
Workshop on Computationally Hard Problemsand Joint Inference in Speech and Language Processing, pages 25–32,
New York City, New York, June 2006.c©2006 Association for Computational Linguistics

All-word prediction as the ultimate confusable disambiguation

Antal van den Bosch
ILK / Dept. of Language and Information Science, Tilburg University

P.O. Box 90153, NL-5000 LE Tilburg, The Netherlands
Antal.vdnBosch@uvt.nl

Abstract

We present a classification-based word
prediction model based on IGTREE, a
decision-tree induction algorithm with fa-
vorable scaling abilities and a functional
equivalence ton-gram models with back-
off smoothing. Through a first series of
experiments, in which we train on Reuters
newswire text and test either on the same
type of data or on general or fictional text,
we demonstrate that the system exhibits
log-linear increases in prediction accuracy
with increasing numbers of training ex-
amples. Trained on 30 million words
of newswire text, prediction accuracies
range between 12.6% on fictional text and
42.2% on newswire text. In a second se-
ries of experiments we compare all-words
prediction with confusable prediction, i.e.,
the same task, but specialized to predict-
ing among limited sets of words. Con-
fusable prediction yields high accuracies
on nine example confusable sets in all
genres of text. The confusable approach
outperforms the all-words-prediction ap-
proach, but with more data the difference
decreases.

1 Introduction

Word prediction is an intriguing language engineer-
ing semi-product. Arguably it is the “archetypical
prediction problem in natural language processing”

(Even-Zohar and Roth, 2000). It is usually not an
engineering end in itself to predict the next word in a
sequence, or fill in a blanked-out word in a sequence.
Yet, it could be an asset in higher-level proofing or
authoring tools, e.g. to be able to automatically dis-
cern among confusables and thereby to detect con-
fusable errors (Golding and Roth, 1999; Even-Zohar
and Roth, 2000; Banko and Brill, 2001; Huang and
Powers, 2001). It could alleviate problems with low-
frequency and unknown words in natural language
processing and information retrieval, by replacing
them with likely and higher-frequency alternatives
that carry similar information. And also, since the
task of word prediction is a direct interpretation of
language modeling, a word prediction system could
provide useful information for to be used in speech
recognition systems.

A unique aspect of the word prediction task, as
compared to most other tasks in natural language
processing, is that real-world examples abound in
large amounts. Any digitized text can be used as
training material for a word prediction system capa-
ble of learning from examples, and nowadays gigas-
cale and terascale document collections are available
for research purposes.

A specific type of word prediction is confus-
able prediction, i.e., learn to predict among lim-
ited sets of confusable words such asto/two/too and
there/their/they’re (Golding and Roth, 1999; Banko
and Brill, 2001). Having trained a confusable pre-
dictor on occurrences of words within a confusable
set, it can be applied to any new occurrence of a
word from the set; if its prediction based on the con-
text deviates from the word actually present, then

25

this word might be a confusable error, and the classi-
fier’s prediction might be its correction. Confusable
prediction and correction is a strong asset in proof-
ing tools.

In this paper we generalize the word prediction
task to predictinganyword in context. This is basi-
cally the task of a generic language model. An ex-
plicit choice for the particular study on “all-words”
prediction is to encode context only by words,
and not by any higher-level linguistic non-terminals
which have been investigated in related work on
word prediction (Wu et al., 1999; Even-Zohar and
Roth, 2000). This choice leaves open the question
how the same tasks can be learned from examples
when non-terminal symbols are taken into account
as well.

The choice for our algorithm, a decision-tree ap-
proximation ofk-nearest-neigbor (k-NN) based or
memory-based learning, is motivated by the fact
that, as we describe later in this paper, this particular
algorithm can scale up to predicting tens of thou-
sands of words, while simultaneously being able to
scale up to tens of millions of examples as training
material, predicting words at useful rates of hun-
dreds to thousands of words per second. Another
motivation for our choice is that our decision-tree
approximation ofk-nearest neighbor classification is
functionally equivalent to back-off smoothing (Za-
vrel and Daelemans, 1997); not only does it share
its performance capacities withn-gram models with
back-off smoothing, it also shares its scaling abili-
ties with these models, while being able to handle
large values ofn.

The article is structured as follows. In Section 2
we describe what data we selected for our experi-
ments, and we provide an overview of the exper-
imental methodology used throughout the experi-
ments, including a description of the IGTREE algo-
rithm central to our study. In Section 3 the results of
the word prediction experiments are presented, and
the subsequent Section 4 contains the experimen-
tal results of the experiments on confusables. We
briefly relate our work to earlier work that inspired
the current study in Section 5. The results are dis-
cussed, and conclusions are drawn in Section 6.

2 Data preparation and experimental
setup

First, we identify the textual corpora used. We then
describe the general experimental setup of learn-
ing curve experiments, and the IGTREE decision-
tree induction algorithm used throughout all experi-
ments.

2.1 Data

To generate our word prediction examples, we used
the “Reuters Corpus Volume 1 (English Language,
1996-08-20 to 1997-08-19)”1. We tokenized this
corpus with a rule-based tokenizer, and used all
130,396,703 word and punctuation tokens for exper-
imentation. In the remainder of the article we make
no difference between words and punctuation mark-
ers; both are regarded as tokens. We separated the
final 100,000 tokens as a held-out test set, hence-
forth referred to asREUTERS, and kept the rest as
training set, henceforthTRAIN-REUTERS.

Additionally, we selected two test sets taken
from different corpora. First, we used the Project
Gutenberg2 version of the novelAlice’s Adventures
in Wonderlandby Lewis Carroll (Carroll, 1865),
henceforthALICE. As the third test set we selected
all tokens of the Brown corpus part of the Penn Tree-
bank (Marcus et al., 1993), a selected portion of
the original one-million word Brown corpus (Kučera
and Francis, 1967), a collection of samples of Amer-
ican English in many different genres, from sources
printed in 1961; we refer to this test set asBROWN.
In sum, we have three test sets, covering texts from
the same genre and source as the training data, a
fictional novel, and a mix of genres wider than the
training set.

Table 1 summarizes the key training and test set
statistics. As the table shows, the cross-domain cov-
erages for unigrams and bigrams are rather low; not
only are these numbers the best-case performance
ceilings, they also imply that a lot of contextual
information used by the machine learning method
used in this paper will be partly unknown to the
learner, especially in texts from other domains than
the training set.

1For availability of the Reuters corpus, see
http://about.reuters.com/researchandstandards/corpus/.

2Project Gutenberg:http://www.gutenberg.net.

26

Data set Genre # Tokens Coverage (%)
TRAIN-REUTERS news 30 million unigram bigram
REUTERS news 100,000 91.0 83.6
ALICE fiction 33,361 85.2 70.1
BROWN mixed 453,446 75.9 72.3

Table 1: Training and test set sources, genres, sizes
in terms of numbers of tokens, and unigram and bi-
gram coverage (%) of the training set on the test sets.

2.2 Experimental setup

All experiments described in this article take the
form of learning curve experiments (Banko and
Brill, 2001), in which a sequence of training sets
is generated with increasing size, where each size
training set is used to train a model for word predic-
tion, which is subsequently tested on a held-out test
set – which is fixed throughout the whole learning
curve experiment. Training set sizes are exponen-
tially grown, as earlier studies have shown that at
a linear scale, performance effects tend to decrease
in size, but that when measured with exponentially
growing training sets, near-constant (i.e. log-linear)
improvements are observed (Banko and Brill, 2001).

We create incrementally-sized training sets for the
word prediction task on the basis of theTRAIN-
REUTERSset. Each training subset is created back-
ward from the point at which the final 100,000-word
REUTERSset starts. The increments are exponential
with base number 10, and for every power of 10 we
cut off training sets atn times that power, wheren =
1, 2, 3, . . . , 8, 9 (for example,10, 20, . . . , 80, 90).

The actual examples to learn from are created by
windowingover all sequences of tokens. We encode
examples by taking a left context window spanning
seven tokens, and a right context also spanning seven
tokens. Thus, the task is represented by a growing
number of examples, each characterized by 14 po-
sitional features carrying tokens as values, and one
class label representing the word to be predicted.
The choice for 14 is intended to cover at least the
superficially most important positional features. We
assume that a word more distant than seven positions
left or right of a focus word will almost never be
more informative for the task than any of the words
within this scope.

2.3 IGTree

IGTree (Daelemans et al., 1997) is an algorithm
for the top-down induction of decision trees. It
compresses a database of labeled examples into
a lossless-compression decision-tree structure that
preserves the labeling information of all examples,
and technically should be named atrie according
to (Knuth, 1973). A labeled example is a feature-
value vector, where features in our study represent
a sequence of tokens representing context, associ-
ated with a symbolic class label representing the
word to be predicted. An IGTREE is composed of
nodes that each represent a partition of the original
example database, and are labeled by the most fre-
quent class of that partition. The root node of the
trie thus represents the entire example database and
carries the most frequent value as class label, while
end nodes (leafs) represent ahomogeneouspartition
of the database in which all examples have the same
class label. A node is either a leaf, or is a non-ending
node that branches out to nodes at a deeper level of
the trie. Each branch represents a test on a feature
value; branches fanning out of one node test on val-
ues of the same feature.

To attain high compression levels, IGTREE

adopts the same heuristic that most other decision-
tree induction algorithms adopt, such asC4.5 (Quin-
lan, 1993), which is to always branch out testing on
the most informative, or most class-discriminative
features first. LikeC4.5, IGTREE uses information
gain (IG) to estimate the most informative features.
The IG of featurei is measured by computing the
difference in uncertainty (i.e. entropy) between the
situations without and with knowledge of the value
of that feature with respect to predicting the class la-
bel: IGi = H(C)−∑

v∈Vi
P (v)×H(C|v), where

C is the set of class labels,Vi is the set of values
for featurei, andH(C) = −∑

c∈C
P (c) log2 P (c)

is the entropy of the class labels. In contrast with
C4.5, IGTREE computes the IG of all features once
on the full database of training examples, makes a
feature ordering once on these computed IG values,
and uses this ordering throughout the whole trie.

Another difference withC4.5 is that IGTREE

does not prune its produced trie, so that it performs
a lossless compression of the labeling information
of the original example database. As long as the

27

database does not contain fully ambiguous examples
(with the same features, but different class labels),
the trie produced by IGTREE is able to reproduce
the classifications of all examples in the original ex-
ample database perfectly.

Due to the fact that IGTREE computes the IG
of all features once, it is functionally equivalent to
IB1-IG (Daelemans et al., 1999), ak-nearest neigh-
bor classifier for symbolic features, withk = 1
and using a particular feature weighting in the sim-
ilarity function in which the weight of each fea-
ture is larger than the sum of all weights of features
with a lower weight (e.g. as in the exponential se-
quence1, 2, 4, 8, . . . where2 > 1, 4 > (1 + 2),
8 > (1 + 2 + 4), etc.). Both algorithms will base
their classification on the example that matches on
most features, ordered by their IG, and guess a ma-
jority class of the set of examples represented at the
level of mismatching. IGTREE, therefore, can be
seen as an approximation ofIB1-IG with k = 1 that
has favorable asymptotic complexities as compared
to IB1-IG.

IGTREE’s computational bottleneck is the trie
construction process, which has an asymptotic com-
plexity ofO(n lg(v) f) of CPU, wheren is the num-
ber of training examples,v is the average branching
factor of IGTREE (how many branches fan out of
a node, on average), andf is the number of fea-
tures. Storing the trie, on the other hand, costs
O(n) in memory, which is less than theO(n f) of
IB1-IG. Classification in IGTREE takes an efficient
O(f lg(v)) of CPU, versus the cumbersome worst-
caseO(n f) of IB1-IG, that is, in the typical case
thatn is much higher thanf or v.

Interestingly, IGTREE is functionally equiva-
lent to back-off smoothing (Zavrel and Daelemans,
1997), with the IG of the features determining the
order in which to back off, which in the case of word
prediction tends to be from the outer context to the
inner context of the immediately neighboring words.
Like with probabilisticn-gram based models with
a back-off smoothing scheme, IGTREE will prefer
matches that are as exact as possible (e.g. match-
ing on all 14 features), but will back-off by dis-
regarding lesser important features first, down to a
simple bigram model drawing on the most impor-
tant feature, the immediately preceding left word.
In sum, IGTREE shares its scaling abilities withn-

 0

 10

 20

 30

 40

 50

30,000,000
10,000,0001,000,000100,00010,0001,000100

w
or

d
pr

ed
ic

tio
n

ac
cu

ra
cy

examples

TEST-BROWN
TEST-ALICE

TEST-REUTERS

Figure 1: Learning curves of word prediction accu-
racies of IGTREE trained onTRAIN-REUTERS, and
tested onREUTERS, ALICE, andBROWN.

gram models, and its implementation allows it to
handle large values ofn.

3 All-words prediction

3.1 Learning curve experiments

The word prediction accuracy learning curves com-
puted on the three test sets, and trained on increasing
portions ofTRAIN-REUTERS, are displayed in Fig-
ure 1. The best accuracy observed is 42.2% with
30 million training examples, onREUTERS. Appar-
ently, training and testing on the same type of data
yields markedly higher prediction accuracies than
testing on a different-type corpus. Accuracies on
BROWN are slightly higher than onALICE, but the
difference is small; at 30 million training examples,
the accuracy onALICE is 12.6%, and onBROWN

15.8%.

A second observation is that all three learning
curves are progressing upward with more training
examples, and roughly at a constant log-linear rate.
When estimating the rates after about 50,000 exam-
ples (before which the curves appear to be more
volatile), with every tenfold increase of the num-
ber of training examples the prediction accuracy on
REUTERS increases by a constant rate of about 8%,
while the increases onALICE andBROWN are both
about 2% at every tenfold.

28

3.2 Memory requirements and classification
speed

The numbers of nodes exhibit an interesting sublin-
ear relation with respect to the number of training
examples, which is in line with the asymptotic com-
plexity orderO(n), wheren is the number of train-
ing instances. An increasingly sublinear amount
of nodes is necessary; while at 10,000 training in-
stances the number of nodes is 7,759 (0.77 nodes
per instance), at 1 million instances the number of
nodes is 652,252 (0.65 nodes per instance), and at 30
million instances the number of nodes is 15,956,878
(0.53 nodes per instance).

A factor in classification speed is the average
amount of branching. Conceivably, the word predic-
tion task can lead to a large branching factor, espe-
cially in the higher levels of the tree. However, not
every word can be the neighbor of every other word
in finite amounts of text. To estimate the average
branching factor of a tree we compute thef th root
of the total number of nodes (f being the number
of features, i.e. 14). The largest decision tree cur-
rently constructed is the one on the basis of a train-
ing set of 30 million examples, having 15,956,878
nodes. This tree has an average branching factor of
14
√

15, 956, 878 ≈ 3.27; all other trees have smaller
branching factors. Together with the fact that we
have but 14 features, and the asymptotic complex-
ity order of classification isO(f lg(v)), wherev is
the average branching factor, classification can be
expected to be fast. Indeed, depending on the ma-
chine’s CPU on which the experiment is run, we
observe quite favorable classification speeds. Fig-
ure 2 displays the various speeds (in terms of the
number of test tokens predicted per second) attained
on the three test sets3. The best prediction accu-
racies are still attained at classification speeds of
over a hundred predicted tokens per second. Two
other relevant observations are that first, the classi-
fication speed hardly differs between the three test
sets (BROWN is classified only slightly slower than
the other two test sets), indicating that the classifier
is spending a roughly comparable amount of search-
ing through the decision trees regardless of genre
differences. Second, the decrease in speed settles

3Measurements were made on a GNU/Linux x86-based ma-
chine with 2.0 Ghz AMD Opteron processors.

 100

 1000

 10000

30,000,000
10,000,0001,000,000100,00010,0001,000100

te
st

 e
xa

m
pl

es
 p

er
 s

ec
on

d

training examples

TEST-BROWN
TEST-ALICE

TEST-REUTERS

Figure 2: Word prediction speed, in terms of the
number of classified test examples per second, mea-
sured on the three test sets, with increasing training
examples. Both axes have a logarithmic scale.

on a low log-linear rate after about one million ex-
amples. Thus, while trees grow linearly, and accu-
racy increases log-linearly, the speed of classifica-
tion slowly diminishes at decreasing rates.

4 Confusables

Word prediction from context can be considered a
very hard task, due to the many choices open to the
predictor at many points in the sequence. Predicting
content words, for example, is often only possible
through subtle contextual clues or by having the ap-
propriate domain or world knowledge, or intimate
knowledge of the writer’s social context and inten-
tions. In contrast, certain function words tend to be
predictable due to the positions they take in syntac-
tic phrase structure; their high frequency tends to en-
sure that plenty of examples of them in context are
available.

Due to the important role of function words in
syntactic structure, it can be quite disruptive for a
parser and for human readers alike to encounter a
mistyped function word that in its intended form
is another function word. In fact, confusable er-
rors between frequent forms occur relatively fre-
quently. Examples of these so-called confusables
in English arethere versustheir and the contrac-
tion they’re; or the duothan and then. Confus-
ables can arise from having the same pronunciation
(homophones), or having very similar pronunciation
(countryor county) or spelling (dessert, desert), hav-

29

ing very close lexical semantics (as betweenamong
andbetween), or being inflections or case variants of
the same stem (I versusme, or walk versuswalks),
and may stem from a lack of concentration or expe-
rience by the writer.

Distinguishing between confusables is essentially
the same task as word prediction, except that the
number of alternative outcomes is small, e.g. two
or three, rather than thousands or more. The typical
application setting is also more specific: given that a
writer has produced a text (e.g. a sentence in a word
processor), it is possible to check the correctness of
each occurrence of a word known to be part of a pair
or triple of confusables.

We performed a series of experiments on dis-
ambiguating nine frequent confusables in English
adopted from (Golding and Roth, 1999). We em-
ployed an experimental setting in which we use the
same experimental data as before, in which only ex-
amples of the confusable words are drawn – note
that we ignore possible confusable errors in both
training and test set. This data set generation proce-
dure reduces the amount of examples considerably.
Despite having over 130 million words inTRAIN-
REUTERS, frequent words such asthere and than
occur just over 100,000 times. To be able to run
learning curves with more than this relatively small
amount of examples, we expanded our training ma-
terial with the New York Times of 1994 to 2002
(henceforthTRAIN-NYT), part of the English Gi-
gaword collection published by the Linguistic Data
Consortium, offering 1,096,950,281 tokens.

As a first illustration of the experimental out-
comes, we focus on the three-way confusablethere
– their – they’re for which we trained one classi-
fier, which we henceforth refer to as a confusable
expert. The learning curve results of this confus-
able expert are displayed in Figure 3 as the top three
graphs. The logarithmic x-axis displays the full
number of instances fromTRAIN-REUTERS up to
130.3 million examples, and fromTRAIN-NYT after
this point. Counter to the learning curves in the all-
words prediction experiments, and to the observa-
tion by (Banko and Brill, 2001), the learning curves
of this confusable triple in the three different data
sets flatten, and converge, remarkably, to a roughly
similar score of about 98%. The convergence only
occurs after examples fromTRAIN-NYT are added.

 0

 20

 40

 60

 80

 100

 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

w
or

d
pr

ed
ic

tio
n

ac
cu

ra
cy

training examples

there / their / they’re

confusible expert

generic word predictor

Reuters NYT

Brown
Alice

Reuters

Figure 3: Learning curves in terms of word predic-
tion accuracy on deciding between the confusable
pair there, their, and they’re, by IGTREE trained
on TRAIN-REUTERS, and tested onREUTERS, AL -
ICE, andBROWN. The top graphs are accuracies at-
tained by the confusable expert; the bottom graphs
are attained by the all-words predictor trained on
TRAIN-REUTERS until 130 million examples, and
on TRAIN-NYT beyond (marked by the vertical bar).

In the bottom of the same Figure 3 we have also
plotted the word prediction accuracies on the three
words there, their, and they’re attained by the all-
words predictor described in the previous section on
the three test sets. The accuracies, or rather recall
figures (i.e. the percentage of occurrences of the
three words in the test sets which are correctly pre-
dicted as such), are considerably lower than those on
the confusable disambiguation task.

Table 2 presents the experimental results obtained
on nine confusable sets when training and testing on
Reuters material. The third column lists the accu-
racy (or recall) scores of the all-words word predic-
tion system at the maximal training set size of 30
million labeled examples. The fourth columns lists
the accuracies attained by the confusable expert for
the particular confusable pair or triple, measured at
30 million training examples, from which each par-
ticular confusable expert’s examples are extracted.
The amount of examples varies for the selected con-
fusable sets, as can be seen in the second column.

Scores attained by the all-words predictor on
these words vary from below 10% for relatively low-
frequent words to around 60% for the more frequent
confusables; the latter numbers are higher than the

30

Accuracy (%) by
Number of all-words confus.

Confusable set examples prediction expert
cite - site- sight 2,286 0.0 100.0
accept- except 3,833 46.2 76.9
affect- effect 4,640 7.7 87.9
fewer- less 6,503 4.7 95.2
among- between 27,025 18.9 96.7
I - me 28,835 55.9 98.0
than- then 31,478 59.4 97.2
there- their - they’re 58,081 23.1 96.8
to - too - two 553,453 60.6 93.4

Table 2: Disambiguation scores on nine confusable
set, attained by the all-words prediction classifier
trained on 30 million examples ofTRAIN-REUTERS,
and by confusable experts on the same training set.
The second column displays the number of exam-
ples of each confusable set in the 30-million word
training set; the list is ordered on this column.

overall accuracy of this system onREUTERS. Nev-
ertheless they are considerably lower than the scores
attained by the confusable disambiguation classi-
fiers, while being trained on many more examples
(i.e., all 30 million available). Most of the confus-
able disambiguation classifiers attain accuracies of
well above 90%.

When the learning curves are continued beyond
TRAIN-REUTERS into TRAIN-NYT, about a thou-
sand times as many training examples can be gath-
ered as training data for the confusable experts. Ta-
ble 3 displays the nine confusable expert’s scores af-
ter being trained on examples extracted from a total
of one billion words of text, measured on all three
test sets. Apart from a few outliers, most scores are
above 90%, and more importantly, the scores onAL -
ICE andBROWN do not seriously lag behind those on
REUTERS; some are even better.

5 Related work

As remarked in the cases reported in the literature di-
rectly related to the current article, word prediction
is a core task to natural language processing, and one
of the few that takes no annotation layer to provide
data for supervised machine learning and probabilis-
tic modeling (Golding and Roth, 1999; Even-Zohar

Accuracy on test set (%)
Confusable set REUTERS ALICE BROWN

cite - site- sight 100.0 100.0 69.0
accept- except 84.6 100.0 97.0
affect- effect 92.3 100.0 89.5
fewer- less 90.5 100.0 97.2
among- between 94.4 77.8 74.4
I - me 99.0 98.3 98.3
than- then 97.2 92.9 95.8
there- their - they’re 98.1 97.8 97.3
to - too - two 94.3 93.4 92.9

Table 3: Disambiguation scores on nine confusable
set, attained by confusable experts trained on ex-
amples extracted from 1 billion words of text from
TRAIN-REUTERSplusTRAIN-NYT, on the three test
sets.

and Roth, 2000; Banko and Brill, 2001). Our dis-
crete, classificatio-nased approach has the same goal
as probabilistic methods for language modeling for
automatic speech recognition (Jelinek, 1998), and is
also functionally equivalent ton-gram models with
back-off smoothing (Zavrel and Daelemans, 1997).

The papers by Golding and Roth, and Banko and
Brill on confusable correction focus on the more
common type ofthan/then confusion that occurs a
lot in the process of text production. Both pairs of
authors use the confusable correction task to illus-
trate scaling issues, as we have. Golding and Roth
illustrate that multiplicative weight-updating algo-
rithms such as Winnow can deal with immense in-
put feature spaces, where for each single classifica-
tion only a small number of features is actually rel-
evant (Golding and Roth, 1999). With IGTREE we
have an arguably competitive efficient, but one-shot
learning algorithm; IGTREE does not need an itera-
tive procedure to set weights, and can also handle a
large feature space. Instead of viewing all positional
features as containers of thousands of atomic word
features, it treats the positional features as the basic
tests, branching on the word values in the tree.

More generally, as a precursor to the above-
mentioned work, confusable disambiguation has
been investigated in a string of papers discussing the
application of various machine learning algorithms
to the task (Yarowsky, 1994; Golding, 1995; Mangu

31

and Brill, 1997; Huang and Powers, 2001).

6 Discussion

In this article we explored the scaling abilities of
IGTREE, a simple decision-tree algorithm with fa-
vorable asymptotic complexities with respect to
multi-label classification tasks. IGTREE is applied
to word prediction, a task for which virtually un-
limited amounts of training examples are available,
with very large amounts of predictable class labels;
and confusable disambiguation, a specialization of
word prediction focusing on small sets of confusable
words. Best results are 42.2% correctly predicted to-
kens (words and punctuation markers) when training
and testing on data from theReutersnewswire cor-
pus; and confusable disambiguation accuracies of
well above 90%. Memory requirements and speeds
were shown to be realistic.

Analysing the results of the learning curve experi-
ments with increasing amounts of training examples,
we observe that better word prediction accuracy can
be attained simply by adding more training exam-
ples, and that the progress in accuracy proceeds at a
log-linear rate. The best rate we observed was an 8%
increase in performance every tenfold multiplication
of the number of training examples, when training
and testing on the same data.

Despite the fact that all-words prediction lags be-
hind in disambiguating confusibles, in comparison
with classifiers that are focused on disambiguating
single sets of confusibles, we see that this lag is only
relative to the amount of training material available.

Acknowledgements

This research was funded by the Netherlands Organ-
isation for Scientific Research (NWO). The author
wishes to thank Ko van der Sloot for programming
assistance.

References

M. Banko and E. Brill. 2001. Scaling to very very large
corpora for natural language disambiguation. InPro-
ceedings of the 39th Annual Meeting of the Association
for Computational Linguistics, pages 26–33. Associa-
tion for Computational Linguistics.

L. Carroll. 1865. Alice’s Adventures in Wonderland.
Project Gutenberg.

W. Daelemans, A. Van den Bosch, and A. Weijters. 1997.
IGTree: using trees for compression and classification
in lazy learning algorithms.Artificial Intelligence Re-
view, 11:407–423.

W. Daelemans, A. Van den Bosch, and J. Zavrel. 1999.
Forgetting exceptions is harmful in language learning.
Machine Learning, Special issue on Natural Language
Learning, 34:11–41.

Y. Even-Zohar and D. Roth. 2000. A classification ap-
proach to word prediction. InProceedings of the First
North-American Conference on Computational Lin-
guistics, pages 124–131, New Brunswick, NJ. ACL.

A.R. Golding and D. Roth. 1999. A Winnow-Based Ap-
proach to Context-Sensitive Spelling Correction.Ma-
chine Learning, 34(1–3):107–130.

A. R. Golding. 1995. A Bayesian hybrid method for
context-sensitive spelling correction. InProceedings
of the 3rd workshop on very large corpora, ACL-95.

J. H. Huang and D. W. Powers. 2001. Large scale ex-
periments on correction of confused words. InAus-
tralasian Computer Science Conference Proceedings,
pages 77–82, Queensland AU. Bond University.

F. Jelinek. 1998.Statistical Methods for Speech Recog-
nition. The MIT Press, Cambridge, MA.

D. E. Knuth. 1973.The art of computer programming,
volume 3: Sorting and searching. Addison-Wesley,
Reading, MA.

H. Kučera and W. N. Francis. 1967.Computational
Analysis of Present-Day American English. Brown
University Press, Providence, RI.

L. Mangu and E. Brill. 1997. Automatic rule acquisition
for spelling correction. InProceedings of the Interna-
tional Conference on Machine Learning, pages 187–
194.

M. Marcus, S. Santorini, and M. Marcinkiewicz. 1993.
Building a Large Annotated Corpus of English:
the Penn Treebank. Computational Linguistics,
19(2):313–330.

J.R. Quinlan. 1993.C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann, San Mateo, CA.

D. Wu, Z. Sui, and J. Zhao. 1999. An information-based
method for selecting feature types for word predic-
tion. In Proceedings of the Sixth European Confer-
ence on Speech Communication and Technology, EU-
ROSPEECH’99, Budapest.

D. Yarowsky. 1994. Decision lists for lexical ambiguity
resolution: application to accent restoration in Spanish
and French. InProceedings of the Annual Meeting of
the ACL, pages 88–95.

J. Zavrel and W. Daelemans. 1997. Memory-based
learning: Using similarity for smoothing. InProceed-
ings of the 35th Annual Meeting of the Association for
Computational Linguistics, pages 436–443.

32

