2005). We have experimented with

several machine learning algorithms implemented

in WEKA at the second stage.

3 Features

In this section, we explain the seven features that

we employ in our RTE-3 system.

3.1 Lexical Semantic Similarity (LSS)

Let H={HW

1, HW

2, …, HW

m} be the set of words in

a hypothesis, and T={TW

1, TW

2, …, TW

n} the set of

words in a text, then the lexical semantic similarity

feature LSS for a T-H pair is calculated as the fol-

lowing equation:

∑

∑

=

i
i

i
i

ii

ji

j

HWIDF

HWIDF
HWHWSSim

TWHWSSim
MAX

THLSS
)(

))(*)
),(

),(
((

),(. (1)

where IDF(w) return the Inverse Document Fre-

quency (IDF) value of word w, and SSim is any

function for calculating the semantic relatedness

between two words. We use WordNet::Similarity

160

package to calculate the semantic similarity of two

content words in WordNet (Fellbaum 1998). This

package provides many different semantic related-

ness measures. In our system, we use the Lesk re-

latedness measure for function SSim, as it can be

used to make comparisons between concepts of

different parts of speech (POS) (Baner-

jee&Pedersen, 2002). Because the value of SSim

may be larger than 1, we normalize the original

value from the WordNet::Similarity package to

guarantee it fall between 0 and 1.

For the words out of WordNet, e.g. new proper

nouns, we use the following strategy: if two words

match exactly, the similarity between them is 1;

otherwise, the similarity is 0.

It needs to be pointed out that Equation (1) is a

variant of the text semantic similarity proposed in

(Mihalcea et al. 2006). However, in Equation (1),

we take into account out of vocabulary words and

normalization for some word-to-word similarity

metrics that may be larger than 1.

In addition, we use an IDF dictionary from

MEAD (Radev et al. 2001; http://www.summari-

zation.com/mead/) for retrieving the IDF value for

each word. For the words out of the IDF diction-

ary, we assign a default value 3.0.

3.2 Named Entities (NE)

Named Entities are important semantic information

carriers, which convey more specific information

than individual component words. Intuitively, we

can assume that all named entities in a hypothesis

would appear in a textual snippet which entails the

hypothesis. Otherwise, it is very likely that the en-

tailment relation in a T-H pair doesn’t hold. Based

on this assumption, we derive a NE feature for

each T-H pair as follows:

>
∩

=

=
.0|)(_|,

|)(_|

|)(_)(_|

,0|)(_|, 1

),(
HSNEif

HSNE

TSNEHSNE

HSNEif

THNE

Function NE_S derives the set of named entities

from a textual snippet. When we search in T the

counterpart of a named entity in H, we use a looser

matching strategy: if a named entity neA in H is

consumed by a named entity neB in T, neA and

neB are thought to be matched. We use the English

analysis tool OAK (Sekine 2002) to recognize

named entities in textual snippets.

3.3 Dependent Content Word Pairs (DEP)

With the NE feature, we can capture some local

dependency relations between words, but we may

miss many dependency relations expressed in a

long distance. These missed long distance depend-

ency relations may be helpful for determining

whether entailment holds between H and T. So, we

design a DEP feature as follows:

>
∩

=

=
.0|)(_|,

|)(_|

|)(_)(_|

,0|)(_|, 1

),(
HSDEPif

HSDEP

TSDEPHSDEP

HSDEPif

THDEP

Function DEP_S derives the set of dependent

content word pairs from a textual snippet. We re-

quire that the two content words of each pair

should be dependent directly or linked with at most

one function word. We use C&C parser (Clark and

Curran 2004) to parse the dependency structure of

a textual snippet and then derive the dependent

content word pairs. We don’t consider the type of

dependency relation between two linked words.

3.4 Average Distance (DIST)

The DIST feature measures the distance between

unmapped tokens in the text. Adams (2006) uses a

simple count of the number of unmapped tokens in

the text that occur between two mapped tokens,

scaled to the length of the hypothesis. Our system

uses a different approach, i.e. measuring the aver-

age length of the gaps between mapped tokens.

The number of tokens in the text between each

consecutive pair of mapped tokens is summed up,

and this sum is divided by the number of gaps

(equivalent to the number of tokens – 1). In this

formula, consecutive mapped tokens in the text

count as gaps of 0, so a prevalence of consecutive

mapped tokens lowers the value for this feature.

The purpose of this approach is to reduce the effect

of long appositives, which may not be mapped to

the hypothesis but should not rule out entailment.

3.5 Negation (NG)

The Negation feature is very simple. We simply

count the occurrences of negative words from a list

in both the hypothesis (nh) and the text (nt). The list

includes some common negating affixes. Then the

value is:

=

otherwise 0,

parity samethe have n and n if 1,
T)NEG(H,

th

161

3.6 Task (TK)

The Task feature is simply the task domain from

which the text-hypothesis pair was drawn. The

values are Question Answering (QA), Information

Retrieval (IR), Information Extraction (IE), and

Multi-Document Summarization (SUM).

3.7 Text Length (LEN)

The Text Length feature is drawn directly from the

length attribute of each T-H pair. Based on the

length of T, its value is either “short” or “long”.

4 Experiments and Discussions

We run several experiments using various datasets

to train and test models, as well as different com-

binations of features. We also experiment with

several different machine learning algorithms, in-

cluding support vector machine, decision tree, k-

nearest neighbor, naïve bayes, and so on. Decision

tree algorithm achieves the best results in all ex-

periments during development. Therefore, we

choose to use decision tree algorithm (J48 in

WEKA) at the machine learning stage.

4.1 RTE-3 Datasets

RTE-3 organizers provide two datasets, i.e. a de-

velopment set and a test set, each consisting of 800

T-H pairs. In both sets pairs are annotated accord-

ing to the task the example was drawn from and its

length. The length annotation is introduced in this

year’s competition, and has a value of either

“long” or “short.” In addition, the development set

is annotated as to whether each pair is in an en-

tailment relation or not.

In order to aid our analysis, we compile some

statistics on the datasets of RTE-3. Statistics on the

development dataset are given in Table 1, while

those on the test dataset appear in Table 2.

From these two tables, we found the distribution

of different kinds of pairs is not balanced in both

the RTE-3 development dataset and the RTE-3 test

dataset. 412 entailed pairs appear in the develop-

ment dataset, where 410 pairs in the test dataset are

marked as “YES”. Thus, the first baseline system

that outputs all “YES” achieves accuracy 0.5125.

If we consider task information (IE, IR, QA, and

SUM) and assume the two datasets have the same

“YES” and “NO” distribution for each task, we

will derive the second baseline system, which can

get accuracy 0.5450. Similarly, if we further con-

sider length information (short and long) and as-

sume the two datasets have the same “YES” and

“NO” distribution for each task with length infor-

mation, we will derive the third baseline system,

which can also get accuracy 0.5450.

Table 1. Statistical Information of the RTE-3 De-

velopment Dataset.

Table 2. Statistical Information of the RTE-3 Test

Dataset.

As different kinds of pairs are evenly distributed

in RTE-1 and RTE-2 datasets, the baseline system

for RTE-1 and RTE-2 that assumes all “YES” or

all “NO” can only achieve accuracy 0.5. The rela-

tively higher baseline performance for RTE-3 data-

sets (0.545 vs. 0.5) makes us expect that the aver-

age accuracy may be higher than those in previous

RTE Challenges.

Another observation is that the numbers of long

pairs in both datasets are very limited. Only

NO 11 1.38%
IE

YES 17 2.13%

NO 22 2.75%
IR

YES 21 2.63%

NO 20 2.50%
QA

YES 27 3.38%

NO 4 0.50%

Long

(135)

SUM
YES 13 1.63%

NO 80 10.00%
IE

YES 92 11.50%

NO 89 11.13%
IR

YES 68 8.50%

NO 73 9.13%
QA

YES 80 10.00%

NO 89 11.13%

Short

(665)

SUM
YES 94 11.75%

NO 11 1.38%
IE

YES 8 1.00%

NO 31 3.88%
IR

YES 23 2.88%

NO 13 1.63%
QA

YES 22 2.75%

NO 4 0.50%

Long

(117)

SUM
YES 5 0.63%

NO 84 10.50%
IE

YES 97 12.13%

NO 82 10.25%
IR

YES 64 8.00%

NO 81 10.13%
QA

YES 84 10.50%

NO 84 10.50%

Short

(683)

SUM
YES 107 13.38%

162

16.88% and 14.63% pairs are long in the develop-

ment dataset and the test dataset respectively.

4.2 Evaluation Measures

Systems are evaluated by simple accuracy as in

Equation (2); that is, the number of pairs (C) clas-

sified correctly over the total number of pairs (N).

This score can be further broken down according

to task.

N

C
Accuracy = . (2)

There is another scoring available for ranked re-

sults, Average Precision, which aims to evaluate

the ability of systems to rank all the T-H pairs in

the test set according to their entailment confi-

dence (in decreasing order from the most certain

entailment to the least certain). It is calculated as in

Equation (3).

∑=

=

N

i i

iNepiE

R
AvgP

1

)(*)(1
. (3)

Where R is the total number of positive pairs in

the test set, E(i) is 1 if the i-th pair is positive and 0

otherwise, and Nep(i) returns the number of posi-

tive pairs in the top i pairs.

Table 3. Our Official RTE-3 Run Results.

4.3 Official RTE-3 Results

The official results for our system are shown in

Table 3. For our first run, the model was trained on

all the datasets from the two previous challenges as

well as the RTE-3 development set, using only the

LSS, NE, and TK features. This feature combina-

tion achieves the best performance on the RTE-3

development dataset in our experiments. For the

second run, the model was trained only on the

RTE-3 development dataset, but adding other two

features LEN and DIST. We hope these two fea-

tures may be helpful for differentiating pairs with

different length.

RUN2 with five features achieves better results

than RUN1. It performs better on IE, QA and SUM

tasks than RUN1, but poorer on IR task. Both runs

obtain the best performance on QA task, and per-

form very poor on IE task. For the IE task itself, a

baseline system can get accuracy 0.525. RUN1

cannot beat this baseline system on IE task, while

RUN2 only has a trivial advantage over it. In fur-

ther analysis on the detailed results, we found that

our system tends to label all IE pairs as entailed

ones, because most of the IE pairs exhibit higher

lexical overlapping between T and H. In our opin-

ion, word order and long syntactic structures may

be helpful for dealing with IE pairs. We will ex-

plore this idea and other methods to improve RTE

systems on IE pairs in our future research.

Table 4. Accuracy by task and selected feature set

on the RTE-3 Test dataset (Trained on the RTE-3

development dataset).

4.4 Discussions

4.4.1 Feature Analysis

Table 4 lays out the results of using various feature

combinations to train the classifier. All of the

models were trained on the RTE 3 development

dataset only.

It is obvious that the LSS and NE features have

the most utility. The DIST and LEN features seem

useless for this dataset, as these features them-

selves can not beat the baseline system with accu-

racy 0.545. Systems with individual features per-

form similarly on SUM pairs except NG, and on IE

pairs except NG and DEP features. However, on

IR and QA pairs, they behave quite differently. For

example, system with NE feature achieves accu-

racy 0.78 on QA pairs, while system with DEP

feature obtains 0.575. NE and LSS features have

similar effects, but NE is more useful for QA pairs.

Accuracy by Task
RUN

Overall
Accuracy

IE IR QA SUM

1 0.6400 0.5100 0.6600 0.7950 0.5950

2 0.6488 0.5300 0.6350 0.8050 0.6250

Accuracy by Task
Feature Set

IE IR QA SUM

Acc.

LSS 0.530 0.660 0.720 0.595 0.6263

NE 0.520 0.620 0.780 0.580 0.6250

 DEP 0.495 0.625 0.575 0.570 0.5663

 TK 0.525 0.565 0.530 0.560 0.5450

 DIST 0.525 0.435 0.530 0.560 0.5125

 NG 0.555 0.505 0.590 0.535 0.5463

 LEN 0.525 0.435 0.530 0.560 0.5125

LSS+NE 0.525 0.645 0.805 0.585 0.6400

LSS+NE+DEP 0.520 0.650 0.810 0.580 0.6400

LSS+NE+TK 0.530 0.625 0.805 0.595 0.6388

LSS+NE+TK+LEN 0.530 0.630 0.805 0.625 0.6475

LSS+NE+TK+DEP 0.530 0.625 0.805 0.620 0.6450

LSS+NE+TK+DEP+NG 0.460 0.625 0.785 0.655 0.6313

LSS+NE+TK+LEN+DEP 0.525 0.615 0.790 0.600 0.6325

LSS+NE+TK+LEN+DIST

(run2)
0.530 0.635 0.805 0.625 0.6488

All Features 0.500 0.590 0.790 0.630 0.6275

163

It is interesting to note that some features im-

prove the score in some combinations, but in oth-

ers they decrease it. For instance, although DEP

scores above the baseline at 0.5663, when added to

the combination of LSS, NE, TK, and LEN it low-

ers the overall accuracy by 1.5%.

4.4.2 About Average Precision Measure

As we mentioned in section 4.2, Average Precision

(AvgP) is expected to evaluate the ranking ability

of a system according to confidence values. How-

ever, we found that the current evaluation process

and the measure itself have some problems and

need to be modified for RTE evaluation.

On one hand, the current evaluation process

doesn’t consider tied cases where many pairs may

have the same confidence value. It is reasonable to

assume that the order of tied pairs will be random.

Accordingly, the derived Average Precision will

vary.

Let’s look at a simple example: suppose we

have two pairs c and d, and c is the only one posi-

tive entailment pair. Here, R=1, N=2 for Equation

(3). Two systems X and Y output ranked results as

{c, d} and {d,c} respectively. According to Equa-

tion (3), the AvgP value of system X is 1, where

that of system Y is 0.5. If these two systems assign

same confidence value for both pairs, we can not

conclude that system X is better than system Y.

To avoid this problem, we suggest requiring that

each system for ranked submission output its con-

fidence for each pair. Then, when calculating Av-

erage Precision measure, we first re-rank the list

with these confidence values and true answers for

each pair. For tied pairs, we rank pairs with true

answer “NO” before those with positive entailment

relation. By this way, we can produce a stable and

more reasonable Average Precision value. For ex-

ample, in the above example, the modified average

precisions for both systems will be 0.5.

On the other hand, from the Equation (3), we

know that the upper bound of Average Precision is

1. At the same time, we can also derive a lower

bound for this measure as in Equation (4). It corre-

sponds to the worst system which places all the

negative pairs before all the positive pairs. The

lower bound of Average Precision for RTE-3 test

dataset is 0.3172.

∑
−

−

=

−

=

1

0

1
_

R

j jN

jR

R
AvgPLB . (4)

As the values of N and R change, the lower

bound of Average Precision will vary. Therefore,

the original Average Precision measure as in Equa-

tion (3) is not an ideal one for comparison across

datasets.

To solve this problem, we propose a normalized

Average Precision measure as in Equation (5).

AvgPLB

AvgPLBAvgP
AvgPNorm

_1

_
_

−

−

= . (5)

5 Conclusion and Future Work

In this paper, we report our RTE-3 system. The

system was built on a machine learning framework

with features produced by state-of-the-art NLP

techniques. Lexical semantic similarity and Named

entities are the two most effective features. Data

analysis shows a higher baseline performance for

RTE-3 than RTE-1 and RTE-2, and the current

Average Precision measure needs to be changed.

As T-H pairs from IE task are the most difficult

ones, we will focus on these pairs in our future re-

search.

References
Rod Adams. 2006. Textual Entailment Through Extended Lexical

Overlap. In Proceedings of RTE-2 Workshop.

Satanjeev Banerjee and Ted Pedersen. 2002. An Adapted Lesk Algo-

rithm for Word Sense Disambiguation Using WordNet. In Pro-

ceedings of CICLING-02.

Roy Bar-Haim et al. 2006. The Second PASCAL Recognising Textual

Entailment Challenge. In Proceedings of RTE-2 Workshop.

Stephen Clark and James R. Curran. 2004. Parsing the WSJ using

CCG and Log-Linear Models. In Proceedings of ACL-04.

Ido Dagan, Oren Glickman, and Bernardo Magnini. 2006. The PAS-

CAL Recognising Textual Entailment Challenge. In Quiñonero-

Candela et al. (editors.), MLCW 2005, LNAI Volume 3944.

Christiane Fellbaum. 1998. WordNet: an Electronic Lexical Database.

MIT Press.

Rada Mihalcea, Courtney Corley, and Carlo Strapparava. 2006. Cor-

pus-based and Knowledge-based Measures of Text Semantic Simi-

larity. In Proceedings of AAAI-06.

Ted Pedersen et al. 2005. Maximizing Semantic Relatedness to Per-

form Word Sense Disambiguation. Research Report UMSI

2005/25, Supercomputing Institute, University of Minnesota.

Dragomir Radev, Sasha Blair-Goldensohn, and ZhuZhang. 2001.

Experiments in single and multidocument summarization using

MEAD. In Proceedings of DUC 2001.

Satoshi Sekine. 2002. Manual of Oak System (version 0.1). Computer

Science Department, New York University,

http://nlp.cs.nyu.edu/oak.

Ian H. Witten and Eibe Frank. 2005. Data Mining: Practical machine

learning tools and techniques. Morgan Kaufmann, San Francisco.

164

