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Abstract

This paper presents an approach to partial
parse selection for robust deep processing.
The work is based on a bottom-up chart
parser for HPSG parsing. Following the def-
inition of partial parses in (Kasper et al.,
1999), different partial parse selection meth-
ods are presented and evaluated on the basis
of multiple metrics, from both the syntactic
and semantic viewpoints. The application
of the partial parsing in spontaneous speech
texts processing shows promising compe-
tence of the method.

1 Introduction

Linguistically deep processing is of high theoret-
ical and application interest because of its ability
to deliver fine-grained accurate analyses of natu-
ral language sentences. Unlike shallow methods
which usually return analyses for any input, deep
processing methods with precision grammars nor-
mally make a clear grammaticality judgment on in-
puts, therefore avoiding the generation of erroneous
analyses for less well-formed inputs. This is a desir-
able feature, for it allows for a more accurate mod-
eling of language itself.

However, this feature largely limits the robustness
of deep processing, for when a sentence is judged
to be ungrammatical, normally no analysis is gen-
erated. When faced with the noisy inputs in real
applications (e.g., input errors introduced by speech
recognizers or other pre-processors, mildly ungram-
matical sentences with fragmental utterances, self-
editing chunks or filler words in spoken texts, and
so forth), lack of robustness means poor coverage,
and makes deep processing less competitive as com-
pared to shallow methods.

Take the English Resource Grammar
(ERG; Flickinger (2000)), a large-scale accu-
rate HPSG for English, for example. (Baldwin et

al., 2004) reported coverage of 57% of the strings
with full lexical span from the British National
Corpus (BNC). Although recent extensions to the
grammar and lexicon have improved the coverage
significantly, full coverage over unseen texts by the
grammar is still not anywhere in sight.

Other domains are even more likely to not fit
into ERG’s universe, such as transcripts of sponta-
neously produced speech where speaker errors and
disfluencies are common. Using a recent version of
the ERG, we are not able to parse 22.6% of a ran-
dom sample of 500 utterances of conversational tele-
phone speech data. 76.1% of the unparsed data was
independently found to contain speaker errors and
disfluencies, and the remaining data either contained
filled pauses or other structures unaccounted for in
the grammar. Correctly recognizing and interpreting
the substrings in the utterance which have coherent
deep syntax is useful both for semantic analysis and
as building blocks for attempts to reconstruct the dis-
fluent spontaneously produced utterances into well-
formed sentences.

For these reasons, it is preferable to exploit the
intermediate syntactic and semantic analysis even if
the full analysis is not available. Various efforts have
been made on the partiality of language processing.
In bottom-up chart parsing, the passive parser edges
licensed by the grammar can be taken as partial anal-
yses. However, as pointed out in (Kasper et al.,
1999), not all passive edges are good candidates, as
not all of them provide useful syntactic/semantic in-
formation. Moreover, the huge amount of passive
edges suggests the need for a technique of select-
ing an optimal subset of them. During recent devel-
opment in statistical parse disambiguation, the use
of log-linear models has been pretty much standard-
ized. However, it remains to be explored whether the
techniques can be adapted for partial parse selection.

In this paper, we adopt the same definition for
partial parse as in (Kasper et al., 1999) and de-
fine the task of partial parse selection. Several dif-
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ferent partial parse selection models are presented
and implemented for an efficient HPSG parser –
PET (Callmeier, 2001).

One of the main difficulties in the research of par-
tial analyses is the lack of good evaluation measure-
ments. Pure syntactic comparisons for parser eval-
uation are not good as they are very much specific
to the annotation guidelines. Also, the deep gram-
mars we are working with are not automatically ex-
tracted from annotated corpora. Therefore, unless
there are partial treebanks built specifically for the
deep grammars, there is simply no ‘gold’ standard
for non-golden partial analyses.

Instead, in this paper, we evaluate the partial anal-
yses results on the basis of multiple metrics, from
both the syntactic and semantic point of views. Em-
pirical evaluation has been done with the ERG on a
small set of texts from the Wall Street Journal Sec-
tion 22 of the Penn Treebank (Marcus et al., 1993).
A pilot study of applying partial parsing in sponta-
neous speech text processing is also carried out.

The remainder of the paper is organized as fol-
low. Section 2 provides background knowledge
about partial analysis. Section 3 presents various
partial parse selection models. Section 4 describes
the evaluation setup and results. Section 5 concludes
the paper.

2 Partial Parsing

2.1 HPSG Parsing

Our work on partial parsing is done with the
DELPH-IN HPSG grammars. Many of these gram-
mars can be used for both parsing and generation.
In this paper, we only focus on the parsing task. For
efficient parsing, we use PET.1 The parsing module
in PET is essentially a bottom-up chart parser. The
parsing process is guided by the parsing tasks on an
agenda. A parsing task represents the combination
of a passive chart edge and an active chart edge or
a rule. When the combination succeeds, new tasks
are generated and put on to the agenda. The parser
terminates either when the task agenda is empty or
when a specific number of full analyses has been
found (only in the no-packing best-first mode).

HPSG grammars use typed feature structures (TF-
Ses) as their background formalism. The TFSes rep-
resent various linguistic objects with a set of fea-

1LKB (Copestake, 2002) has a similar chart-based parser,
being less efficient mainly due to its implementation in Lisp
rather than C/C++.

tures (attribute value pairs) and a type inheritance
system. Therefore, each passive edge on the parsing
chart corresponds to a TFS. A relatively small set of
highly generalized rules are used to check the com-
patibility among smaller TFSes and build up larger
ones.

2.2 Partial Parses

Based on the bottom-up chart parsing, we use the
term Partial Parse to describe a set of intermediate
passive parsing edges whose spans (beginning and
end positions) are non-overlapping between each
other, and together they cover the entire input se-
quence (i.e., no skipped input tokens).

In a graph view, the intermediate results of a chart
parser can be described as a directed graph, where
all positions between input tokens/words are ver-
tices, and all the passive edges derived during pars-
ing are the directed graph arcs. Obviously such a
graph is acyclic and therefore topologically sorted.
A partial parse is then a path from the source vertex
(the beginning position of the input) to the terminal
vertex (the end position of the input).

Suppose in chart parsing, we derived the interme-
diate results as in Figure 1. There are in total4 pos-
sible partial parses:{a, b, c, d}, {a, b, f}, {a, e, d}
and{a, g}.

1w 2w 3w 4w
0 1 2 3 4

ba c d
e

g

f

Figure 1: Graph representation of intermediate chart
parsing results

Note that each passive edge is a sub-structure li-
censed by the grammar. A derivation tree or TFS can
be reconstructed for it if required. This definition of
partial parse is effectively the same to the view of
partial analyses in (Kasper et al., 1999).

2.3 Local Ambiguity Packing

There is one more complication concerning the par-
tial parses when the local ambiguity packing is used
in the parser.

Due to the inherent ambiguity of natural lan-
guage, the same sequence of input may be ana-
lyzed as the same linguistic object in different ways.
Such intermediate analyses must be recorded dur-
ing the processing and recovered in later stages.

129



Without any efficient processing technique, parsing
becomes computationally intractable with the com-
binatory explosion of such local ambiguities. In
PET, the subsumption-based ambiguity packing al-
gorithm proposed in (Oepen and Carroll, 2000) is
used. This separates the parsing into two phases:
forest creation phase and read-out/unpacking phase.

In relation to the work on partial parsing in this
paper, the local ambiguity packing poses an effi-
ciency and accuracy challenge, as not all the inter-
mediate parsing results are directly available as pas-
sive edges on the chart. Without unpacking the am-
biguity readings, interesting partial analyses might
be lost.2 But exhaustively unpacking all the readings
will pay back the efficiency gain by ambiguity pack-
ing, and eventually lead to computational intractable
results.

To efficiently recover the ambiguous readings
from packed representations, the selective unpack-
ing algorithm has been recently implemented as an
extension to the algorithm described in (Carroll and
Oepen, 2005). It is able to recover the top-n best
readings of a given passive parser edge based on the
score assigned by a maximum entropy parse rank-
ing model. This neat feature largely facilitates the
efficient searching for best partial parses described
in later sections.

3 Partial Parse Selection

A partial parse is a set of partial analyses licensed
by the grammar which cover the entire input without
overlapping. As shown in the previous section, there
are usually more than one possible partial parses
for a given input. For deep linguistic processing, a
high level of local ambiguity means there are even
more partial parses due to the combinatory explo-
sion. However, not all the possible partial parses are
equally good. Some partial parses partition the in-
put into fragments that do not correspond to linguis-
tic constituents. Even if the bracketing is correct,
the different edges with the same span represent sig-
nificantly different linguistic objects, and their sub-
structures can be completely different, as well. All
these indicate the need for methods that can appro-
priately select the best partial parses from all the
possible ones.

In this section, we review some of the previous

2More informative analyses are subsumed by less informa-
tive ones. In subsumption-based packing, such analyses are
packed and are not directly accessible.

approaches to partial parse selection, as well as new
partial parse ranking models.

3.1 Longest Edge

One of the simplest and most commonly used cri-
terion in selecting the best partial parse is to prefer
the partial parses which contain an edge that covers
the largest fragment of the input. For example, un-
der such a criterion, the best partial parse in Figure 1
will be {a, g}, since edgeg has the largest span. The
logic behind this criterion is that such largest frag-
ments should preserve the most interesting linguistic
analysis of the input. As an added incentive, finding
the longest edge does not involve much search.

The limitations of such an approach are obvious.
There is no guarantee that the longest edge will be
significantly better than shorter edges, or that it will
even correspond to a valid constituent. Moreover,
when there are multiple edges with the same length
(which is often the case in parsing), the criterion
does not suffice for the choice of the best partial
parse.

3.2 Shortest Path

(Kasper et al., 1999) proposed an alternative solu-
tion to the problem. If the preference of each edge
as a part of the partial parse can be quantitatively de-
cided as a weight of the edge (with smaller weights
assigned to better candidates), then the problem of
finding the best partial parse is to find the shortest
path from the start vertex to the end vertex. Since
the graph is completely connected (by the lexical
edges spanning all the input tokens) and topolog-
ically sorted, such a path always exists. The dis-
covery of such a path can be done in linear time
(O(|V | + |E|)) with the DAG-shortest-path algo-
rithm (Cormen et al., 1990). Though not explic-
itly pointed out by (Kasper et al., 1999), such an
algorithm allows the weights of the edges to be of
any real value (no assumption of positive weights)
as long as the graph is a Directed Acyclic Graph
(DAG).

(Kasper et al., 1999) did point out that the weights
of the edges can be assigned by an estimation func-
tion. For example, the implementation of the al-
gorithm in PET preferred phrasal edges over lexi-
cal edges. Other types of edges are not allowed in
the partial parse. Suppose that we assign weight1
to phrasal edges,2 to lexical edges, andinf to all
other edges. Then for the graph in 2, the best par-
tial parses are{e, g} and{f, g}, both of which have
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the path length of2. It should be noted that such an
approach does not always favor the paths with the
longest edges (i.e., path{h, d} is not preferred in
the given example).

1w 2w 3w 4w
0 1 2 3 4

b c

e g

h

d

f

a :2 :2 :2:2

:1 :1

:1
i 8:1 :

Figure 2: Shortest path partial parses with heuristi-
cally assigned edge weights

However, (Kasper et al., 1999) did not pro-
vide any sophisticated estimation functions based
on the shortest path approach. Using the heuristic
weight described above, usually thousands of differ-
ent paths are found with the same weight. (Kasper
et al., 1999) rely on another scoring function in or-
der to re-rank the partial parses. Although different
requirements for the scoring function are discussed,
no further details have been defined.

It should be noted that different variations of the
shortest path approach are widely in use in many ro-
bust deep parsing systems. For instance, (Riezler et
al., 2002) uses thefewest chunk method to choose
the best fragment analyses for sentences without
full analysis. The well-formed chunks are preferred
over token chunks. With this partial parse selection
method, the grammar achieves 100% coverage on
unseen data. A similar approach is also used in (van
Noord et al., 1999).

3.3 Alternative Estimation Functions

Generally speaking, the weights of the edges in the
shortest path approach represent the quality of the
local analyses and their likelihood of appearing in
the analysis of the entire input.

This is an interesting parallel to the parse selec-
tion models for the full analyses, where a goodness
score is usually assigned to the full analysis. For
example, the parse disambiguation model described
in (Toutanova et al., 2002) uses a maximum entropy
approach to model the conditional probability of a
parse for a given input sequenceP (t|w). A similar
approach has also been reported in (Johnson et al.,
1999; Riezler et al., 2002; Malouf and van Noord,
2004).

For a given partial parseΦ = {t1, . . . , tk}, Ω =

{w1, . . . , wk} is a segmentation of the input se-
quence so that each local analysisti ∈ Φ corre-
sponds to a substringwi ∈ Ω of the input sequence
w. Therefore, the probability of the partial parseΦ
given an input sequencew is:

P (Φ|w) = P (Ω|w) · P (Φ|Ω) (1)

With the bold assumption thatP (ti|wi) are mutually
independent for differenti, we can derive:

P (Φ|w) ≈ P (Ω|w) ·
k∏

i=1

P (ti|wi) (2)

Therefore, the log-probability will be

log P (Φ|w) ≈ log P (Ω|w) +
k∑

i=1

log P (ti|wi) (3)

Equation 3 indicates that the log-probability of a
partial parse for a given input is the sum of the log-
probability of local analyses for the sub-strings, with
an additional component− log P (Ω|w) represent-
ing the conditional log-probability of the segmen-
tation. If we use− log P (ti|wi) as the weight for
each local analysis, then the DAG shortest path al-
gorithm will quickly find the partial parse that max-
imizeslog P (Φ|w) − log P (Ω|w).

The probabilityP (ti|wi) can be modeled in a sim-
ilar way to the maximum entropy based full parse
selection models:

P (ti|wi) =
exp

∑n
j=1

λjfj(ti, wi)∑
t′∈T exp

∑n
j=1

λjfj(t′, wi)
(4)

where T is the set of all possible structures that
can be assigned towi, f1 . . . fn are the features and
λ1 . . . λn are the parameters. The parameters can
be efficiently estimated from a treebank, as shown
by (Malouf, 2002). The only difference from the
full parse selection model is that here intermediate
results are used to generate events for training the
model (i.e. the intermediate nodes are used as posi-
tive events if it occurs on one of the active tree, or as
negative events if not). Since there is a huge number
of intermediate results availalbe, we only randomly
select a part of them as training data. This is es-
sentially similar to the approach in (Osborne, 2000),
where there is an infeasibly large number of training
events, only part of which is used in the estimation
step. The exact features used in the log-linear model
can significantly influence the disambiguation accu-
racy. In this experiment we used the same features
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as those used in the PCFG-S model in (Toutanova et
al., 2002) (i.e., depth-1 derivation trees).

The estimation ofP (Ω|w) is more difficult. In
a sense it is similar to a segmentation or chunking
model, where the task is to segment the input into
fragments. However, it is difficult to collect train-
ing data to directly train such a model for the deep
grammar we have. Here we take a simple rough es-
timation:

P̂ (Ω|w) =
|Y (Ω)|

|Z(w)|
(5)

whereY (Ω) is the set of all partial parses that have
the segmentationΩ; Z(w) is the set of all partial
parses for the inputw.

Unfortunately, the shortest path algorithm is not
able to directly find the maximizedP (Φ|w). Fully
searching all the paths is not practical, since there
are usually tens of thousands of passive edges. In
order to achieve a balance between accuracy and ef-
ficiency, two different approximation approaches are
taken.

One way is to assume that the component
log P (Ω|w) in Equation 3 has less significant ef-
fect on the quality of the partial parse. If this is
valid, then we can simply use− log P (ti|wi) as edge
weights, and use the shortest path algorithm to ob-
tain the bestΦ. This will be referred to asmodel
I.

An alternative way is to first retrieve several
“good” Ω with relatively highP (Ω|w), and then se-
lect the best edgesti that maximizeP (ti|wi) for
eachwi in Ω. We call this approach themodel II.

How well these strategies work will be evaluated
in Section 4. Other strategies or more sophisticated
searching algorithms (e.g., genetic algorithm) can
also be used, but we will leave that to future re-
search.

3.4 Partial Semantic Construction

For each local analysis on the partial parse derived in
the above steps, a semantic fragment can be derived.
The HPSG grammars we use take a compositional
approach to semantic construction. Minimal Re-
cursion Semantics (MRS; Copestake et al. (2006))
is used for semantic representation. MRS can be
easily converted to (Robust) MRS (RMRS; Copes-
take (2006)), which allows further underspecifica-
tion, and can be used for integration of deep and/or
shallow processing tools.

For robust deep processing, the ability to gener-
ate partial semantics is very important. Moreover, it
also provides us with a way to evaluate the partial
parses which is more or less independent from the
syntactic analysis.

4 Evaluation

The evaluation of partial parses is not as easy as the
evaluation of full parses. For full parsers, there are
generally two ways of evaluation. For parsers that
are trained on a treebank using an automatically ex-
tracted grammar, an unseen set of manually anno-
tated data is used as the test set. The parser out-
put on the test set is compared to the gold standard
annotation, either with the widely usedPARSEVAL
measurement, or with more annotation-neutral de-
pendency relations. For parsers based on manually
compiled grammars, more human judgment is in-
volved in the evaluation. With the evolution of the
grammar, the treebank as the output from the gram-
mar changes over time (Oepen et al., 2002). The
grammar writer inspects the parses generated by the
grammar and either “accepts” or “rejects” the anal-
ysis.

In partial parsing for manually compiled gram-
mars, the criterion for acceptable analyses is less
evident. Most current treebanking tools are not de-
signed for annotating partial analyses. Large-scale
manually annotated treebanks do have the annota-
tion for sentences that deep grammars are not able
to fully analyze. And the annotation difference in
other language resources makes the comparison less
straightforward. More complication is involved with
the platform and resources used in our experiment.
Since the DELPH-IN grammars (ERG, JaCY, GG)
use MRS for semantics representation, there is no
reliable way of evaluating the output with traditional
metrics, i.e., dependency relations.

In this paper, we use both manual and automatic
evaluation methods on the partial parsing results.
Different processing resources are used to help the
evaluation from the syntactic, as well as the seman-
tic point of view.

4.1 Syntactic Evaluation

In order to evaluate the quality of the syntactic struc-
tures of the partial parses, we implemented the par-
tial parse models described in the previous section
in the PET parser. The Nov-06 version of the ERG
is used for the experiment. As test set, we used a
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subset of sentences from the Wall Street Journal Sec-
tion 22 from the Penn Treebank. The subset contains
143 sentences which do not receive any full analysis
licensed by the grammar, and do not contain lexi-
cal gaps (input tokens for which the grammar can-
not create any lexical edge). The average sentence
length is 24 words.

Due to the inconsistency of the tokenisation,
bracketing and branching between the Penn Tree-
bank annotation and the handling in ERG, we manu-
ally checked the partial parse derivation trees. Each
output is marked as one of the three cases:GBL if
both the bracketing and the labeling of the partial
parse derivation trees are good (with no more than
two brackets crossing or four false labelings);GB if
the bracketings of the derivation trees are good (with
no more than two brackets crossing), but the label-
ing is bad (with more than four false labelings); orE
if otherwise.

The manual evaluation results are listed in Ta-
ble 1. The test set is processed with two models
presented in Section 3.3 (M-I for model I, M-II
for model II). For comparison, we also evaluate for
the approach using the shortest path with heuristic
weights (denoted bySP). In case there are more than
one path found with the same weight, only the first
one is recorded and evaluated.

GBL GB E
# % # % # %

SP 55 38.5% 64 44.8% 24 16.8%
M-I 61 42.7% 46 32.2% 36 25.2%
M-II 74 51.7% 50 35.0% 19 13.3%

Table 1: Syntactic Evaluation Results

The results show that the naı̈ve shortest path ap-
proach based on the heuristic weights works pretty
well at predicting the bracketing (with 83.3% of the
partial parses having less than two brackets cross-
ing). But, when the labeling is also evaluated it is
worse thanmodel I, and even more significantly out-
performed bymodel II.

4.2 Semantic Evaluation

Evaluation of the syntactic structure only reflects the
partial parse quality from some aspects. In order
to get a more thorough comparison between differ-
ent selection models, we look at the semantic output
generated from the partial parses.

The same set of 143 sentences from the Wall
Street Journal Section 22 of the Penn Treebank is

used. The RMRS semantic representations are gen-
erated from the partial parses with different selection
models. To compare with, we used RASP 2 (Briscoe
et al., 2006), a domain-independent robust parsing
system for English. According to (Briscoe and Car-
roll, 2006), the parser achieves fairly good accuracy
around 80%. The reasons why we choose RASP
for the evaluation are: i) RASP has reasonable cov-
erage and accuracy; ii) its output can be converted
into RMRS representation with the LKB system.
Since there is no large scale (R)MRS treebank with
sentences not covered by the DELPH-IN precision
grammars, we hope to use the RASP’s RMRS out-
put as a standalone annotation to help the evaluation
of the different partial parse selection models.

To compare the RMRS from the RASP and the
partial parse selection models, we used the simi-
larity measurement proposed in (Dridan and Bond,
2006). The comparison outputs a distance value be-
tween two different RMRSes. We normalized the
distance value to be between0 and1. For each se-
lection model, the average RMRS distance from the
RASP output is listed in Table 2.

RMRS Dist.(φ)
SP 0.674
M-I 0.330
M-II 0.296

Table 2: RMRS distance to RASP outputs
Again, we see that the outputs ofmodel II

achieve the highest similarity when compared with
the RASP output. With some manual validation,
we do confirm that the different similarity does im-
ply a significant difference in the quality of the out-
put RMRS. The shortest path with heuristic weights
yielded very poor semantic similarity. The main rea-
son is that not every edge with the same span gen-
erates the same semantics. Therefore, although the
SP receives reasonable bracketing accuracy, it has
less idea of the goodness of different edges with the
same span. By incorporatingP (ti|wi) in the scoring
model, the model I and II can produce RMRSes with
much higher quality.

4.3 Evaluating partial parses on spontaneous
speech text

The above evaluation shows in a comparative way
that model II outperforms other selection models
from both syntactic and semantic points of view. In
order to show its competence in real applications,
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we applied the best performingmodel II on sponta-
neous speech transcripts, which have a high level of
informality and irregularity not available in newspa-
per texts such as the Wall Street Journal.

To evaluate the accuracy and potential interpre-
tational value of partial parsing on spontaneous
speech transcripts, we considered a 100-sentence
random sample of the Fisher Conversational Tele-
phone Speech 2004 development subcorpus (Cieri
et al., 2004), used in the fall 2004 NIST Rich Tran-
scription task.

Of these 100 sentences, six utterances received
neither full nor partial parses due to lexical gaps cre-
ated by words not found in the grammar’s lexicon.3

75 utterances produced full HPSG parses. For the
remaining 19 utterances, the one best partial parse is
found for each usingmodel II.

According to manual evaluation of the output, se-
mantically and syntactically cohesive partial analy-
ses were successfully assigned to 9 of the 19 par-
tially parsed utterances. 3 of the 19 received incom-
plete semantics. The remaining 7 were judged to
be poor due to false segmentation, the syntax and
semantics within those parsed fragments, or both.
In one instance, the interpretation was plausible but
viewed as far less likely by the evaluator than the
preferable interpretation (“. . . [i think you know it it ’s]
[court]”4). It is likely thatn-best partial parsing could
help us in most cases. This would only require a
straightforward extension of the current partial pars-
ing models.

Current partial parsing models do not use any con-
fidence thresholds. Therefore, any input will receive
some full or partial analysis (ignoring the case of
unknown words), together with semantics. Seman-
tic completeness is not checked in partial parsing. In
future research, we may consider finding a sophisti-
cated solution of assigning confidence scores to the
output RMRS fragments.

Overall though, we believe that the current 50%
acceptability of segmentation is reasonable perfor-
mance considering the types of noise in the speech
transcript input.

As a further step to show the competence of par-
tial parsing, we briefly investigated its application
in capturing disfluent regions in speech texts. The
state of the art approach in identifying disfluent re-

3Lexical prediction was not used here to avoid obfuscating
the quality of partial parsing by introducing lexical type predic-
tion errors.

4The repetition error of “it” is interpreted as a topicalization.

gions and potentially capturing meaningful text is a
shallow parsing method described in (Johnson and
Charniak, 2004), which searches the text string for
approximately repeated constituents. We ran their
system on our random sample of the Fisher data, and
compared its results to the partial parse output of the
nine well-segmented partial parses analyses (every
utterance of which contained some speaker-induced
disfluency) to see how well partial parsing could po-
tentially fare as an approach for identifying disfluent
regions of speech text.

Often the (Johnson and Charniak, 2004) method
identified disfluent regions overlapped with identi-
fied fragments found in the partial parse, the removal
of which would yield a fluent sentence. As we hope
to learn confidence measures to determine which
fragments are contentless or repetitive in the fu-
ture, we identified those partial parses where whole
fragments could be deleted to obtain a fluent and
meaning-preserving sentence.

In three cases, simple repeated phrases caught by
(Johnson and Charniak, 2004) were also caught in
some form by the partial parse partitioning. In an-
other case, the speaker interrupts one thought to say
another, and both approaches identify in a single
fragment the final fluent statement. Finally, of the
nine well-segmented utterances, two partial parses
potentially catch deeper speaker errors that cannot
be caught by (Johnson and Charniak, 2004).

5 Conclusion and Future Work

In this paper, we have presented work on partial
parse selection. Different selection models have
been presented and evaluated from syntactic and
semantic viewpoints. In the application of spon-
taneous speech text processing, the method shows
promising competence, as well as a few problems
for further study.

One thing we did not do is a systematic compar-
ison on the efficiency of different partial parse se-
lection models. Although it is clear that less search-
ing is involved with the shortest path approach and
model I comparing tomodel II, a scientific bench-
marking of such difference will be helpful for the
choice between efficiency and accuracy. Also, a
more sophisticated estimation ofP (Ω|w) can poten-
tially help the accuracy of the selection models.

Another alternative way of evaluation would be
to generate an ungrammatical corpus by randomly
introducing grammar errors. The performance of the
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partial parse selection models can be measured by
evaluating how much of the parsing results can be
recovered from original sentences.

In the study with spontaneous speech text pro-
cessing, we see a need for confidence measurement
for partial analyses. We also see that the conditional
probability P (ti|wi) does not serve as a good mea-
surement, for it largely depends on the structures
that can be licensed towi by the grammar. This
should be explored in future studies, as well.
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