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Abstract

This paper describes a novel model using
dependency structures on the source side
for syntax-based statistical machine transla-
tion: Dependency Treelet String Correspon-
dence Model (DTSC). The DTSC model
maps source dependency structures to tar-
get strings. In this model translation pairs of
source treelets and target strings with their
word alignments are learned automatically
from the parsed and aligned corpus. The
DTSC model allows source treelets and tar-
get strings with variables so that the model
can generalize to handle dependency struc-
tures with the same head word but with dif-
ferent modifiers and arguments. Addition-
ally, target strings can be also discontinuous
by using gaps which are corresponding to
the uncovered nodes which are not included
in the source treelets. A chart-style decod-
ing algorithm with two basic operations—
substituting and attaching—is designed for
the DTSC model. We argue that the DTSC
model proposed here is capable of lexical-
ization, generalization, and handling discon-
tinuous phrases which are very desirable for
machine translation. We finally evaluate our
current implementation of a simplified ver-
sion of DTSC for statistical machine trans-
lation.

Introduction
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word/phrase based models in statistical machine
translation (SMT) (Lin, 2004; Chiang, 2005; Ding
et al., 2005; Quirk et al., 2005; Marcu et al., 2006;
Liu et al., 2006). It is believed that these models
can improve the quality of SMT significantly. Com-
pared with phrase-based models, syntax-based mod-
els lead to better reordering and higher flexibility
by introducing hierarchical structures and variables
which make syntax-based models capable of hierar-
chical reordering and generalization. Due to these
advantages, syntax-based approaches are becoming
an active area of research in machine translation.

In this paper, we propose a novel model based on
dependency structures: Dependency Treelet String
Correspondence Model (DTSC). The DTSC model
maps source dependency structures to target strings.
It just needs a source language parser. In contrast to
the work by Lin (2004) and by Quirk et al. (2005),
the DTSC model does not need to generate target
language dependency structures using source struc-
tures and word alignments. On the source side, we
extract treelets which are any connected subgraphs
and consistent with word alignments. While on the
target side, we allow the aligned target sequences
to be generalized and discontinuous by introducing
variables and gaps. The variables on the target side
are aligned to the corresponding variables of treelets,
while gaps between words or variables are corre-
sponding to the uncovered nodes which are not in-
cluded by treelets. To complete the translation pro-
cess, we design two basic operations for the decod-
ing: substituting and attaching. Substituting is used

Over the last several years, various statistical syntaie replace variable nodes which have been already
based models were proposed to extend traditionnslated, while attaching is used to attach uncov-
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ered nodes to.treelets. _ ' 5 =

In the remainder of the paper, we first define de- Btk | ity -
pendency treelet string correspondence in section : | ﬂ
2 and describe an algorithm for extracting DTSCS o conference  cooperation of  the
from the parsed and word-aligned corpus in section
3. Then we build our model based on DTSC in sec- TR
tion 4. The decoding algorithm and related pruning 1 57 O
strategies are introduced in section 5. We also spec- A /’\\*2 L

ify the strategy to integrate phrases into our model
in section 6. In section 7 we evaluate our current
implementation of a simplified version of DTSC forFigure 1: DTSC examples. Note thatrepresents
statistical machine translation. And finally, we disvariable and’ represents gap.

cuss related work and conclude.

s - ~ — —
*1 keep a G with the %9

2 Dependency Treelet String Gap can be considered as a special kind of vari-
Correspondence able whose counterpart on the source side is not

A dependency treelet string correspondencis a present. This m'akes the model more flexible to
triple < D, S, A > which describes a translation match more partial dependency structures on the
pair < D, S > and their alignmenti, whereD is  Source side. If only variables can be used, the model

the dependency treelet on the source side s has to match subtrees rather than treelets on the
the translation string on the target side. D, S > source side. Furthermore, the positions of variables

must be consistent with the word alignmeht of  ©N the target side are fixed so that some reorderings

the corresponding sentence pair rgl_ated with them can be recorQed in DTSC. The po-
o » » sitions of gaps on the target side, however, are not
v(i,j)e Mie D= jes fixed until decoding. The presence of one gap and

A treeletis defined to be any connected subgraptits position can not be finalized until attaching op-
which is similar to the definition in (Quirk et al., eration is performed. The introduction of gaps and
2005). Treelet is more representatively flexible thathe related attaching operation in decoding is the
subtree which is widely used in models based omost important distinction between our model and
phrase structures (Marcu et al., 2006; Liu et althe previous syntax-based models.

2006). The most important distinction between the Figure 1 shows several different DTSCs automat-
treelet in (Quirk et al., 2005) and ours is that we alically extracted from our training corpus. The top
low variables at positions of subnodes. In our definileft DTSC is totally lexicalized, while the top right
tion, the root node must be lexicalized but the subrPTSC has one variable and the bottom has two vari-
odes can be replaced with a wild card. The targeétbles and one gap. In the bottom DTSC, note that
counterpart of a wildcard node iiis also replaced the node(O which is aligned to the gag: of the
with a wild card. The wildcards introduced in thistarget string is an uncovered node and therefore not
way generalize DTSC to match dependency strudacluded in the treelet actually. Here we just want
tures with the same head word but with differento show there is an uncovered node aligned with the
modifiers or arguments. gapG.

Another unique feature of our DTSC is that we al- Each node at the source treelet has three attributes
low target strings with gaps between words or wild-
cards. Since source treelets may not cover all subn-1 The head word
odes, the uncovered subnodes will generate agap as The category, i.e. the part of speech of the head
its counterpart on the target side. A sequence of con- 44
tinuous gaps will be merged to be one gap and gaps
at the beginning and the end Sfwill be removed 3. The node order which specifies the local order
automatically. of the current node relative to its parent node.
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ALV of its siblings, thecrossedindicator ofn is 1 and
Wim NN n is therefore a crossed node, otherwisediussed
ll\\\ ?WL@N& . )'HEQW indicator is 0 andn is a non-crossed node. Only
N N N non-crossed nodes can generate DTSCs because the
g'o on pro\llidingfina/n(;al %id " to Palestinéarget word sequence aligned with the whole subtree
1 5 3 4 5 6 - rooted at it does not overlap any other sequences and
therefore can be extracted independently.
Figure 2: An example dependency tree and its align- For the dependency tree and its alignments shown
ments in Figure 2, only the nodé/ I is a crossed node
since its node span ([4,5]) overlaps the word span

Note that the node order is defined at the context (SFS’SD of its parent nodeZ ).

the extracted treelets but not the context of the orig3.2 DTSCs extraction

?nalhtrebe. For examplef, the attributes for the néde The DTSC extraction algorithm (shown in Figure 3)
in the bottom DTSC of Figure 1 afe’y, P, -1}. For ¢ recursively. For each non-crossed node, the al-

two treelets, if and only if their structures are 'den'gorithm generates all possible DTSCs rooted at it by

tical and each corresponding nodes share the sailiyhining DTSCs from some subsets of its direct
attributes, we say they areatched subnodes. If one subnodeselected in the com-
3 Extracting DTSCs bination is a crossed node, all other nodes whose
word/node spans overlap the node span ofust be
To extract DTSCs from the training corpus, firstlyalso selected in this combination. This kind of com-
the corpus must be parsed on the source side ahthation is defined to be consistent with the word
aligned at the word level. The source structures pralignment because the DTSC generated by this com-
duced by the parser are unlabelled, ordered depdbpination is consistent with the word alignment. All
dency trees with each word annotated with a part-oPTSCs generated in this way will be returned to the
speech. Figure 2 shows an example of dependeniast call and outputted. For each crossed node, the
tree really used in our extractor. algorithm generates pseudo DTSGsing DTSCs
When the source language dependency trees aftidm all of its subnodes. These pseudo DTSCs will
word alignments between source and target larfpe returned to the last call but not outputted.
guages are obtained, the DTSC extraction algorithm During the combination of DTSCs from subnodes
runs in two phases along the dependency trees aimdo larger DTSCs, there are two major tasks. One
alignments. In the first step, the extractor annotatdssk is to generate the treelet using treelets from
each node with specific attributes defined in sectiosubnodes and the current node. This is a basic tree
3.1. These attributes are used in the second stgpneration operation. It is worth mentioning that
which extracts all possible DTSCs rooted at eachome non-crossed nodes are to be replaced with a

node recursively. wild card so the algorithm can learn generalized
_ DTSCs described in section 2. Currently, we re-
3.1 Node annotation place any non-crossed node alone or together with

For each source dependency nadeve define three their sibling non-crossed nodes. The second task
attributes: word span, node spanand crossed is to combine target strings. The word sequences
Word spanis defined to be the target word sequencéligned with uncovered nodes will be replaced with
aligned with the head word ef, while node spanis @ gap. The word sequences aligned with wildcard
defined to be the closure of the union of node spari@des will be replaced with a wild card.

of all subnodes of. and its word span. These two at- If a non-crossed node hasm direct subnodes,
tributes are similar to those introduced by Lin (Lin,all 2™ combinations will be considered. This will
2004). The third attributerosseds an indicator that generate a very large number of DTSCs, which is

has binary values: If the node spanofoverlaps 1Some words in the target string are aligned with nodes
the word span of its parent node or the node spathich are not included in the source treelet.
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DTSCExtractor(Dnode n) [ Treelet | String
R := () (DTSC container of n) @REEIVVIO)
k2 goon
for each subnodk of n do (ELE U /NR/O) Palestine
R := DT SCEuxtractor(k) (W/P/O)# o
et UR (FI/PI0 CHIIHI/NR/T)) | to Palestine
if n.crossed! = 1 and there are no subnodes whose span (@/P/O (*/1))ﬂ tox
overlaps the word span afthen (%EJJ/NN/O (FBUNN/-1)) | financial aid
Create a DTSGr =< D, S, A > where the dependency (FEFEVVI0) providing
treeletD only contains the node (not including any chil- (FIEVVIO (+/1)) providing *
dren of it) FRAEIVVIO (+/-1)) providing G *
outputm (Feft/VVI0 (88 4:/VVI-1)) | go on providing
for each combination of n's subnodeslo (FEAEVVIO (+/-1)) * providing
if c is consistent with the word alignmetften (FETEIVVIO (%1/-1) (x2/1)) | providing s 1
Generate all DTSCsR by combining DTSCs [) (FEPENVIO (+17-1) (+2/1)) | *1 providing 2

from the selected subnodes with the current nede

enﬁ it RUR Table 1: Examples of DTSCs extracted from Figure
end for 2. Alignments are not shown here because they are
?;Lﬁﬁtg self-evident.
else ifn.crossed == 1 then

Create pseudo DTSCB by combining all DTSCs from

n’s all subnodes. algorithm with parameterg ary-limit = 2, depth-

R:=RUP limit = 2, len-limit = 3, gap-limit = 1, comb-limit
en:je};;m&e =20} are shown in the table 1.

Figure 3: DTSC Extraction Algorithm. 4 The Model

Given an input dependency tree, the decoder gen-
rates translations for each dependency node in
ottom-up order. For each node, our algorithm will
search allmatched DTSCs automatically learned
1. If the number of direct subnodes of nodes ~from the training corpus by the way mentioned in
larger than 6, we only consider combining onés€ction 3. When the root node is traversed, the trans-
single subnode with each time because in thisating is finished. This complicated procedure in-

case reorderings of subnodes are always mon¥olves a large number of sequences of applications
tone. of DTSC rules. Each sequence of applications of

DTSC rules can derive a translation.

2. On the source side, the number of direct subn- We define a derivatiod as a sequence of appli-
odes of each node is limited to be no greatetations of DTSC rules, and lefd) ande(d) be the
thanary-limit; the height of treeleD is limited source dependency tree and the target yield of-
to be no greater thagepth-limit spectively. The score dfis defined to be the prod-

_ . ) uct of the score of the DTSC rules used in the trans-
3. On the target side, the length 6f (including  |ation, and timed by other feature functions:

gaps and variables) is limited to be no greater
§(0) = [18() - Pum()ian - exp(=AapA(8)) (1)

undesirable for training and decoding. Therefore WE
filter DTSCs according to the following restrictions

thanlen-limit; the number of gaps i is lim-
ited to be no greater thagap-limit

4. During DTSC combination, the DTSCs fromWhere§() is the score of theth application of
each subnode are sorted by size (in descendiff SC rules,pim (¢) is the language model score,

order). Only the togomb-limitDTSCs willbe and ezp(—AqpA(0)) is the attachment penalty,
selected to generate larger DTSCs. where A(0) calculates the total number of attach-

ments occurring in the derivatiof. The attach-
As an example, for the dependency tree and itment penalty gives some control over the selection
alignments in Figure 2, all DTSCs extracted by th@f DTSC rules which makes the model prefer rules
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: for each node: of the input tre€l’, in bottom-up ordedo
with more nodes covered and therefore less attach Got allmatched DTSCs rooted ah

ing operations involved. for eachmatchedDTSC do
For the score of DTSC rule, we define it as fol- for each wildcard node” inwdo
lows: Substitute the corresponding wildcard on the target
: side with translations from the stack of

_ . A end for
§(m) = H fi(m)™ ) for each uncovered node® by 7 do
J Attach the translations from the stack of® to the

where thef; are feature functions defined on DTSC entg ;gft side at the atizching point

rules. Currently, we used features proved to be ef- end for

fective in phrase-based SMT, which are: end for
1. The translation probability(D|S). Figure 4: Chart-style Decoding Algorithm for the
DTSC Model.

2. The inverse translation probabilip{S|D).

3. Th? Ie?<|cal translation probabilitye.(D|S) Melamed (2004) also used a similar way to integrate
which is computed over the words that ocCUk o language model

on the source and target sides of a DTSC rule

4. The inverse lexical translation probability oy decoding algorithm is similar to the bottom-up
Piex(S|D) which is computed over the words chart parsing. The distinction is that the input is a
that occur on the source and target sides of @ae rather than a string and therefore the chart is in-
DTSC rule by the IBM model 1. dexed by nodes of the tree rather than spans of the

5. The word penaltywp. string. AI_so, several othe_r tree-based decpding al-

gorithms introduced by Eisner (2003), Quirk et al.

6. The DTSC penaltylp which allows the model (2005) and Liu et al. (2006) can be classified as the
to favor longer or shorter derivations. chart-style parsing algorithm too.

It is worth mentioning how to integrate the N- Our decoding algorithm is shown in Figure 4.
gram language mode into our DTSC model. Durin&ive” an input dependency tree, firstly we generate
decoding, we have to encounter many partial trans|#€ bottom-up order by postorder transversal. This
tions with gaps and variables. For these translation@/der guarantees that any subnodes of nediave
firstly we only calculate the language model score@€en translated before nodeis done. For each
for word sequences in the translations. Later we uptoden in the bottom-up order, athatched DTSCs
date the scores when gaps are removed or Speciﬁ@d)ted at are found, and a stack is also built for it to
by attachments or variables are substituted. Each upfore the candidate translations. A DTS said to
dating involves merging two neighbor substrings Match the input dependency subtréeooted atn if
(left) andss,. (right) into one bigger string. Letthe @nd only if there is a treelet rootedrathatmatches
sequence of. — 1 (n is the order of N-gram lan- - the treelet ofr on the source side. . _
guage model used) rightmost wordssphbe s and For each match_ed DTS@, two op_erathns_wnl
the sequence of — 1 leftmost words o, besi. we be performed on it. The first one ®ubstituting

have: which replaces a wildcard node with the correspond-
o ing translated node. The second onaitaching
LM(s) = LM(s;) + LM (s;) + LM(s] s,.) which attaches an uncovered nodertarhe two op-

—LM(s) — LM(sl) (3) erations are shown in Figure 5. For each wildcard
noden*, translations from the stack of it will be se-

where LM is the logarithm of the language modelI ted t | th i iidcard on th
probability. We only need to compute the increment C 0 [0 feplace he corresponding wildeard on the

of the language model score: 2The words, categories and orders of each corresponding
nodes are matched. Please refer to the definitiomatched

Apy = LM(s7st) — LM(sT) — LM(s.)  (4) insection 2.
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@ A very large, therefore some pruning techniques have

/\

B * + D to be used. To speed up the decoder, the following
C O D, pruning strategies are adopted.
*e Ae B. Ce 1. Stack pruning. We use three pruning ways.

The first one is recombination which converts

Substitute |}
the search to dynamic programming. When

(b) A two translations in the same stack have the
/\ -
B D + E samew leftmost/rightmost words, where de-
C/ O B, pends on the order of the language model, they

will be recombined by discarding the transla-
tion with lower score. The second one is the

Attach |} threshold pruning which discards translations
that have a score worse thatack-threshold
© 4 times the best score in the same stack. The
B D last one is the histogram pruning which only
C/\E keeps the togstack-limit best translations for
D. A, B. B, c. each stack.
Figure 5: Substituting and attaching operations for 2. Node pruning. For each node, we only keep
decoding.X. is the translation of{. Node that« is the top node-limit matched DTSCs rooted at
a wildcard node to be substituted and ngdés an that node, as ranked by the size of source
uncovered node to be attached. treelets.

3. Operation pruning. For each operation, sub-

target side and the scores of new translations will be ~ Stituting and attaching, the decoding will gen-
calculated according to our model. For each uncov-  €rate a large number of partial translatidns
ered noden®, firstly we determine where transla- for the current node. We only keep the top
tions from the stack of® should be attached on the operation-limit partial translations each time
target side. There are several different mechanisms &ccording to their scores.
for choosing attaching points. Currently, we imple-6
ment a heuristic way: on the source side, we find the
nodenf? which is the nearest neighbor af® from  Although syntax-based models are good at dealing
its parent and sibling nodes, then the attaching poimtith hierarchical reordering, but at the local level,
is the left/right of the counterpart@f on the target translating idioms and similar complicated expres-
side according to their relative order. As an examplesions can be a problem. However, phrase-based
see the uncovered node in Figure 5. The nearest models are good at dealing with these translations.
node to it is nodeB. Since nod€)) is at the right Therefore, integrating phrases into the syntax-based
of node B, the attaching point is the right aB.. models can improve the performance (Marcu et al.,
One can search all possible points using an orderir2P06; Liu et al., 2006). Since our DTSC model is
model. And this ordering model can also use inforbased on dependency structures and lexicalized nat-
mation from gaps on the target side. We believe thigrally, DTSCs are more similar to phrases than other
ordering model can improve the performance and Ié¢tanslation units based on phrase structures. This
it be one of directions for our future research. means that phrases will be easier to be integrated
Note that the gaps on the target side are not necesto our model.
sarily attaching points in our current attaching mech- The way to integrate phrases is quite straightfor-
anism. If they are not attaching point, they will beward: if there is a treelet rooted at the current node,

removed automatically. ) ) ~ *There are wildcard nodes or uncovered nodes to be han-
The search space of the decoding algorithm igled.

Integrating Phrases
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of which the word sequence is continuous and iden- Systems | BLEU-4

tical to the source of some phrase, then a phrase- PB 20.88+ 0.87
style DTSC will be generated which uses the target DTSC 20.20+0.81
string of the phrase as its own target. The procedure DTSC + phrases 21.46+ 0.83

is finished during decoding. In our experiments, in-

tegrating phrases improves the performance greatlyable 2: BLEU-4 scores for our system and a
phrase-based system.

7 Current Implementation

To test our idea, we implemented the dependend)9 ON the 31, 149 English sentences. We selected
treelet string correspondence model in a Chines 80 short sentences of length at_ most 50 characters
English machine translation system. The current inff0mM the 2002 NIST MT Evaluation test set as our
plementation in this system is actually a simplifiedl€velopment corpus and used it to tureby max-
version of the DTSC model introduced above. [dMizing the BLEU score (Och, 2003), and used the
this version, we used a simple heuristic way for th€005 NIST MT Evaluation test set as our test corpus.
operation of attaching rather than a sophisticated sta-From the training corpus, we learned 2, 729,
tistical model which can learn ordering information964 distinct DTSCs with the configuratioh ary-
from the training corpus. Since dependency strudiMit = 4, depth-limit= 4, len-limit = 15, gap-limit
tures are more“flattened compared with phrasal = 2, comb-limit= 20 }.  Among them, 160,694
structures, there are many subnodes which will n&TSCs are used for the test set. To run our de-
be covered even by generalized matched DTScgoder on the development and test set, westsik-
This means the attaching operation is very commdfirshold = 0.0001,stack-limit= 100, node-limit=
during decoding. Therefore better attaching modéi00,0peration-limit= 20.
which calculates the best point for attaching , we be- We also ran a phrase-based system (PB) with a
lieve, will improve the performance greatly and is glistortion reordering model (Xiong et al., 2006) on
major goal for our future research. the same corpus. The results are shown in table 2.
To obtain the dependency structures of the sourd@" all BLEU scores, we also show the 95% confi-
side, one can parse the source sentences with a §€Nnce intervals computed using Zhang's significant
pendency parser or parse them with a phrasal str€Ster (Zhang et al., 2004) which was modified to
ture parser and then convert the phrasal structur€8nform to NIST's definition of the BLEU brevity
into dependency structures. In our experiments weenalty. The BLEU score of our current system with
used a Chinese parser implemented by Xiong dhe DTSC model is lower fthan that of_ the phrase-
al. (2005) which generates phrasal structures. THR#sed system. However, with phrases integrated, the
parser was trained on articles 1-270 of Penn Chine8&rformance is improved greatly, and the new BLEU
Treebank version 1.0 and achieved 79.4% (F1 me§COre is higher than that of the phrase-based SMT.
sure). We then converted the phrasal structure tre&8iS difference is significant according to Zhang's

into dependency trees using the way introduced HiFSter- This resuilt can be improved further using a
Xia (1999). better parser (Quirk et al., 2006) or using a statisti-

To obtain the word alignments, we use the wa)9a| attaching model.

of Koehn et al. (2005). After running GIZA++

(Och and Ney, 2000) in both directions, we apply8 Related Work

the “grow-diag-final’ refinement rule on the in- The DTSC model is different from previous work

tersection alignments for each sentence pair. based on dependency grammars by Eisner (2003),
The training corpus consists of 31, 149 sentendein (2004), Quirk et al. (2005), Ding et al. (2005)

pairs with 823K Chinese words and 927K Englistsince they all deduce dependency structures on the

words. For the language model, we used SRI Lararget side. Among them, the most similar work is

guage Modeling Toolkit (Stolcke, 2002) to train a(Quirk et al., 2005). But there are still several major

trigram model with modified Kneser-Ney smooth-differences beyond the one mentioned above. Our

46



treelets allow variables at any non-crossed nodes aRdilipp Koehn, Amittai Axelrod, Alexandra Birch Mayne, Chris

target strings allow gaps, which are not available in Callison-Burch, Miles Osborne and David Talbot. 2005.
9 9 gap Edinburgh System Description for the 2005 IWSLT Speech

(Quirk et. al., 2005_)- Our_langu_age model is calcu- Transiation Evaluation. linternational Workshop on Spo-
lated during decoding while Quirk’s language model ken Language Translation

!S compgted afte_r decoding because of the CompleEaniel Marcu, Wei Wang, Abdessamad Echihabi, and Kevin
ity of their decoding. Knight. 2006. SPMT: Statistical Machine Translation with
The DTSC model is also quite distinct from pre- Syntactified Target Language Phraases.Ptaceedings of

. . EMNLP.
vious tree-string models by Marcu et al. (2006)
and Liu et al. (2006). Firstly, their models arel. Dan Melamed. 2004. Algorithms for Syntax-Aware Statisti-

cal Machine Translation. I®roceedings of the Conference
based on phrase structure grammars. Secondly, SUbon Theoretical and Methodological Issues in Machine Trans-

trees instead of treelets are extracted in their mod- jation (TM1), Baltimore, MD.

els. Thirdly, it seems to be more difficult to integrate ) _
. . . Dekang Lin. 2004. A path-based transfer model for machine
phrases into their models. And finally, our model al-"";5ngjation. InProceedings of COLING

low gaps on the target side, which is an advantage

; Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-to-String
shared by (Melamed, 2004) and (Simard, 2005). Alignment Template for Statistical Machine Translation. In

. Proceedings of ACL
9 Conclusions and Future Work
Franz Josef Och. 2003. Minimum error rate training in statisti-

We presented a novel Syntax_based model usingC&' machine translation. IRroceedings of ACL

dependency trees on the source side-dependentynz josef Och and Hermann Ney. 2000. Improved statistical
treelet string correspondence model—for statistical alignment models. IProceedings of ACL

machine translation. We described an_a‘_lgomhm tehris Quirk, Arul Menezes and Colin Cherry. 2005. Depen-
learn DTSCs automatically from the training corpus dency Treelet Translation: Syntactically Informed Phrasal
and a chart-style algorithm for decoding. SMT. InProceedings of ACL

Currently, we implemented a simple version ofchyis Quirk and Simon Corston-Oliver. 2006. The impact of
the DTSC model. We believe that our performance parse quality on syntactically-informed statistical machine

can be improved greatly using a more sophisticated translation. InProceedings of EMNLPSydney, Australia.
mechanism for determining attaching points. Therevichel Simard, Nicola Cancedda, Bruno Cavestro, Marc

fore the most important future work should be to de- Dymetman, Eric Gaussier, Cyril Goutte, Kenji Yamada.
. . 2005. Translating with non-contiguous phrasesPloceed-
sign a better attaching model. Furthermore, we plan jqgs of HLT-EMNLP

to use larger corpora for training and n-best depen-

; ; ndreas Stolcke. 2002. SRILM - an extensible language mod-
dency trees for decoding, which both are helpful fOP\ eling toolkit. InProceedings of International Conference on

the improvement of translation quality. Spoken Language Processimglume 2, pages 901-904.
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