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Introduction

We are pleased to present the proceedings of the Workshop on Computationally Hard Problems and
Joint Inference in Speech and Language Processing, held at HLT/NAACL 2006 in New York City, New
York.

Recent work on ranking, sampling and other approximate solutions to natural language processing
problems indicate that researchers are coming back to the hard problems in speech and text, for which
efficient algorithms are not known to exist. In addition, there has been increasing interest in moving
away from systems that make chains of local decisions independently, and instead toward systems that
make multiple decisions jointly using global information. The goal of this workshop is to bring together
researchers working on NLP problems whose solutions are computationally hard—whether because the
problem is not well modeled by only local features, or because the problem is best solved in a joint,
rather than pipelined, manner.

We are grateful to the program committee for providing thoughtful and helpful reviews of the submitted
papers. We also thank our invited speakers, Jeff Bilmes, Chris Manning, Dan Roth, and Giorgio
Satta. Finally, we thank the organizers of the main HLT/NAACL 2006 conference, without which
this workshop would not be possible.

Ryan McDonald, Charles Sutton, Hal Daumé III, Andrew McCallum, Jeff Bilmes, and Fernando Pereira
organizers
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Abstract

A syntax-directed translator first parses
the source-language input into a parse-
tree, and then recursively converts the tree
into a string in the target-language. We
model this conversion by an extended tree-
to-string transducer that have multi-level
trees on the source-side, which gives our
system more expressive power and flexi-
bility. We also define a direct probabil-
ity model and use a linear-time dynamic
programming algorithm to search for the
best derivation. The model is then ex-
tended to the general log-linear frame-
work in order to rescore with other fea-
tures liken-gram language models. We
devise a simple-yet-effective algorithm to
generate non-duplicatek-best translations
for n-gram rescoring. Initial experimen-
tal results on English-to-Chinese transla-
tion are presented.

1 Introduction

The concept ofsyntax-directed (SD) translation
was originally proposed in compiling (Irons, 1961;
Lewis and Stearns, 1968), where the source program
is parsed into a tree representation that guides the
generation of the object code. Following Aho and
Ullman (1972), atranslation, as a set of string pairs,
can be specified by asyntax-directed translation
schema(SDTS), which is essentially a synchronous
context-free grammar (SCFG) that generates two
languages simultaneously. An SDTS also induces a
translator, a device that performs the transformation

induces implements

SD translator
(source parser + recursive converter)

specifies translation
(string relation)

SD translation schema
(synchronous grammar)

Figure 1: The relationship among SD concepts,
adapted from (Aho and Ullman, 1972).
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NP(1)
↓
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VB(2)
↓ NP(3)

↓

,
S

VB(2)
↓ NP(1)

↓ NP(3)
↓













Figure 2: An example of complex reordering repre-
sented as an STSG rule, which is beyond any SCFG.

from input string to output string. In this context, an
SD translator consists of two components, a source-
language parser and a recursive converter which is
usually modeled as a top-down tree-to-string trans-
ducer (Ǵecseg and Steinby, 1984). The relationship
among these concepts is illustrated in Fig. 1.

This paper adapts the idea of syntax-directed
translator to statistical machine translation (MT).
We apply stochastic operations at each node of the
source-language parse-tree and search for the best
derivation (a sequence of translation steps) that con-
verts the whole tree into some target-language string
with the highest probability. However, the structural
divergence across languages often results in non-
isomorphic parse-trees that is beyond the power of
SCFGs. For example, theS(VO)structure in English
is translated into aVSOword-order in Arabic, an in-
stance ofcomplex reorderingnot captured by any
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SCFG (Fig. 2).
To alleviate the non-isomorphism problem, (syn-

chronous) grammars with richer expressive power
have been proposed whose rules apply to larger frag-
ments of the tree. For example, Shieber and Sch-
abes (1990) introduce synchronous tree-adjoining
grammar (STAG) and Eisner (2003) uses a syn-
chronous tree-substitution grammar (STSG), which
is a restricted version of STAG with no adjunctions.
STSGs and STAGs generate moretree relationsthan
SCFGs, e.g. the non-isomorphic tree pair in Fig. 2.
This extra expressive power lies in theextended do-
main of locality(EDL) (Joshi and Schabes, 1997),
i.e., elementary structures beyond the scope of one-
level context-free productions. Besides being lin-
guistically motivated, the need for EDL is also sup-
ported by empirical findings in MT that one-level
rules are often inadequate (Fox, 2002; Galley et al.,
2004). Similarly, in the tree-transducer terminology,
Graehl and Knight (2004) define extended tree trans-
ducers that have multi-level trees on the source-side.

Since an SD translator separates the source-
language analysis from the recursive transformation,
the domains of locality in these two modules are or-
thogonal to each other: in this work, we use a CFG-
based Treebank parser but focuses on the extended
domain in the recursive converter. Following Gal-
ley et al. (2004), we use a special class ofextended
tree-to-string transducer(xRs for short) with multi-
level left-hand-side (LHS) trees.1 Since the right-
hand-side (RHS) string can be viewed as a flat one-
level tree with the same nonterminal root from LHS
(Fig. 2), this framework is closely related to STSGs:
they both have extended domain of locality on the
source-side, while our framework remains as a CFG
on the target-side. For instance, an equivalentxRs
rule for the complex reordering in Fig. 2 would be

S(x1:NP, VP(x2:VB, x3:NP))→ x2 x1 x3

While Section 3 will define the model formally,
we first proceed with an example translation from
English to Chinese (note in particular that the in-
verted phrases between source and target):

1Throughout this paper, we will use LHS and source-side
interchangeably (so are RHS and target-side). In accordance
with our experiments, we also use English and Chinese as the
source and target languages, opposite to the Foreign-to-English
convention of Brown et al. (1993).

(a) the gunman was [killed]1 by [the police]2 .

parser⇓

(b)

S

NP-C

DT

the

NN

gunman

VP

VBD

was

VP-C

VBN

killed

PP

IN

by

NP-C

DT

the

NN

police

PUNC

.

r1, r2 ⇓

(c) qiangshou

VP

VBD

was

VP-C

VBN

killed

PP

IN

by

NP-C

DT

the

NN

police

◦

r3 ⇓

(d) qiangshou bei

NP-C

DT

the

NN

police

VBN

killed
◦

r5 ⇓ r4 ⇓

(e) qiangshou bei [jingfang]2 [jibi ]1 ◦

Figure 3: A synatx-directed translation process for
Example (1).

(1) the gunman was killed by the police .

qiangshou
[gunman]

bei
[passive]

jingfang
[police]

jibi
[killed]

◦

.

Figure 3 shows how the translator works. The En-
glish sentence (a) is first parsed into the tree in (b),
which is then recursively converted into the Chinese
string in (e) through five steps. First, at the root
node, we apply the ruler1 which preserves the top-
level word-order and translates the English period
into its Chinese counterpart:

(r1) S (x1:NP-Cx2:VP PUNC (.) )→ x1 x2 ◦

2



Then, the ruler2 grabs the whole sub-tree for “the
gunman” and translates it as a phrase:

(r2) NP-C ( DT (the) NN (gunman) )→ qiangshou

Now we get a “partial Chinese, partial English” sen-
tence “qiangshouVP ◦” as shown in Fig. 3 (c). Our
recursion goes on to translate the VP sub-tree. Here
we use the ruler3 for the passive construction:

(r3)

VP

VBD

was

VP-C

x1:VBN PP

IN

by

x2:NP-C

→ bei x2 x1

which captures the fact that the agent (NP-C, “the
police”) and the verb (VBN, “killed”) are always
inverted between English and Chinese in a passive
voice. Finally, we apply rulesr4 andr5 which per-
form phrasal translations for the two remaining sub-
trees in (d), respectively, and get the completed Chi-
nese string in (e).

2 Previous Work

It is helpful to compare this approach with recent ef-
forts in statistical MT. Phrase-based models (Koehn
et al., 2003; Och and Ney, 2004) are good at learn-
ing local translations that are pairs of (consecutive)
sub-strings, but often insufficient in modeling the re-
orderings of phrases themselves, especially between
language pairs with very different word-order. This
is because the generative capacity of these models
lies within the realm of finite-state machinery (Ku-
mar and Byrne, 2003), which is unable to process
nested structures and long-distance dependencies in
natural languages.

Syntax-based models aim to alleviate this prob-
lem by exploiting the power of synchronous rewrit-
ing systems. Both Yamada and Knight (2001) and
Chiang (2005) use SCFGs as the underlying model,
so their translation schemata are syntax-directed as
in Fig. 1, but their translators arenot: both systems
do parsing and transformation in a joint search, es-
sentially over a packed forest of parse-trees. To this
end, their translators are notdirectedby a syntac-
tic tree. Although their method potentially consid-
ers more than one single parse-tree as in our case,

the packed representation of the forest restricts the
scope of each transfer step to a one-level context-
free rule, while our approach decouples the source-
language analyzer and the recursive converter, so
that the latter can have an extended domain of local-
ity. In addition, our translator also enjoys a speed-
up by this decoupling, with each of the two stages
having a smaller search space. In fact, the recursive
transfer step can be done by a alinear-time algo-
rithm (see Section 5), and the parsing step is also
fast with the modern Treebank parsers, for instance
(Collins, 1999; Charniak, 2000). In contrast, their
decodings are reported to be computationally expen-
sive and Chiang (2005) uses aggressive pruning to
make it tractable. There also exists a compromise
between these two approaches, which uses ak-best
list of parse trees (for a relatively smallk) to approx-
imate the full forest (see future work).

Besides, our model, as being linguistically mo-
tivated, is also more expressive than the formally
syntax-based models of Chiang (2005) and Wu
(1997). Consider, again, the passive example in rule
r3. In Chiang’s SCFG, there is only one nonterminal
X, so a corresponding rule would be

〈 was X(1) by X(2), beiX(2) X(1) 〉

which can also pattern-match the English sentence:

I was [asleep]1 by [sunset]2 .

and translate it into Chinese as a passive voice. This
produces very odd Chinese translation, because here
“was A by B” in the English sentence isnot a pas-
sive construction. By contrast, our model applies
rule r3 only if A is a past participle (VBN) andB
is a noun phrase (NP-C). This example also shows
that, one-level SCFG rule, even if informed by the
Treebank as in (Yamada and Knight, 2001), is not
enough to capture a common construction like this
which is five levels deep (from VP to “by”).

There are also some variations of syntax-directed
translators where dependency structures are used
in place of constituent trees (Lin, 2004; Ding and
Palmer, 2005; Quirk et al., 2005). Although they
share with this work the basic motivations and simi-
lar speed-up, it is difficult to specify re-ordering in-
formation within dependency elementary structures,
so they either resort to heuristics (Lin) or a sepa-
rate ordering model for linearization (the other two

3



works).2 Our approach, in contrast, explicitly mod-
els the re-ordering of sub-trees within individual
transfer rules.

3 Extended Tree-to-String Tranducers

In this section, we define the formal machinery of
our recursive transformation model as a special case
of xRs transducers (Graehl and Knight, 2004) that
has only one state, and each rule is linear (L) and
non-deleting (N) with regarding to variables in the
source and target sides (henth the name 1-xRLNs).

Definition 1. A 1-xRLNs transducer is a tuple
(N, Σ, ∆,R) whereN is the set of nonterminals,Σ
is the input alphabet,∆ is the output alphabet, and
R is a set of rules. A rule inR is a tuple(t, s, φ)
where:

1. t is the LHS tree, whose internal nodes are la-
beled by nonterminal symbols, and whose fron-
tier nodes are labeled terminals fromΣ or vari-
ables from a setX = {x1, x2, . . .};

2. s ∈ (X ∪∆)∗ is the RHS string;

3. φ is a mapping fromX to nonterminalsN .

We require each variablexi ∈ X occursexactly once
in t andexactly oncein s (linear and non-deleting).

We denoteρ(t) to be theroot symbol of tree t.
When writing these rules, we avoid notational over-
head by introducing a short-hand form from Galley
et al. (2004) that integrates the mapping into the tree,
which is used throughout Section 1. Following TSG
terminology (see Figure 2), we call these “variable
nodes” such asx2:NP-C substitution nodes, since
when applying a rule to a tree, these nodes will be
matched with a sub-tree with the same root symbol.

We also define|X | to be therank of the rule, i.e.,
the number of variables in it. For example, rulesr1

andr3 in Section 1 are both of rank 2. If a rule has
no variable, i.e., it is of rank zero, then it is called a
purely lexical rule, which performs a phrasal trans-
lation as in phrase-based models. Ruler2, for in-
stance, can be thought of as a phrase pair〈the gun-
man,qiangshou〉.

Informally speaking, a derivation in a transducer
is a sequence of steps converting a source-language

2Although hybrid approaches, such as dependency gram-
mars augmented with phrase-structure information (Alshawi et
al., 2000), can do re-ordering easily.

r1

r2 r3

r4 r5

r1

r2 r6

r4 r7

r5

(a) (b)

Figure 4: (a) the derivation in Figure 3; (b) another
derviation producing the same output by replacing
r3 with r6 and r7, which provides another way of
translating the passive construction:
(r6) VP ( VBD (was) VP-C (x1:VBN x2:PP ) )→ x2 x1

(r7) PP ( IN (by)x1:NP-C )→ beix1

tree into a target-language string, with each step ap-
plying one tranduction rule. However, it can also
be formalized as a tree, following the notion of
derivation-treein TAG (Joshi and Schabes, 1997):

Definition 2. A derivation d, its source and target
projections, notedE(d) andC(d) respectively, are
recursively defined as follows:

1. If r = (t, s, φ) is a purely lexical rule (φ = ∅),
thend = r is a derivation, whereE(d) = t and
C(d) = s;

2. If r = (t, s, φ) is a rule, anddi is a (sub-)
derivation with the root symbol of its source
projection matches the corresponding substitu-
tion node inr, i.e., ρ(E(di)) = φ(xi), then
d = r(d1, . . . , dm) is also a derivation, where
E(d) = [xi 7→ E(di)]t and C(d) = [xi 7→
C(di)]s.

Note that we use a short-hand notation[xi 7→ yi]t
to denote the result of substituting eachxi with yi

in t, wherexi ranges over all variables int.

For example, Figure 4 shows two derivations for
the sentence pair in Example (1). In both cases, the
source projection is the English tree in Figure 3 (b),
and the target projection is the Chinese translation.

Galley et al. (2004) presents a linear-time algo-
rithm for automatic extraction of thesexRs rules
from a parallel corpora with word-alignment and
parse-trees on the source-side, which will be used
in our experiments in Section 6.
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4 Probability Models

4.1 Direct Model

Departing from the conventional noisy-channel ap-
proach of Brown et al. (1993), our basic model is a
directone:

c∗ = argmax
c

Pr(c | e) (2)

where e is the English input string andc∗ is the
best Chinese translation according to the translation
modelPr(c | e). We now marginalize over all En-
glish parse treesT (e) that yield the sentencee:

Pr(c | e) =
∑

τ∈T (e)

Pr(τ, c | e)

=
∑

τ∈T (e)

Pr(τ | e) Pr(c | τ) (3)

Rather than taking the sum, we pick the best treeτ∗

and factors the search into two separate steps: pars-
ing (4) (a well-studied problem) and tree-to-string
translation (5) (Section 5):

τ∗ = argmax
τ∈T (e)

Pr(τ | e) (4)

c∗ = argmax
c

Pr(c | τ∗) (5)

In this sense, our approach can be considered as
a Viterbi approximation of the computationally ex-
pensive joint search using (3) directly. Similarly, we
now marginalize over all derivations

D(τ∗) = {d | E(d) = τ∗}

that translates English treeτ into some Chinese
string and apply the Viterbi approximation again to
search for the best derivationd∗:

c∗ = C(d∗) = C(argmax
d∈D(τ∗)

Pr(d)) (6)

Assuming different rules in a derivation are ap-
plied independently, we approximatePr(d) as

Pr(d) =
∏

r∈d

Pr(r) (7)

where the probabilityPr(r) of the ruler is estimated
by conditioning on the root symbolρ(t(r)):

Pr(r) = Pr(t(r), s(r) | ρ(t(r)))

=
c(r)

∑

r′:ρ(t(r′))=ρ(t(r)) c(r′)
(8)

wherec(r) is the count (or frequency) of ruler in
the training data.

4.2 Log-Linear Model

Following Och and Ney (2002), we extend the direct
model into a general log-linear framework in order
to incorporate other features:

c∗ = argmax
c

Pr(c | e)α · Pr(c)β · e−λ|c| (9)

wherePr(c) is the language model ande−λ|c| is the
length penalty term based on|c|, the length of the
translation. Parametersα, β, andλ are the weights
of relevant features. Note that positiveλ prefers
longer translations. We use a standard trigram model
for Pr(c).

5 Search Algorithms

We first present a linear-time algorithm for searching
the best derivation under the direct model, and then
extend it to the log-linear case by a new variant of
k-best parsing.

5.1 Direct Model: Memoized Recursion

Since our probability model is not based on the noisy
channel, we do not call our search module a “de-
coder” as in most statistical MT work. Instead, read-
ers who speak English but not Chinese can view it as
an “encoder” (or encryptor), which corresponds ex-
actly to ourdirectmodel.

Given a fixed parse-treeτ∗, we are to search
for the best derivation with the highest probability.
This can be done by a simple top-down traversal
(or depth-first search) from the root ofτ∗: at each
nodeη in τ∗, try each possible ruler whose English-
side patternt(r) matches the subtreeτ∗η rooted atη,
and recursively visit each descendant nodeηi in τ∗η
that corresponds to a variable int(r). We then col-
lect the resulting target-language strings and plug
them into the Chinese-sides(r) of rule r, getting
a translation for the subtreeτ∗η . We finally take the
best of all translations.

With the extended LHS of our transducer, there
may be many different rules applicable at one tree
node. For example, consider the VP subtree in
Fig. 3 (c), where bothr3 andr6 can apply. As a re-
sult, the number of derivations is exponential in the
size of the tree, since there are exponentially many
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decompositions of the tree for a given set of rules.
This problem can be solved bymemoization(Cor-
men et al., 2001): we cache each subtree that has
been visited before, so that every tree node is visited
at mostonce. This results in a dynamic program-
ming algorithm that is guaranteed to run inO(npq)
time wheren is the size of the parse tree,p is the
maximum number of rules applicable to one tree
node, andq is the maximum size of an applicable
rule. For a given rule-set, this algorithm runs in time
linear to the length of the input sentence, sincep

and q are considered grammar constants, andn is
proportional to the input length. The full pseudo-
code is worked out in Algorithm 1. A restricted
version of this algorithm first appears in compiling
for optimal code generation from expression-trees
(Aho and Johnson, 1976). In computational linguis-
tics, the bottom-up version of this algorithm resem-
bles thetree parsingalgorithm for TSG by Eisner
(2003). Similar algorithms have also been proposed
for dependency-based translation (Lin, 2004; Ding
and Palmer, 2005).

5.2 Log-linear Model: k-best Search

Under the log-linear model, one still prefers to
search for the globally best derivationd∗:

d∗ = argmax
d∈D(τ∗)

Pr(d)α Pr(C(d))βe−λ|C(d)| (10)

However, integrating then-gram model with the
translation model in the search is computationally
very expensive. As a standard alternative, rather
than aiming at the exact best derivation, we search
for top-k derivations under the direct model using
Algorithm 1, and then rerank thek-best list with the
language model and length penalty.

Like other instances of dynamic programming,
Algorithm 1 can be viewed as a hypergraph search
problem. To this end, we use an efficient algo-
rithm by Huang and Chiang (2005, Algorithm 3)
that solves the generalk-best derivations problem
in monotonic hypergraphs. It consists of a normal
forward phase for the 1-best derivation and a recur-
sive backward phase for the 2nd, 3rd, . . . ,kth deriva-
tions.

Unfortunately, different derivations may have the
same yield (a problem calledspurious ambiguity),
due to multi-level LHS of our rules. In practice, this

results in a very small ratio of unique strings among
top-k derivations. To alleviate this problem, deter-
minization techniques have been proposed by Mohri
and Riley (2002) for finite-state automata and ex-
tended to tree automata by May and Knight (2006).
These methods eliminate spurious ambiguity by ef-
fectively transforming the grammar into an equiva-
lent deterministic form. However, this transforma-
tion often leads to a blow-up in forest size, which is
exponential to the original size in the worst-case.

So instead of determinization, here we present a
simple-yet-effective extension to the Algorithm 3 of
Huang and Chiang (2005) that guarantees to output
unique translated strings:

• keep a hash-table of unique strings at each vertex
in the hypergraph
• when asking for the next-best derivation of a ver-

tex, keep asking until we get a new string, and
then add it into the hash-table

This method should work in general for any
equivalence relation (say, same derived tree) that can
be defined on derivations.

6 Experiments

Our experiments are on English-to-Chinese trans-
lation, the opposite direction to most of the recent
work in SMT. We are not doing the reverse direction
at this time partly due to the lack of a sufficiently
good parser for Chinese.

6.1 Data Preparation

Our training set is a Chinese-English parallel corpus
with 1.95M aligned sentences (28.3M words on the
English side). We first word-align them by GIZA++,
then parse the English side by a variant of Collins
(1999) parser, and finally apply the rule-extraction
algorithm of Galley et al. (2004). The resulting rule
set has 24.7MxRs rules. We also use the SRI Lan-
guage Modeling Toolkit (Stolcke, 2002) to train a
Chinese trigram model with Knesser-Ney smooth-
ing on the Chinese side of the parallel corpus.

Our evaluation data consists of 140 short sen-
tences (< 25 Chinese words) of the Xinhua portion
of the NIST 2003 Chinese-to-English evaluation set.
Since we are translating in the other direction, we
use the first English reference as the source input
and the Chinese as the single reference.
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Algorithm 1 Top-down Memoized Recursion
1: function TRANSLATE(η)
2: if cache[η] definedthen . this sub-tree visited before?
3: return cache[η]

4: best← 0
5: for r ∈ R do . try each ruler
6: matched, sublist← PATTERNMATCH(t(r), η) . tree pattern matching
7: if matched then . if matched,sublist contains a list of matched subtrees
8: prob← Pr(r) . the probability of ruler
9: for ηi ∈ sublist do

10: pi, si ← TRANSLATE(ηi) . recursively solve each sub-problem
11: prob← prob · pi

12: if prob > best then
13: best← prob

14: str ← [xi 7→ si]s(r) . plug in the results

15: cache[η]← best, str . caching the best solution for future use
16: return cache[η] . returns the best string with its prob.

6.2 Initial Results

We implemented our system as follows: for each in-
put sentence, we first run Algorithm 1, which returns
the 1-best translation and also builds the derivation
forest of all translations for this sentence. Then we
extract the top 5000 non-duplicate translated strings
from this forest and rescore them with the trigram
model and the length penalty.

We compared our system with a state-of-the-art
phrase-based system Pharaoh (Koehn, 2004) on the
evaluation data. Since the target language is Chi-
nese, we report character-based BLEU score instead
of word-based to ensure our results are indepen-
dent of Chinese tokenizations (although our lan-
guage models are word-based). The BLEU scores
are based on single reference and up to 4-gram pre-
cisions (r1n4). Feature weights of both systems are
tuned on the same data set.3 For Pharaoh, we use the
standard minimum error-rate training (Och, 2003);
and for our system, since there are only two in-
dependent features (as we always fixα = 1), we
use a simple grid-based line-optimization along the
language-model weight axis. For a given language-
model weightβ, we use binary search to find the best
length penaltyλ that leads to a length-ratio closest

3In this sense, we are only reporting performances on the
development set at this point. We will report results tuned and
tested on separate data sets in the final version of this paper.

Table 1: BLEU (r1n4) score results

system BLEU
Pharaoh 25.5
direct model (1-best) 20.3
log-linear model (rescored 5000-best) 23.8

to 1 against the reference. The results are summa-
rized in Table 1. The rescored translations are better
than the 1-best results from the direct model, but still
slightly worse than Pharaoh.

7 Conclusion and On-going Work

This paper presents an adaptation of the clas-
sic syntax-directed translation with linguistically-
motivated formalisms for statistical MT. Currently
we are doing larger-scale experiments. We are also
investigating more principled algorithms for inte-
gratingn-gram language models during the search,
rather thank-best rescoring. Besides, we will extend
this work to translating the topk parse trees, instead
of committing to the 1-best tree, as parsing errors
certainly affect translation quality.
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Abstract

This paper presents a series of efficient
dynamic-programming(DP) basedalgorithms
for phrase-baseddecoding and alignment
computationin statisticalmachinetranslation
(SMT). TheDP-baseddecodingalgorithmsare
analyzedin termsof shortestpath-findingal-
gorithms, where the similarity to DP-based
decodingalgorithmsin speechrecognitionis
demonstrated.The papercontainsthe follow-
ing original contributions:1) theDP-basedde-
codingalgorithmin (Tillmann andNey, 2003)
is extendedin a formal way to handlephrases
and a novel pruning strategy with increased
translationspeedis presented2) a novel align-
ment algorithm is presentedthat computesa
phrasealignmentefficiently in the casethat it
is consistentwith an underlying word align-
ment. Under certain restrictions,both algo-
rithms handleMT-relatedproblemsefficiently
thataregenerallyNPcomplete(Knight, 1999).

1 Intr oduction

This paperdealswith dynamicprogrammingbasedde-
codingandalignmentalgorithmsfor phrase-basedSMT.
DynamicProgrammingbasedsearchalgorithmsarebe-
ing usedin speechrecognition(Jelinek, 1998; Ney et
al., 1992) as well as in statisticalmachinetranslation
(Tillmann et al., 1997; Niessenet al., 1998; Tillmann
andNey, 2003). Here, the decodingalgorithmsarede-
scribedas shortestpath finding algorithmsin regularly
structuredsearchgraphsor searchgrids. Undercertain
restrictions,e.g. startandendpoint restrictionsfor the
path, the shortestpath computedcorrespondsto a rec-
ognizedword sequenceor a generatedtarget language
translation. In thesealgorithms,a shortest-pathsearch
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Figure 1: Illustration of a DP-basedalgorithmto solve
a traveling salesmanproblemwith

�
cities. The visited

citiescorrespondto processedsourcepositions.

is carriedout in onepassover someinput alonga spe-
cific ’direction’: in speechrecognitionthesearchis time-
synchronous,the single-word basedsearchalgorithmin
(Tillmann et al., 1997) is (source)position-synchronous
or left-to-right, the searchalgorithm in (Niessenet al.,
1998)is (target)position-synchronousor bottom-to-top,
andthesearchalgorithmin (Tillmann andNey, 2003)is
so-calledcardinality-synchronous.

Taking into accountthe differentword orderbetween
sourceandtargetlanguagesentences,it becomeslessob-
viousthata SMT searchalgorithmcanbedescribedasa
shortestpathfinding algorithm.But this hasbeenshown
by linking decodingto a dynamic-programmingsolution
for the traveling salesmanproblem. This algorithmdue
to (Held andKarp, 1962) is a specialcaseof a shortest
path finding algorithm (Dreyfus and Law, 1977). The
regularly structuredsearchgraphfor this problemis il-
lustratedin Fig. 1: all pathsfrom the left-most to the
right-mostvertex correspondto a translationof the in-
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putsentence,whereeachsourcepositionis processedex-
actly once. In this paper, theDP-basedsearchalgorithm
in (Tillmann andNey, 2003)is extendedin a formal way
to handlephrase-basedtranslation. Two versionsof a
phrase-baseddecoderfor SMT that searchslightly dif-
ferentsearchgraphsarepresented:amulti-beamdecoder
reportedin theliteratureanda single-beamdecoderwith
increasedtranslationspeed1. A commonanalysisof all
the searchalgorithmsabove in termsof a shortest-path
finding algorithm for a directedacyclic graph(dag) is
presented.This analysisprovidesa simpleway of ana-
lyzing thecomplexity of DP-basedsearchalgorithm.

Generally, the regular searchspacecanonly be fully
searchedfor smallsearchgridsunderappropriaterestric-
tions, i.e. the monotonicityrestrictionsin (Tillmann et
al., 1997)or the invertedsearchgraphin (Niessenet al.,
1998). For largersearchspacesasarerequiredfor con-
tinuousspeechrecognition(Ney etal.,1992)2 or phrase-
baseddecodingin SMT, thesearchspacecannotbefully
searched:suitably definedlists of path hypothesisare
maintainedthat partially explore the searchspace.The
numberof hypothesesdependslocally onthenumberhy-
potheseswhosescoreis closeto thetopscoringhypothe-
sis: this setof hypothesesis calledthebeam.

The translationmodelusedin this paperis a phrase-
basedmodel, where the translationunits are so-called
blocks: a block is a pair of phraseswhich are transla-
tionsof eachother. For example,Fig. 2 showsanArabic-
English translationexamplethat uses

�
blocks. During

decoding,we view translationas a block segmentation
process,wheretheinput sentenceis segmentedfrom left
to right andthetargetsentenceis generatedfrom bottom
to top, oneblock at a time. In practice,a largely mono-
toneblock sequenceis generatedexceptfor thepossibil-
ity to swapsomeneighborblocks. During decoding,we
try to minimizethescore�������	� 
�� of a block sequence�	� 

undertherestrictionthattheconcatenatedsourcephrases
of the blocks �� yield a segmentationof the input sen-
tence:

� � ��� � 
 ��� �
�� 


� ��� �� 
�� �  ��� �
�� 

�����! ��� "� 
�� �  ��# (1)

Here,  ���	"� 
 � �		� is $ -dimensionalfeaturevector with
real-valuedfeaturesand � is the correspondingweight
vectoras describedin Section5. The fact that a given
blockcoverssomesourceinterval % &�' � &�( is implicit in this
notation.

1Themulti-beamdecoderis similar to thedecoderpresented
in (Koehn,2004)which is a standarddecoderusedin phrase-
basedSMT. A multi-beamdecoderis alsousedin (Al-Onaizan
et al., 2004)and(Bergeretal., 1996).

2In thatwork, thereis adistinctionbetweenwithin-wordand
between-word search,which is not relevant for phrase-based
decodingwhereonly exactphrasematchesaresearched.
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Figure2: An Arabic-Englishblock translationexample,
wheretheArabic wordsareromanized.A sequenceof

�
blocksis generated.

This paper is structuredas follows: Section 2 intro-
ducesthemulti-beamandthesingle-beamDP-basedde-
coders. Section3 presentsan analysisof all the graph-
basedshortest-pathfinding algorithmmentionedabove:
a searchalgorithm for a directedacyclic graph (dag).
Section4 showsanefficientphrasalalignmentalgorithm
thatgivesanalgorithmicjustificationfor learningblocks
from word-alignedtraining. Finally, Section5 presents
anevaluationof thebeam-searchdecoderson anArabic-
Englishdecodingtask.

2 Beam-Search DecodingAlgorithms

In thissection,we introducetwo beam-searchalgorithms
for SMT: a multi-beamalgorithmandsingle-beamalgo-
rithm. Themulti-beamsearchalgorithmispresentedfirst,
sinceit is conceptuallysimpler.

2.1 Multi-Beam Decoder

For the multi-beamdecodermakesuseof searchstates
thatareN -tuplesof thefollowing type:

%PO �RQTSVU (W# (2)

Q is thestatehistory, thatdependsontheblockgeneration
model. In our case,Q �X�	% & � &Y'Z( � % [ ��\ (�� , where �	% & � &Y'Z(�� is
the interval wherethemostrecentblock matchedthe in-
put sentence,and % [ ��\ ( arethefinal two targetwordsof
thepartialtranslationproducedthusfar. O is theso-called
coveragevectorthatensuresthataconsistentblockalign-
mentis obtainedduring decodingandthat the decoding
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Table 1: Multi-beam ( ] -Beam) decodingalgorithm,
which is similar to (Koehn,2004).Thedecodersdiffer in
their pruningstrategy: here,eachstatelist ^V_ is pruned
only once,whereasthedecoderin (Koehn,2004)prunes
a statelist every timea new hypothesisis entered.

input: sourcesentencewith words  
 � �2�2� �  a`
^cbedf�hg�iWbWj and ^Vkldf�nm for op�rq � �2�2� �2s
for each � �ut � q � �a�2� �as do

Prunestateset ^v_
for eachstatei in ^v_ do

matcher: for eachi�'vdwi�xzy{i�'
updatei�' for ^ _"|c}�~������

end

end

output: translationfrom lowestcoststatein ^ `

canbecarriedoutefficiently. It keepstrackof thealready
processedinput sentencepositions. U is the costof the
shortestpath(distance)from someinitial state i b to the
currentstate i . The baselinedecodermaintains s�� q
statelists with entriesof the above type,where s is the
numberof input words. The statesarestoredin lists or
stacksthatsupportlookupoperationsto checkwhethera
givenstatetuple is alreadypresentin a list andwhat its
scoreU is.
The useof a coveragevector O is relatedto a DP-based
solutionfor thetraveling salesmanproblemasillustrated
in Fig. 1. The algorithm keepstrack of setsof visited
citiesalongwith theidentityof thelastvisitedcity. Cities
correspondto sourcesentencepositions& . Thevertexes
in this graphcorrespondto setof alreadyvisited cities.
Sincethetravelingsalesmanproblem(andalsothetrans-
lation model) usesonly local costs,the order in which
thesourcepositionshavebeenprocessedcanbeignored.
Conceptually, the re-orderingproblemis linearized by
searchingapaththroughthesetinclusiongraphin Fig. 1.
Phrase-baseddecodingis handleby an almostidentical
algorithm: the last visited position & is replacedby an
interval % &�' � &�( .

The statesare stored in lists or stacksthat support
lookupoperationsto checkwhethera givenstatetupleis
alreadypresentin a list andwhatits scoreU is. Extending
thepartialblock translationthat is representedby a statei with a singleblock ��' generatesa new state i�' . Here,%�o � o�'�( is the sourceinterval whereblock ��' matchesthe
inputsentence.Thestatetransitionis definedasfollows:

% O �RQ�SvU (�x�y % O ' �RQ ' SVU ' (7# (3)

The i�' statefields are updatedon a component-by-
componentbasis. O-'���O���%�o � o�'f( is the coveragevec-

Table2: Single-beam( � -Beam) decodingalgorithm(re-
latedto (LowerreandReddy, 1980)).

input: sourcesentencewith words  
 � �a�2� �  a`
^�df�hg�iWbWj
for each � ��t � q � �2�a� �2s do
^�'cd���gWmMj
for eachstatei in ^ do

if CLOSED?��i�� then

matcher: for eachi�'vdwi�xzy�i�'
else

scanner: for single i�'vdwi�xz��i�'
update i�' for ^�'
end

Prunestateset ^ '
Swap ^ , ^c'
end

end

output: translationfrom lowestcoststatein ^

tor obtainedby addingall the positionsfrom the inter-
val %�o � oM'f( . The new statehistory is definedas Q '���<%�o � o�'f( � % [-' ��\ '�(�� where [�' and \ ' are the final two tar-
get words of the target phrase��' of ��' . Somespecial
cases,e.g. where��' haslessthantwo targetwords,are
takeninto account.Thepathcost U ' is computedas U 'R�U���U ��i � i�'�� , wherethetransitioncost U ��i � i�'<�Rd�� � ��� � ��'��
is computedfrom thehistory Q andthematchingblock ��'
asdefinedin Section5.

Thedecoderin Table1 fills s�� q statesetŝvk�deo��g�t � �a�2� �as j . All thecoveragevectorsO for statesin theset^Vk cover thesamenumberof sourcepositions o . When
a stateset ^vk is processed,thedecoderhasfinishedpro-
cessingall statesin thesetŝ } where ����o . Beforeex-
pandingastateset,thedecoderprunesastatesetbasedon
its coveragevectorandthepathcostsonly: two different
pruningstrategiesareusedthat have beenintroducedin
(Tillmann andNey, 2003): 1) coveragepruning prunes
statesthat sharethe samecoveragevector O , 2) cardi-
nality pruning prunesstatesaccordingto the cardinal-
ity � ��O�� of coveredpositions:all statesin the beamare
comparedwith eachother. Sincethe statesare kept ins � q separatelists, which areprunedindependentlyof
eachothers,this decoderversionis called multi-beam
decoder. Thedecoderusesa matcher functionwhenex-
pandingastate:for astatei it looksfor uncoveredsource
positionsto find sourcephrasematchesfor blocks. Up-
dating a statein Table1 includesaddingthestateif it is
not yet presentor updatingits shortestpathcost U : if the
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stateis alreadyin ^V_ only the statewith the lower path
cost U is kept. This inserting/updatingoperationis also
called recombination or relaxation in the context of a
dagsearchalgorithm(cf. Section3). Theupdate proce-
durealsostoresfor eachstatei ' its predecessorstatein a
so-calledback-pointerarray(Ney et al., 1992).Thefinal
block alignmentandtarget translationcanbe recovered
from this back-pointerarrayoncethe final stateset ^ `
hasbeencomputed. ����i�'�� is the sourcephraselengthof
thematchingblock ��' whengoingfrom i to i�' . This al-
gorithmis similarto thebeam-searchalgorithmpresented
in (Koehn,2004): it allows statesto beaddedto a stack
thatis not thestackfor thesuccessorcardinality. i b is the
initial decoderstate,wherenosourcepositionis covered:O¡��m . For thefinal statesin ^ ` all sourcepositionsare
covered.

2.2 Single-BeamImplementation

Thesecondimplementationusestwo liststo keepasingle
beamof activestates.This correspondsto abeam-search
decoderin speechrecognition,where path hypotheses
correspondingto wordsequencesareprocessedin atime-
synchronousway andat a giventime steponly hypothe-
seswithin somepercentageof the best hypothesisare
kept (LowerreandReddy, 1980). The single-beamde-
coderprocesseshypothesescardinality-synchronously,
i.e. the statesat stageo generatenew statesat positiono � q . In orderto maketheuseof asinglebeampossible,
we slightly modify thestatetransitionsin Eq.3:

% O � � �RQlSVU (¢x�� % O ' � � ' �RQTSVU ' ( � (4)

% O � � �aQ�SVU (£xzy % O ' � � ' �¤o ��Q ' SvU ' (M# (5)

Here,Eq.5correspondsto thematcherdefinitionin Eq.3.
We addanadditionalfield that is a pointerkeepingtrack
of how muchof therecentsourcephrasematchhasbeen
covered. In Eq. 5, whena block is matchedto the input
sentence,this pointeris setto positionk wherethemost
recentblock matchstarts.We usea dot � to indicatethat
when a block is matched,the matchingposition of the
predecessorstatecanbe ignored. While the pointer � is
not yet equalto theendpositionof thematch o�' , it is in-
creased�f'�d��¥� � q asshown in Eq. 4. The pathcost U
is set: U '�� UT��¦ , where ¦ is the statetransitioncostU ��i � i�'<� dividedby thesourcephraselengthof block ��' :
weevenlyspreadthecostof generating��' overall source
positionsbeing matched. The new coveragevector O�'
is obtainedfrom O by adding the scannedposition � ' :O-'c�uO���gM��'"j . Thealgorithmthatmakesuseof theabove
definitionsis shown in Table2. The statesarestoredin
only two statesetŝ and ^�' : ^ containsthe mostprob-
ablehypothesesthat werekept in the last beampruning
stepall of whichcover o sourcepositions.̂c' containsall
thehypothesesin thecurrentbeamthatcover o � q source
positions.Thesingle-beamdecoderin Table2 usestwo

procedures:thescannerandthematcher correspondto
thestatetransitionsin Eq.4 andEq.5. Here,thematcher
simply matchesa block to an uncoveredportion of the
input sentence.After the matcherhasmatcheda block,
thatblock is processedin a cardinality-synchronousway
using the scannerprocedureas describedabove. The
predicateCLOSED §¨��i�� is usedto switchbetweenmatch-
ing andscanningstates.The predicateCLOSED §©��i�� is
true if the pointer � is equal to the matchend positiono�' (this is storedin Q ' ). At this point, the position-by-
positionmatchof thesourcephraseis completedandwe
cansearchfor additionalblockmatches.

3 DP ShortestPath Algorithm for dag

This sectionanalyzestherelationshipbetweentheblock
decodingalgorithmsin this paperand a single-source
shortestpath finding algorithm for a directed acyclic
graphs(dag).Wecloselyfollow thepresentationin (Cor-
menet al., 2001)andonly sketchthe algorithmhere: a
dag ª«�r��¬ �2 � is aweightedgraphfor whichatopolog-
ical sortof its vertex set ¬ exists: all thevertexescanbe
enumeratedin linear order. For sucha weightedgraph,
the shortestpath from a singlesourcecanbe computed
in ®e��¯f¬T¯ � ¯  ¯Z� time, where ¯f¬�¯ is the numberof ver-
texes and ¯  ¯ numberof edgesin the graph. The dag
searchalgorithmrunsover all vertexes i in topological
order. Assuminganadjacency-list representationof the
dag, for eachvertex i , we loop over all successorver-
texes i�' , whereeachvertex i with its adjacency-list is
processedexactly once. During the search,we maintain
for eachvertex i ' an attribute U %�i ' ( , which is an upper
boundon theshortestpathcostfrom thesourcevertex �
to the vertex i�' . This shortestpathestimateis updated
or relaxedeachtime the vertex i�' occursin someadja-
cency list. Ignoring the pruning,the ] -Beamdecoding
algorithmin Table1 andthedagsearchalgorithmcanbe
comparedas follows: statescorrespondto dagvertexes
andstatetransitionscorrespondto dagedges.Usingtwo
loopsfor themulti-beamdecoderwhile generatingstates
in stagesis just a way of generatinga topologicalsortof
thesearchstateson thefly: a linearorderof searchstates
is generatedby appendingthe searchstatesin the state
lists ^ b , ^ 
 , etc. .
The analysisin termsof a dag shortestpath algorithm
canbeusedfor a simplecomplexity analysisof thepro-
posedalgorithms. Local statetransitionscorrespondto
an adjacency-list traversal in the dag searchalgorithm.
Theseinvolve costly lookup operations,e.g. language,
distortionandtranslationmodelprobabilitylookup.Typ-
ically thecomputationtime for updateoperationson lists^ is negligible comparedto theseprobability lookups.
So,thesearchalgorithmcomplexity is simply computed
as the numberof edgesin the searchgraph: ®e�<¯�¬l¯ �¯  ¯��z°�®e��¯  ¯�� (this analysisis implicit in (Tillmann,
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2001)). Without proof, for the searchalgorithmin Sec-
tion 2.1weobservethatthenumberof statesis finite and
that all the statesare actually reachablefrom the start
state iWb . This way for the single-word basedsearchin
(TillmannandNey, 2003),acomplexity of ®e�<¯�¬ � ¯ ± � s�² �³ ` � is shown, where ¯�¬ � ¯ is the size of the target vo-
cabulary and s is the lengthof the input sentence.The
complexity is dominatedby the exponentialnumberof
coveragevectorsO thatoccurin thesearch,andthecom-
plexity of phrase-baseddecodingis higheryet sinceits
hypothesesstoreasourceinterval % &�' � &Y( ratherthanasin-
gle sourceposition & . In the generalcase,no efficient
searchalgorithmexists to searchall word or phrasere-
orderings(Knight, 1999).Efficientsearchalgorithmscan
bederivedby therestrictingtheallowablecoveragevec-
tors(Tillmann,2001)to local word re-orderingonly. An
efficientphrasealignmentmethodthatdoesnotmakeuse
of re-orderingrestrictionis demonstratedin thefollowing
section.

4 Efficient Block Alignment Algorithm

A commonapproachto phrase-basedSMT is to learn
phrasaltranslationpairsfrom word-alignedtrainingdata
(Och and Ney, 2004). Here, a word alignment ´ is a
subsetof theCartesianproductof sourceandtargetposi-
tions: ´¶µ·gWq � �2�a� ��¸ j«¹{gWq � �2�a� �2s j�#
Here, ¸ is the targetsentencelengthand s is thesource
sentencelength. The phraselearningapproachin (Och
andNey, 2004)takestwo alignments:a source-to-target
alignment́ 
 anda target-to-sourcealignment́ ² . The
intersectionof thesetwo alignmentsis computedto ob-
tain a high-precisionword alignment.Here,we notethat
if the intersectioncoversall sourceand target positions
(as shown in Fig. 4), it constitutesa bijection between
sourceandtargetsentencepositions,sincethe intersect-
ing alignmentsarefunctionsaccordingto their definition
in (Brownetal.,1993)3. In thispaper, analgorithmicjus-
tification for restrictingblocksbasedonwordalignments
is given. We assumethat sourceandtargetsentenceare
given,andthetaskis to computethelowestscoringblock
alignment.Suchanalgorithmmightbeimportantin some
discriminative trainingprocedurethatrelieson decoding
thetrainingdataefficiently.
To restrict the block selectionbasedon word aligned
trainingdata,interval projectionfunctionsaredefinedas
follows 4: � is a sourceinterval and � is antarget inter-

3(Tillmann, 2003)reportsanintersectioncoverageof aboutº¨»
% for Arabic-Englishparallel data,and a coverageof ¼a½

% for Chinese-Englishdata. In the caseof uncompletecov-
erage,the currentalgorithm can be extendedas describedin
Section4.1.

4(Och and Ney, 2004) definesthe notion of consistency
for the setof phrasaltranslationsthat are learnedfrom word-

Figure3: Following the definition in Eq. 6, the left pic-
ture shows threeadmissibleblock links while the right
pictureshows threenon-admissibleblock links.

val. ¾W¿�À�& � ���Á� is thesetof targetpositionsÂ suchthatthe
alignmentpoint ��Â � &Ã� occursin thealignmentset́ and&
is coveredby thesourceinterval � . ¾W¿7À�& � ���Ä� is defined
accordingly. Formally, thedefinitionslook like this:

¾M¿7À�& � ���Á�Å� gcÂv¯W�ZÂ � &Æ�vÇp´ and&lÇz��j
¾M¿7À�& � ���l�Å� gc&�¯M�ZÂ � &Æ�vÇÈ´ andÂÉÇ���j

In orderto obtaina particularlysimpleblock alignment
algorithm, the allowed block links ��� � �l� are restricted
by anADMISSIBIL ITY restriction,whichis definedasfol-
lows:

��� � �Á� is admissibleiff (6)

¾M¿7À�& � ���l�vµh� and¾W¿7À�& � �����vµ��
Admissibility is relatedto thewordre-orderingproblem:
for thesourcepositionsin aninterval � andfor thetarget
positionsin aninterval � , all word re-orderinginvolving
thesepositionshasto takeplacewithin theblockdefined
by � and � . Without an underlyingalignment́ each
pair of sourceandtarget intervals would definea possi-
ble block link: the admissibility reducesthe numberof
block links drastically. Examplesof admissibleandnon-
admissibleblocksareshown in Fig. 3.

If thealignment́ is abijection,by definitioneachtar-
getposition Â is alignedto exactly onesourceposition &
andvice versaandsourceand target sentencehave the
samelength. Becauseof the admissibilitydefinition, a
target interval clumpingaloneis sufficient to determine
the sourceinterval clumping and the clump alignment.
In Fig. 4, a bijectionword alignmentfor a sentencepair
thatconsistsof s �rÊ sourceand ¸ �rÊ targetwordsis
shown, wherethe alignmentlinks that yield a bijection
are shown as solid dots. Four admissibleblock align-
mentsareshown aswell. An admissibleblockalignment
is always guaranteedto exist: the block that coversall
sourceandtargetpositionisadmissiblebydefinition.The
underlyingword alignmentandtheadmissibilityrestric-
tion play togetherto reducethe numberof block align-
ments: out of all eight possibletarget clumpings,only

alignedtrainingdatawhich is equivalent.
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Table 3: Efficient DP-basedblock alignmentalgorithm
usingan underlyingword alignment ´ . For simplicity
reasons,the block score � ����'�� is computedbasedon the
block identity � ' only.

input: Parallelsentencepair andalignment́ .

initialization: Ë���tÌ�R��t S Ë���Âa�R�hÍ S�Î ��Â � Â�'��R�nÍ S
for Â � Â�'c�hq � �a�2� ��¸ .

for eachÂÏ�hq � ³ � �2�a� ��¸ do

Ë���Âa�R�uÐTÑ�Ò � Î ��Â � Â ' � � ËT��Â ' � , where

Î �ZÂ � Â�'"��� � ���<'�� if block ��' resultsfrom admissible

block link ��� � �Á� , where�X�r% Â ' � q � Â�(
traceback:

- find bestendhypothesis:Ë�� ¸ �

Figure4: Four admissibleblock alignmentsin casethe
word alignmentintersectionis a bijection. The block
alignmentwhich covers the whole sentencepair with a
singleblock is not shown.

fiveyield segmentationswith admissibleblock links.
TheDP-basedalgorithmto computetheblock sequence
with thehighestscoreË��ZÂa� is shown in Table3. Here,the
following auxiliaryquantityis used:

ËT��Âa� := scoreof thebestpartialsegmentation
thatcoversthetargetinterval %fq � Â�( .

Target intervals areprocessedfrom bottomto top. A
target interval �Ó�Ô% Â ' � Â�( is projectedusing the word
alignment́ , whereagiventargetintervalmightnotyield
anadmissibleblock. For theinitialization,weset Ë���Âa�v�Í andthefinal scoreis obtainedas ËÖÕ  ��× } ��ËT� ¸ � . The
complexity of the algorithmis ØT� ¸ ² � wherethe time to
computethecost � ���<'�� andthetime to computetheinter-
val projectionsareignored.Usingthealignmentlinks ´ ,
the segmentationproblemis essentiallylinearized: the

Figure 5: An examplefor a block alignmentinvolving
a non-alignedcolumn. The right-mostalignmentis not
allowedby theclosurerestriction.

target clumping is generatedsequentiallyfrom bottom-
to-top andit inducessomesourceclumping in an order
which is definedby thewordalignment.

4.1 IncompleteBijection Coverage

In this section,an algorithm is sketchedthat works if
the intersectioncoverageis not complete. In this case,
a given target interval may produceseveral admissible
block links sinceit canbecoupledwith differentsource
intervalsto form admissibleblocklinks,e.g.in Fig.5, the
target interval % t � q�( is linkedto two sourceintervalsand
bothresultingblock links donotviolatetheadmissibility
restriction.Theminimumscoreblock translationcanbe
computedusingeither the one-beamor the multi-beam
algorithmpresentedearlier. Thesearchstatedefinitionin
Eq.2 is modifiedto keeptrackof thecurrenttargetposi-
tion Â the sameway asthe recursive quantity ËT��Âa� does
this in thealgorithmin Table3:

%�O ��QÙ� Â SVU (7# (7)

Additionally, acomplex blockhistory Q asdefinedin Sec-
tion 2 canbeused.Beforethesearchis carriedout,theset
of admissibleblock links for eachtarget interval is pre-
computedandstoredin a tablewherea simple look-up
for eachtarget interval % Â�' � Â�( is carriedout during align-
ment. The efficiency of the block alignmentalgorithm
dependson thealignmentintersectioncoverage.

5 Beam-Search Results

In this section,we presentresultsfor the beam-search
algorithmsintroducedin Section2. The MT03 Arabic-
EnglishNIST evaluationtestset consistingof ÚMÚMN sen-
tenceswith q�Ú ³ $�Û Arabic wordsis usedfor the experi-
ments.Translationresultsin termsof uncasedBLEU us-
ing Ê referencetranslationsarereportedin Table4 and
Table 5 for the single-beam( � -Beam) and the multi-
beam( ] -Beam) searchalgorithm. For all re-ordering
experiments,the notion of skips is used(Tillmann and
Ney, 2003)to restrictthephrasere-ordering:thenumber
of skipsrestrictsthenumberof holesin thecoveragevec-
tor for a left-to-right traversalof the input sentence.All
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Table4: Effect of the skip parameterfor the two search
strategies. Ü�_Ý� ³ # � � Ü<Þ��rqY# t andwindow width � �uÚ .

Skip BLEU CPU BLEU CPU� -Beam [secs] ] -Beam [secs]
0 ÊWtÃ#�$Éßàq�# Ê q�tMÛ ÊWtÃ# á�ßàq�# � qMq�Ú
1 ÊWÊÃ#�qÉßàq�# � $ ³ á ÊWÊÃ#�q�ßàq�# Ú ³ Ê � á
2 ÊWÊÃ# NÙßàq�# Ú ÊWÊMtMÛ ÊWÊÃ# Ê�ßàq�# Ú ÛMÊMN�$
3 ÊWÊÃ# NÙßàq�# Ú $�ÊMÚÌ$ ÊWÊÃ# � ßàq�# Ú q�tMtWÊMÛ

re-orderingtakesplacein a window of size � ��Ú , such
thatonly localblock re-orderingis handled.

The following block bigram scoring is used: a
block pair ��� S �<'"� with correspondingsource phrase
matches�<% & � &�'Z( � %�o � o�'�(�� is representedasa feature-vector ��� S � ' �âÇ ã ä . The feature-vector componentsare
the negative logarithm of someprobabilitiesas well as
a word-penalty feature. The real-valued featuresin-
clude the following: a block translationscorederived
from phraseoccurrencestatistics�	qM� , a trigramlanguage
modelto predicttargetwords � ³på NÌ� , a lexical weight-
ing scorefor the block internal words ��ÊÌ� , a distortion
model � �Ïå Ú�� aswell asthenegativetargetphraselength�<$W� . The transition cost is computedas � ��� � � ' �à�� � �Y ��� S ��'"� , where� Çæã ä is a weightvectorthatsums
up to qY# t : ä �� 
 � Ù�çq�# t . The weightsaretrainedus-
ing a proceduresimilar to (Och, 2003)on held-outtest
data. A block set of áÆ# � million blocks, which are not
filteredaccordingto any particulartestsetis used,which
hasbeengeneratedby a phrase-pairselectionalgorithm
similar to (Al-Onaizanet al., 2004). Thetrainingdatais
sentence-alignedconsistingof NÆ# N million training sen-
tencepairs.

Beam-searchresults are presentedin terms of two
pruning thresholds: the coveragepruning thresholdÜ Þ
and the cardinality pruning thresholdÜ _ (Tillmann and
Ney, 2003). To carryout thepruning,theminimumcost
with respectto eachcoverageset O andcardinality � are
computedfor a stateset ^ . For the coveragepruning,
statesare distinguishedaccordingto the subsetof cov-
eredpositions O . The minimum cost èËÏé���O�� is defined
as: èËÝé��ZO����àÐlÑ�ÒÆêëg U ¯Á% O �2Q-S�U (cÇ�^Áj . For thecardinality
pruning,statesaredistinguishedaccordingto the cardi-
nality � ��O�� of subsetsO of coveredpositions. The min-
imum cost èË é � � � is definedfor all hypotheseswith the
samecardinality � �ZO��R� � : èË é � � �R��ÐlÑfÒ ìí"î ì	ï�ð í èË é ��O�� .

Statesi in ^ areprunedif theshortestpathcost U ��i�� is
greaterthantheminimumcostplusthepruningthreshold:

U ��i��òñ Ü<Þ � èËÏé���O��
U ��i��òñ Ü�_ � èËÏé�� � �

Thesamestatesetpruningis usedfor the � -Beamand

Table5: Effect of the coveragepruningthresholdÜ<Þ on
BLEU andthe overall CPU time [secs]. To restrict the
overall searchspacethecardinalitypruningis setto Ü�_Ï�q�tÆ# t andthecardinalityhistogrampruningis setto

³M� tWt .
Ü Þ BLEU CPU BLEU CPU� -Beam [secs] ] -Beam [secs]
0.001 N�$Y# � ßàq�# Ê 106 ÊWtÃ# � ß¡qY# � 198
0.01 NWÛÃ# N�ßàq�# Ê 109 Ê�qY# t�ß¡qY# � 213
0.05 ÊWtÃ#�$�ßàq�# � 139 ÊWNÃ# ³ ß¡qY# Ú 301
0.1 Ê ³ # Ú�ßàq�# � 215 ÊWÊÃ# ³ ß¡qY# Ú 508
0.25 ÊWÊÃ#�q�ßàq�# Ú 1018 ÊWÊÃ# Ê�ß¡qY# Ú 1977
0.5 ÊWÊÃ# N�ßàq�# Ú 4527 ÊWÊÃ# Ê�ß¡qY# Ú 6289
1.0 ÊWÊÃ# N�ßàq�# Ú 6623 ÊWÊÃ# � ß¡qY# Ú 8092
2.5 ÊWÊÃ# N�ßàq�# Ú 6797 ÊWÊÃ# � ß¡qY# Ú 8187
5.0 ÊWÊÃ# N�ßàq�# Ú 6810 ÊWÊÃ# � ß¡qY# Ú 8191

the ] -Beamsearchalgorithms. Table4 shows the ef-
fect of theskip sizeon thetranslationperformance.The
pruningthresholdsaresetto conservatively largevalues:Ü _ � ³ # � and Ü Þ �óqY# t . Only if no block re-ordering
is allowed ( �¨oYÂ"¾¤�Xt ), performancedropssignificantly.
The � -Beamsearchis consistentlyfasterthan ] -Beam
searchalgorithm. Table5 demonstratesthe effect of the
coveragepruningthreshold.Here,a conservatively large
cardinality pruning thresholdof Ü�_u�ôq�tÃ# t and the so-
calledhistogram pruningto restrict the overall number
of statesin the beamto a maximum numberof

³M� tMt
are used to restrict the overall searchspace. The � -
Beamsearchalgorithmis consistentlyfasterthanthe ] -
Beamsearchalgorithmfor the samepruning threshold,
but performancein termsof BLEU scoredropssignifi-
cantlyfor lowercoveragepruningthresholdsÜ<Þ��àtÃ# � as
a smallerportionof theoverall searchspaceis searched
which leadsto searcherrors. For largerpruningthresh-
olds Ü Þ�õ tÆ# � , wherethe performanceof the two algo-
rithms in termsof BLEU scoreis nearly identical, the� -Beamalgorithmrunssignificantlyfaster. For a cover-
agethresholdof Ü Þ ��tÆ#Zq , the � -Beamalgorithmis as
fastasthe ] -Beamalgorithmat Ü<ÞÈ��tÃ# tÌq , but obtainsa
significantlyhigherBLEU scoreof Ê ³ # Ú versusÊÌq�# t for
the ] -Beamalgorithm.Theresultsin this sectionshow
thatthe � -Beamalgorithmgenerallyrunsfastersincethe
beamsearchpruning is appliedto all statessimultane-
ouslymakingmoreefficient useof thebeamsearchcon-
cept.

6 Discussion

The decodingalgorithm shown here is most similar to
thedecodingalgorithmspresentedin (Koehn,2004)and
(OchandNey, 2004),the laterbeingusedfor theAlign-
ment TemplateModel for SMT. Thesealgorithmsalso

15



include an estimateof the path completioncost which
caneasilybe includedinto this work aswell ((Tillmann,
2001)). (Knight, 1999)shows thatthedecodingproblem
for SMT as well as somebilingual tiling problemsare
NP-complete,sono efficient algorithmexists in thegen-
eral case. But usingDP-basedoptimizationtechniques
and appropriaterestrictionsleadsto efficient DP-based
decodingalgorithmsasshown in thispaper.

Theefficientblockalignmentalgorithmin Section4 is
relatedto theinversiontransductiongrammarapproachto
bilingual parsingdescribedin (Wu, 1997): in bothcases
the numberof alignmentsis drasticallyreducedby in-
troducingappropriatere-orderingrestrictions. The list-
baseddecodingalgorithmscan also be comparedto an
Earley-styleparsingalgorithmthatprocesseslist of parse
statesin asingleleft-to-right runover theinputsentence.
For this algorithm,thecomparisonin termsof ashortest-
pathalgorithmis lessobvious: in the so-calledcomple-
tion steptheparserre-visitsstatesin previousstacks.But
it is interestingto notethatthereis no multiple lists vari-
ant of that parser. In phrase-baseddecoding,a multiple
list decoderis feasibleonly becauseexactphrasematches
occur. A block decodingalgorithmthatwould allow for
a ’fuzzy’ matchof sourcephrases,e.g.insertionsor dele-
tions of somesourcephrasewords are allowed, would
needto carryout its computationsusingtwo stackssince
thematchendof a block is unknown.
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Abstract

This paper presents a discriminative
parser that does not use a generative
model in any way, yet whose accu-
racy still surpasses a generative base-
line. The parser performs feature selec-
tion incrementally during training, as op-
posed toa priori, which enables it to
work well with minimal linguistic clever-
ness. The main challenge in building this
parser was fitting the training data into
memory. We introduce gradient sampling,
which increased training speed 100-fold.
Our implementation is freely available at
http://nlp.cs.nyu.edu/parser/.

1 Introduction

Discriminative machine learning methods have im-
proved accuracy on many NLP tasks, including
POS-tagging, shallow parsing, relation extraction,
and machine translation. However, only limited ad-
vances have been made on full syntactic constituent
parsing. Successful discriminative parsers have used
generative models to reduce training time and raise
accuracy above generative baselines (Collins &
Roark, 2004; Henderson, 2004; Taskar et al., 2004).
However, relying upon information from a gener-
ative model might limit the potential of these ap-
proaches to realize the accuracy gains achieved by
discriminative methods on other NLP tasks. Another
difficulty is that discriminative parsing approaches
can be very task-specific and require quite a bit of

trial and error with different hyper-parameter values
and types of features.

In the present work, we make progress towards
overcoming these obstacles. We propose a flexible,
well-integrated method for training discriminative
parsers, demonstrating techniques that might also
be useful for other structured learning problems.
The learning algorithm projects the hand-provided
atomic features into a compound feature space and
performs incremental feature selection from this
large feature space. We achieve higher accuracy than
a generative baseline, despite not using the standard
trick of including an underlying generative model.
Our training regime does model selection without
ad-hoc smoothing or frequency-based feature cut-
offs, and requires no heuristics to optimize the single
hyper-parameter.

We discuss the computational challenges we over-
came to build this parser. The main difficulty is that
the training data fit in memory only using an indirect
representation,1 so the most costly operation during
training is accessing the features of a particular ex-
ample. We show how to train a parser effectively un-
der these conditions. We also show how to speed up
training by using a principled sampling method to
estimate the loss gradients used in feature selection.
§2 describes the parsing algorithm.§3 presents

the learning method and techniques used to reduce
training time.§4 presents experiments with discrim-
inative parsers built using these methods.§5 dis-

1Similar memory limitations exist in other large-scale NLP
tasks. Syntax-driven SMT systems are typically trained on
an order of magnitude more sentences than English parsers,
and unsupervised estimation methods can generate an arbitrary
number of negative examples (Smith & Eisner, 2005).
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cusses possible issues in scaling to larger example
sets.

2 Parsing Algorithm

The following terms will help to explain our work.
A spanis a range over contiguous words in the in-
put. Spanscrossif they overlap but neither contains
the other. Anitem is a (span, label) pair. Astateis a
partial parse, i.e. a set of items, none of whose spans
cross. A parseinferenceis a (state, item) pair, i.e. a
state and a (consequent) item to be added to it. The
frontier of a state consists of the items with no par-
ents yet. Thechildrenof an inference are the frontier
items below the item to be inferred, and theheadof
an inference is the child item chosen by head rules
(Collins, 1999, pp. 238–240). A parsepath is a se-
quence of parse inferences. For some input sentence
and training parse tree, a state iscorrectif the parser
can infer zero or more additional items to obtain the
training parse tree and an inference is correct if it
leads to a correct state.

Now, given input sentences we compute:

p̂ = arg min
p∈P(s)

∑
i∈p

l(i)

 (1)

whereP(s) are possible parses of the sentence, and
the loss (or cost) l of parsep is summed over the
inferencesi that lead to the parse. To find ˆp, the
parsing algorithm considers a sequence of states.
The initial state contains terminal items, whose la-
bels are the POS tags given by Ratnaparkhi (1996).
The parser considers a set of (bottom-up) inferences
at each state. Each inference results in a successor
state to be placed on the agenda. The loss function
l can consider arbitrary properties of the input and
parse state,2 which precludes a tractable dynamic
programming solution to Equation 1. Therefore, we
do standard agenda-based parsing, but instead of
items our agenda stores entire states, as per more
general best-first search over parsing hypergraphs
(Klein & Manning, 2001). Each time we pop a state
from the agenda,l computes a loss for the bottom-
up inferences generated from that state. If the loss
of the popped state exceeds that of the current best
complete parse, search is done and we have found
the optimal parse.

2I.e. we make no context-free assumptions.

3 Training Method

3.1 General Setting

From each training inferencei ∈ I we generate the
tuple 〈X(i), y(i),b(i)〉. X(i) is a feature vector de-
scribingi, with each element in{0,1}. The observed
y-valuey(i) ∈ {−1,+1} is determined by whetheri
is a correct inference or not. Some training exam-
ples might be more important than others, so each is
given an initial biasb(i) ∈ R+.

Our goal during training is to induce a real-valued
inference scoring function (hypothesis)h(i;α),
which is a linear model parameterized by a vector
α of reals:

h(i;α) = α · X(i) =
∑

f

α f · Xf (i) (2)

Each f is a feature. The sign ofh(i;α) predicts the
y-value ofi and the magnitude gives the confidence
in this prediction.

The training procedure optimizesα to minimize
the expected riskR:

R(I ;α) = L(I ;α) + Ω(α) (3)

In principle, L can be any loss function, but in the
present work we use the log-loss (Collins et al.,
2002):

L(I ;α) =
∑
i∈I

l(i;α) =
∑
i∈I

b(i) · σ(µ(i;α)) (4)

where:
σ(µ) = ln(1+ exp(−µ)) (5)

and themargin of inference i under the current
modelα is:

µ(i;α) = y(i) · h(i;α) (6)

For a particular choice ofα, l(i) in Equation 1 is
computed according to Equation 4 usingy(i) = +1
andb(i) = 1.
Ω(α) in Equation 3 is a regularizer, which penal-

izes overly complex models to reduce overfitting and
generalization error. We use the`1 penalty:

Ω(α) =
∑

f

λ · |α f | (7)

whereλ is the`1 parameter that controls the strength
of the regularizer. This choice of objectiveR is mo-
tivated by Ng (2004), who suggests that, given a
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learning setting where the number of irrelevant fea-
tures is exponential in the number of training exam-
ples, we can nonetheless learn effectively by build-
ing decision trees to minimize thè1-regularized
log-loss. Conversely, Ng (2004) suggests that most
of the learning algorithms commonly used by dis-
criminative parserswill overfit when exponentially
many irrelevant features are present.3

Learning over an exponential feature space is the
very setting we have in mind.A priori, we define
only a setA of simple atomic features (see§4).
However, the learner inducescompoundfeatures,
each of which is a conjunction of possibly negated
atomic features. Each atomic feature can have three
values (yes/no/don’t care), so the size of the com-
pound feature space is 3|A|, exponential in the num-
ber of atomic features. It was also exponential in
the number of training examples in our experiments
(|A| ≈ |I |).

We use an ensemble of confidence-rated deci-
sion trees (Schapire & Singer, 1999) to representh.4

Each node in a decision tree corresponds to a com-
pound feature, and the leaves of the decision trees
keep track of the parameter values of the compound
features they represent. To score an inference using
a decision tree, we percolate the inference down to
a leaf and return that leaf’s confidence. The overall
score given to an inference by the whole ensemble
is the sum of the confidences returned by the trees in
the ensemble.

3.2 Boosting`1-Regularized Decision Trees

Listing 1 presents our training algorithm. (Sampling
will be explained in§3.3. Until then, assume that
the sampleS is the entire training setI .) At the be-
ginning of training, the ensemble is empty,α = 0,
and thè 1 parameterλ is set to∞. We train until the
objective cannot be further reduced for the current
choice ofλ. We then relax the regularization penalty
by decreasingλ and continuing training. We also de-

3including the following learning algorithms:
• unregularized logistic regression
• logistic regression with aǹ2 penalty (i.e. a Gaussian prior)
• SVMs using most kernels
• multilayer neural nets trained by backpropagation
• the perceptron algorithm

4Turian and Melamed (2005) show that that decision trees ap-
plied to parsing have higher accuracy and training speed than
decision stumps.

Listing 1 Training algorithm.
1: procedureT(I )
2: ensemble← ∅
3: h(i)← 0 for all i ∈ I
4: for T = 1 . . .∞ do
5: S← priority sampleI
6: extractX(i) for all i ∈ S
7: build decision treet usingS
8: percolate everyi ∈ I to a leaf node int
9: for each leaf f in t do

10: chooseα f to minimizeR
11: addα f to h(i) for all i in this leaf

termine the accuracy of the parser on a held-out de-
velopment set using the previousλ value (before it
was decreased), and can stop training when this ac-
curacy plateaus. In this way, instead of choosing the
bestλ heuristically, we can optimize it during a sin-
gle training run (Turian & Melamed, 2005).

Our strategy for optimizingα to minimize the ob-
jectiveR (Equation 3) is a variant of steepest descent
(Perkins et al., 2003). Each training iteration has
several steps. First, we choose some new compound
features that have high magnitude gradient with re-
spect to the objective function. We do this by build-
ing a new decision tree, whose leaves represent the
new compound features.5 Second, we confidence-
rate each leaf to minimize the objective over the ex-
amples that percolate down to that leaf. Finally, we
append the decision tree to the ensemble and up-
date parameter vectorα accordingly. In this manner,
compound feature selection is performed incremen-
tally during training, as opposed toa priori.

To build each decision tree, we begin with a root
node, and we recursively split nodes by choosing a
splitting feature that will allow us to decrease the
objective. We have:

∂L(I ;α)
∂α f

=
∑
i∈I

∂l(i;α)
∂µ(i;α)

·
∂µ(i;α)
∂α f

(8)

where:
∂µ(i;α)
∂α f

= y(i) · Xf (i) (9)

We define theweightof an example under the cur-
rent model as:

w(i;α) = −
∂l(i;α)
∂µ(i;α)

= b(i) ·
1

1+ exp(µ(i;α))
. (10)

5Any given compound feature can appear in more than one
tree.
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and:

Wȳ
f (I ;α) =

∑
i∈I

Xf (i)=1,y(i)=ȳ

w(i;α) (11)

Combining Equations 8–11 gives:6

∂L
∂α f
=W−1

f −W+1
f (12)

We define thegain Gf of featuref as:

G f = max

(
0,

∣∣∣∣∣∣ ∂L∂α f

∣∣∣∣∣∣ − λ
)

(13)

Equation 13 has this form because the gradient of the
penalty term is undefined atα f = 0. This discontinu-
ity is why `1 regularization tends to produce sparse
models. IfG f = 0, then the objectiveR is at its min-
imum with respect to parameterα f . Otherwise,G f

is the magnitude of the gradient of the objective as
we adjustα f in the appropriate direction.

The gain of splitting nodef using some atomic
featurea is defined as

Ǧ f (a) = G f∧a +G f∧¬a (14)

We allow nodef to be split only by atomic features
a that increase the gain, i.e.̌G f (a) > G f . If no such
feature exists, thenf becomes a leaf node of the de-
cision tree andα f becomes one of the values to be
optimized during the parameter update step. Other-
wise, we choose atomic feature ˆa to split nodef :

â = arg max
a∈A

Ǧ f (a) (15)

This split creates child nodesf ∧ â and f ∧¬â. If no
root node split has positive gain, then training has
converged for the current choice of`1 parameterλ.

Parameter update is done sequentially on only the
most recently added compound features, which cor-
respond to the leaves of the new decision tree. After
the entire tree is built, we percolate examples down
to their appropriate leaf nodes. We then choose for
each leaf nodef the parameterα f that minimizes the
objectiveR over the examples in that leaf. Decision
trees ensure that these compound features are mu-
tually exclusive, so they can be directly optimized
independently of each other using a line search over
the objectiveR.

6Sinceα is fixed during a particular training iteration andI is
fixed throughout training, we omit parameters (I ;α) henceforth.

3.3 Sampling for Faster Feature Selection

Building a decision tree using the entire example set
I can be very expensive, which we will demonstrate
in §4.2. However, feature selection can be effective
even if we don’t examine every example. Since the
weight of high-margin examples can be several or-
ders of magnitude lower than that of low-margin ex-
amples (Equation 10), the contribution of the high-
margin examples to feature weights (Equation 11)
will be insignificant. Therefore, we can ignore most
examples during feature selection as long as we have
good estimates of feature weights, which in turn give
good estimates of the loss gradients (Equation 12).

As shown in Step 1.5 of Listing 1, before building
each decision tree we use priority sampling (Duffield
et al., 2005) to choose a small subset of the ex-
amples according to the example weights given by
the current classifier, and the tree is built using only
this subset. We make the sample small enough that
its entire atomic feature matrix will fit in memory.
To optimize decision tree building, we compute and
cache the sample’s atomic feature matrix in advance
(Step 1.6).

Even if the sample is missing important informa-
tion in one iteration, the training procedure is capa-
ble of recovering it from samples used in subsequent
iterations. Moreover, even if a sample’s gain esti-
mates are inaccurate and the feature selection step
chooses irrelevant compound features, confidence
updates are based upon the entire training set and
the regularization penalty will prevent irrelevant fea-
tures from having their parameters move away from
zero.

3.4 The Training Set

Our training setI contains all inferences considered
in every state along the correct path for each gold-
standard parse tree (Sagae & Lavie, 2005).7 This
method of generating training examples does not re-
quire a working parser and can be run prior to any
training. The downside of this approach is that it
minimizes the error of the parser atcorrect states
only. It does not account for compounded error or
teach the parser to recover from mistakes gracefully.

7Since parsing is done deterministically right-to-left, there can
be no more than one correct inference at each state.

20



Turian and Melamed (2005) observed that uni-
form example biasesb(i) produced lower accuracy
as training progressed, because the induced classi-
fiers minimized theexample-wiseerror. Since we
aim to minimize the state-wise error, we express this
bias by assigning every trainingstateequal value,
and—for the examples generated from that state—
sharing half the value uniformly among the nega-
tive examples and the other half uniformly among
the positive examples.

Although there areO(n2) possible spans over a
frontier containingn items, we reduce this to the
O(n) inferences that cannot have more than 5 chil-
dren. With no restriction on the number of children,
there would beO(n2) bottom-up inferences at each
state. However, only 0.57% of non-terminals in the
preprocessed development set have more than five
children.

Like Turian and Melamed (2005), we parallelize
training by inducing 26 label classifiers (one for
each non-terminal label in the Penn Treebank). Par-
allelization might not uniformly reduce training time
because different label classifiers train at different
rates. However, parallelization uniformly reduces
memoryusage because each label classifier trains
only on inferences whose consequent item has that
label. Even after parallelization, the atomic feature
matrix cannot be cached in memory. We can store
the training inferences in memory using only anin-
direct representation. More specifically, for each in-
ferencei in the training set, we cache in memory
several values: a pointeri to a tree cut, itsy-value
y(i), its biasb(i), and its confidenceh(i) under the
current model. We cacheh(i) throughout training be-
cause it is needed both in computing the gradient of
the objective during decision tree building (Step 1.7)
as well as subsequent minimization of the objective
over the decision tree leaves (Step 1.10). We update
the confidences at the end of each training iteration
using the newly added tree (Step 1.11).

The most costly operation during training is to ac-
cess the feature values inX(i). An atomic feature
test determines the valueXa(i) for a single atomic
featurea by examining the tree cut pointed to by in-
ferencei. Alternately, we can perform atomic fea-
ture extraction, i.e. determineall non-zero atomic

features overi.8 Extraction is 100–1000 times more
expensive than a single test, but is necessary during
decision tree building (Step 1.7) because we need
the entire vectorX(i) to accumulate inferences in
children nodes. Essentially, for each inferencei that
falls in some nodef , we accumulatew(i) in Wy(i)

f∧a
for all a with Xa(i) = 1. After all the inferences in a
node have been accumulated, we try to split the node
(Equation 15). The negative child weights are each
determined asWy

f∧¬a =Wy
f −Wy

f∧a.

4 Experiments

We follow Taskar et al. (2004) and Turian and
Melamed (2005) in training and testing on≤ 15
word sentences in the English Penn Treebank (Tay-
lor et al., 2003). We used sections 02–21 for train-
ing, section 22 for development, and section 23,
for testing. We use the same preprocessing steps as
Turian and Melamed (2005): during both training
and testing, the parser is given text POS-tagged by
the tagger of Ratnaparkhi (1996), with capitalization
stripped and outermost punctuation removed.

For reasons given in Turian and Melamed (2006),
items are inferred bottom-up right-to-left. As men-
tioned in§2, the parser cannot infer any item that
crosses an item already in the state. To ensure the
parser does not enter an infinite loop, no two items
in a state can have both the same span and the same
label. Given these restrictions, there were roughly 40
million training examples. These were partitioned
among the constituent label classifiers.

Our atomic feature setA contains features of
the form “is there an item in groupJ whose la-
bel/headword/headtag/headtagclass9 is ‘X’?”. Pos-
sible values of ‘X’ for each predicate are collected
from the training data. Some examples of possible
values forJ include the lastn child items, the firstn
left context items, all right context items, and the ter-
minal items dominated by the non-head child items.
Space constraints prevent enumeration of the head-
tagclasses and atomic feature templates, which are

8Extraction need not take the naı̈ve approach of performing|A|
different tests, and can be optimized by using knowledge about
the nature of the atomic feature templates.

9The predicate headtagclass is a supertype of the headtag.
Given our compound features, these are not strictly neces-
sary, but they accelerate training. An example is “proper noun,”
which contains the POS tags given to singular and plural proper
nouns.
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Figure 1 F1 score of our parser on the development
set of the Penn Treebank, using only≤ 15 word sen-
tences. The dashed line indicates the percent ofNP

example weight lost due to sampling. The bottom
x-axis shows the number of non-zero parameters in
each parser, summed over all label classifiers.
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instead provided at the URL given in the abstract.
These templates gave 1.1 million different atomic
features. We experimented with smaller feature sets,
but found that accuracy was lower. Charniak and
Johnson (2005) use linguistically more sophisticated
features, and Bod (2003) and Kudo et al. (2005) use
sub-tree features, all of which we plan to try in fu-
ture work.

We evaluated our parser using the standard PAR-
SEVAL measures (Black et al., 1991): labelled
precision, labelled recall, and labelled F-measure
(Prec., Rec., and F1, respectively), which are based
on the number of non-terminal items in the parser’s
output that match those in the gold-standard parse.
The solid curve Figure 1 shows the accuracy of
the parser over the development set as training pro-
gressed. The parser exceeded 89% F-measure af-
ter 2.5 days of training. The peak F-measure was
90.55%, achieved at 5.4 days using 6.3K active
parameters. We omit details given by Turian and
Melamed (2006) in favor of a longer discussion in
§4.2.

4.1 Test Set Results

To situate our results in the literature, we compare
our results to those reported by Taskar et al. (2004)
and Turian and Melamed (2005) for their discrimi-
native parsers, which were also trained and tested on
≤ 15 word sentences. We also compare our parser
to a representative non-discriminative parser (Bikel,

Table 1 PARSEVAL results of parsers on the test
set, using only≤ 15 word sentences.

F1 % Rec. % Prec. %
Turian and Melamed (2005) 87.13 86.47 87.80
Bikel (2004) 88.30 87.85 88.75
Taskar et al. (2004) 89.12 89.10 89.14
our parser 89.40 89.26 89.55

Table 2 Profile of anNP training iteration, given
in seconds, using an AMD Opteron 242 (64-bit,
1.6Ghz). Steps refer to Listing 1.

Step Description mean stddev %
1.5 Sample 1.5s 0.07s 0.7%
1.6 Extraction 38.2s 0.13s 18.6%
1.7 Build tree 127.6s 27.60s 62.3%
1.8 Percolation 31.4s 4.91s 15.3%

1.9–11 Leaf updates 6.2s 1.75s 3.0%
1.5–11 Total 204.9s 32.6s 100.0%

2004),10 the only one that we were able to train and
test under exactly the same experimental conditions
(including the use of POS tags from Ratnaparkhi
(1996)). Table 1 shows the PARSEVAL results of
these four parsers on the test set.

4.2 Efficiency

40% of non-terminals in the Penn Treebank are
NPs. Consequently, the bottleneck in training is
induction of theNP classifier. It was trained on
1.65 million examples. Each example had an aver-
age of 440 non-zero atomic features (stddev 123),
so the direct representation of each example re-
quires a minimum 440· sizeof(int) = 1760 bytes,
and the entire atomic feature matrix would re-
quire 1760 bytes· 1.65 million = 2.8 GB. Con-
versely, an indirectly represent inference requires
no more 32 bytes: two floats (the cached confi-
denceh(i) and the bias termb(i)), a pointer to a
tree cut (i), and a bool (they-value y(i)). Indi-
rectly storing the entire example set requires only
32 bytes· 1.65 million = 53 MB plus the treebank
and tree cuts, a total of 400 MB in our implementa-
tion.

We used a sample size of|S| = 100,000 examples
to build each decision tree, 16.5 times fewer than
the entire example set. The dashed curve in Figure 1

10Bikel (2004) is a “clean room” reimplementation of the
Collins (1999) model with comparable accuracy.
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shows the percent ofNP example weight lost due
to sampling. As training progresses, fewer examples
are informative to the model. Even though we ignore
94% of examples during feature selection, sampling
loses less than 1% of the example weight after a day
of training.

The NP classifier used in our final parser was
an ensemble containing 2316 trees, which took
five days to build. Overall, there were 96871 de-
cision tree leaves, only 2339 of which were non-
zero. There were an average of 40.4 (7.4 std-
dev) decision tree splits between the root of a
tree and a non-zero leaf, and nearly all non-
zero leaves were conjunctions of atomic fea-
ture negations(e.g. ¬(some child item is a verb)∧
¬(some child item is a preposition)). The non-zero
leaf confidences were quite small in magnitude
(0.107 mean, 0.069 stddev) but the training exam-
ple margins over the entire ensemble were nonethe-
less quite high: 11.7 mean (2.92 stddev) for correct
inferences, 30.6 mean (11.2 stddev) for incorrect in-
ferences.

Table 2 profiles anNP training iteration, in which
one decision tree is created and added to the
NP ensemble. Feature selection in our algorithm
(Steps 1.5–1.7) takes 1.5+38.2+127.6 = 167.3s, far
faster than in näıve approaches. If we didn’t do sam-
pling but had 2.8GB to spare, we could eliminate the
extraction step (Step 1.6) and instead cache the en-
tire atomic feature matrix before the loop. However,
tree building (Step 1.7) scales linearly in the number
of examples, and would take 16.5·127.6s= 2105.4s
using the entire example set. If we didn’t do sam-
pling and couldn’t cache the atomic feature matrix,
tree building would also require repeatedly perform-
ing extraction. The number of individual feature ex-
tractions needed to build a single decision tree is the
sum over the internal nodes of the number of exam-
ples that percolate down to that node. There are an
average of 40.8 (7.8 stddev) internal nodes in each
tree and most of the examples fall in nearly all of
them. This property is caused by the lopsided trees
induced under̀1 regularization. A conservative es-
timate is that each decision tree requires 25 extrac-
tions times the number of examples. So extraction
would add at least 25· 16.5 · 38.2s = 15757.5s on
top of 2105.40s, and hence building each decision
tree would take at least (15757.5+2105.40)/167.3 ≈

100 timesas long as it does currently.
Our decision tree ensembles contain over two or-

ders of magnitude more compound features than
those in Turian and Melamed (2005). Our overall
training time was roughly equivalent to theirs. This
ratio corroborates the above estimate.

5 Discussion

TheNP classifier was trained only on the 1.65 mil-
lion NP examples in the 9753 training sentences with
≤ 15 words (168.8 examples/sentence). The number
of examples generated is quadratic in the sentence
length, so there are 41.7 millionNP examples in all
39832 training sentences of the whole Penn Tree-
bank (1050 examples/sentence), 25 times as many
as we are currently using.

The time complexity of each step in the train-
ing loop (Steps 1.5–11) is linear over the number
of examples used by that step. When we scale up
to the full treebank, feature selection will not re-
quire a sample 25 times larger, so it will no longer
be the bottleneck in training. Instead, each itera-
tion will be dominated by choosing leaf confidences
and then updating the cached example confidences,
which would require 25· (31.4s+ 6.2s)= 940s per
iteration. These steps are crucial to the current train-
ing algorithm, because it is important to have exam-
ple confidences that are current with respect to the
model. Otherwise, we cannot determine the exam-
ples most poorly classified by the current model, and
will have no basis for choosing an informative sam-
ple.

We might try to save training time by building
manydecision trees over a single sample and then
updating the confidences of the entire example set
using all the new trees. But, if this confidence up-
date is done using feature tests, then we have merely
deferred the cost of the confidence update over the
entire example set. The amount of training done on
a particular sample is proportional to the time sub-
sequently spent updating confidences over the entire
example set. To spend less time doing confidence
updates, we must use a training regime that issub-
linear with respect to the training time. For exam-
ple, Riezler (2004) reports that the`1 regularization
term drives many of the model’s parameters to zero
during conjugate gradient optimization, which are
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then pruned before subsequent optimization steps to
avoid numerical instability. Instead of building de-
cision tree(s) at each iteration, we could performn-
best feature selection followed by parallel optimiza-
tion of the objective over the sample.

The main limitation of our work so far is that
we can do training reasonably quickly only on short
sentences, because a sentence withn words gen-
eratesO(n2) training inferences in total. Although
generating training examples in advance without a
working parser (Sagae & Lavie, 2005) is much faster
than using inference (Collins & Roark, 2004; Hen-
derson, 2004; Taskar et al., 2004), our training time
can probably be decreased further by choosing a
parsing strategy with a lower branching factor. Like
our work, Ratnaparkhi (1999) and Sagae and Lavie
(2005) generate examples off-line, but their parsing
strategies are essentially shift-reduce so each sen-
tence generates onlyO(n) training examples.

6 Conclusion

Our work has made advances in both accuracy and
training speed of discriminative parsing. As far as
we know, we present the first discriminative parser
that surpasses a generative baseline on constituent
parsing without using a generative component, and
it does so with minimal linguistic cleverness.

The main bottleneck in our setting was memory.
We could store the examples in memory only using
an indirect representation. The most costly opera-
tion during training was accessing the features of a
particular example from this indirect representation.
We showed how to train a parser effectively under
these conditions. In particular, we used principled
sampling to estimate loss gradients and reduce the
number of feature extractions. This approximation
increased the speed of feature selection 100-fold.

We are exploring methods for scaling training
up to larger example sets. We are also investigat-
ing the relationship between sample size, training
time, classifier complexity, and accuracy. In addi-
tion, we shall make some standard improvements
to our parser. Our parser should infer its own POS
tags. A shift-reduce parsing strategy will generate
fewer examples, and might lead to shorter training
time. Lastly, we plan to give the model linguistically
more sophisticated features. We also hope to apply

the model to other structured learning tasks, such as
syntax-driven SMT.
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Abstract

We present a classification-based word
prediction model based on IGTREE, a
decision-tree induction algorithm with fa-
vorable scaling abilities and a functional
equivalence ton-gram models with back-
off smoothing. Through a first series of
experiments, in which we train on Reuters
newswire text and test either on the same
type of data or on general or fictional text,
we demonstrate that the system exhibits
log-linear increases in prediction accuracy
with increasing numbers of training ex-
amples. Trained on 30 million words
of newswire text, prediction accuracies
range between 12.6% on fictional text and
42.2% on newswire text. In a second se-
ries of experiments we compare all-words
prediction with confusable prediction, i.e.,
the same task, but specialized to predict-
ing among limited sets of words. Con-
fusable prediction yields high accuracies
on nine example confusable sets in all
genres of text. The confusable approach
outperforms the all-words-prediction ap-
proach, but with more data the difference
decreases.

1 Introduction

Word prediction is an intriguing language engineer-
ing semi-product. Arguably it is the “archetypical
prediction problem in natural language processing”

(Even-Zohar and Roth, 2000). It is usually not an
engineering end in itself to predict the next word in a
sequence, or fill in a blanked-out word in a sequence.
Yet, it could be an asset in higher-level proofing or
authoring tools, e.g. to be able to automatically dis-
cern among confusables and thereby to detect con-
fusable errors (Golding and Roth, 1999; Even-Zohar
and Roth, 2000; Banko and Brill, 2001; Huang and
Powers, 2001). It could alleviate problems with low-
frequency and unknown words in natural language
processing and information retrieval, by replacing
them with likely and higher-frequency alternatives
that carry similar information. And also, since the
task of word prediction is a direct interpretation of
language modeling, a word prediction system could
provide useful information for to be used in speech
recognition systems.

A unique aspect of the word prediction task, as
compared to most other tasks in natural language
processing, is that real-world examples abound in
large amounts. Any digitized text can be used as
training material for a word prediction system capa-
ble of learning from examples, and nowadays gigas-
cale and terascale document collections are available
for research purposes.

A specific type of word prediction is confus-
able prediction, i.e., learn to predict among lim-
ited sets of confusable words such asto/two/too and
there/their/they’re (Golding and Roth, 1999; Banko
and Brill, 2001). Having trained a confusable pre-
dictor on occurrences of words within a confusable
set, it can be applied to any new occurrence of a
word from the set; if its prediction based on the con-
text deviates from the word actually present, then
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this word might be a confusable error, and the classi-
fier’s prediction might be its correction. Confusable
prediction and correction is a strong asset in proof-
ing tools.

In this paper we generalize the word prediction
task to predictinganyword in context. This is basi-
cally the task of a generic language model. An ex-
plicit choice for the particular study on “all-words”
prediction is to encode context only by words,
and not by any higher-level linguistic non-terminals
which have been investigated in related work on
word prediction (Wu et al., 1999; Even-Zohar and
Roth, 2000). This choice leaves open the question
how the same tasks can be learned from examples
when non-terminal symbols are taken into account
as well.

The choice for our algorithm, a decision-tree ap-
proximation ofk-nearest-neigbor (k-NN) based or
memory-based learning, is motivated by the fact
that, as we describe later in this paper, this particular
algorithm can scale up to predicting tens of thou-
sands of words, while simultaneously being able to
scale up to tens of millions of examples as training
material, predicting words at useful rates of hun-
dreds to thousands of words per second. Another
motivation for our choice is that our decision-tree
approximation ofk-nearest neighbor classification is
functionally equivalent to back-off smoothing (Za-
vrel and Daelemans, 1997); not only does it share
its performance capacities withn-gram models with
back-off smoothing, it also shares its scaling abili-
ties with these models, while being able to handle
large values ofn.

The article is structured as follows. In Section 2
we describe what data we selected for our experi-
ments, and we provide an overview of the exper-
imental methodology used throughout the experi-
ments, including a description of the IGTREE algo-
rithm central to our study. In Section 3 the results of
the word prediction experiments are presented, and
the subsequent Section 4 contains the experimen-
tal results of the experiments on confusables. We
briefly relate our work to earlier work that inspired
the current study in Section 5. The results are dis-
cussed, and conclusions are drawn in Section 6.

2 Data preparation and experimental
setup

First, we identify the textual corpora used. We then
describe the general experimental setup of learn-
ing curve experiments, and the IGTREE decision-
tree induction algorithm used throughout all experi-
ments.

2.1 Data

To generate our word prediction examples, we used
the “Reuters Corpus Volume 1 (English Language,
1996-08-20 to 1997-08-19)”1. We tokenized this
corpus with a rule-based tokenizer, and used all
130,396,703 word and punctuation tokens for exper-
imentation. In the remainder of the article we make
no difference between words and punctuation mark-
ers; both are regarded as tokens. We separated the
final 100,000 tokens as a held-out test set, hence-
forth referred to asREUTERS, and kept the rest as
training set, henceforthTRAIN-REUTERS.

Additionally, we selected two test sets taken
from different corpora. First, we used the Project
Gutenberg2 version of the novelAlice’s Adventures
in Wonderlandby Lewis Carroll (Carroll, 1865),
henceforthALICE. As the third test set we selected
all tokens of the Brown corpus part of the Penn Tree-
bank (Marcus et al., 1993), a selected portion of
the original one-million word Brown corpus (Kučera
and Francis, 1967), a collection of samples of Amer-
ican English in many different genres, from sources
printed in 1961; we refer to this test set asBROWN.
In sum, we have three test sets, covering texts from
the same genre and source as the training data, a
fictional novel, and a mix of genres wider than the
training set.

Table 1 summarizes the key training and test set
statistics. As the table shows, the cross-domain cov-
erages for unigrams and bigrams are rather low; not
only are these numbers the best-case performance
ceilings, they also imply that a lot of contextual
information used by the machine learning method
used in this paper will be partly unknown to the
learner, especially in texts from other domains than
the training set.

1For availability of the Reuters corpus, see
http://about.reuters.com/researchandstandards/corpus/.

2Project Gutenberg:http://www.gutenberg.net.
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Data set Genre # Tokens Coverage (%)
TRAIN-REUTERS news 30 million unigram bigram
REUTERS news 100,000 91.0 83.6
ALICE fiction 33,361 85.2 70.1
BROWN mixed 453,446 75.9 72.3

Table 1: Training and test set sources, genres, sizes
in terms of numbers of tokens, and unigram and bi-
gram coverage (%) of the training set on the test sets.

2.2 Experimental setup

All experiments described in this article take the
form of learning curve experiments (Banko and
Brill, 2001), in which a sequence of training sets
is generated with increasing size, where each size
training set is used to train a model for word predic-
tion, which is subsequently tested on a held-out test
set – which is fixed throughout the whole learning
curve experiment. Training set sizes are exponen-
tially grown, as earlier studies have shown that at
a linear scale, performance effects tend to decrease
in size, but that when measured with exponentially
growing training sets, near-constant (i.e. log-linear)
improvements are observed (Banko and Brill, 2001).

We create incrementally-sized training sets for the
word prediction task on the basis of theTRAIN-
REUTERSset. Each training subset is created back-
ward from the point at which the final 100,000-word
REUTERSset starts. The increments are exponential
with base number 10, and for every power of 10 we
cut off training sets atn times that power, wheren =
1, 2, 3, . . . , 8, 9 (for example,10, 20, . . . , 80, 90).

The actual examples to learn from are created by
windowingover all sequences of tokens. We encode
examples by taking a left context window spanning
seven tokens, and a right context also spanning seven
tokens. Thus, the task is represented by a growing
number of examples, each characterized by 14 po-
sitional features carrying tokens as values, and one
class label representing the word to be predicted.
The choice for 14 is intended to cover at least the
superficially most important positional features. We
assume that a word more distant than seven positions
left or right of a focus word will almost never be
more informative for the task than any of the words
within this scope.

2.3 IGTree

IGTree (Daelemans et al., 1997) is an algorithm
for the top-down induction of decision trees. It
compresses a database of labeled examples into
a lossless-compression decision-tree structure that
preserves the labeling information of all examples,
and technically should be named atrie according
to (Knuth, 1973). A labeled example is a feature-
value vector, where features in our study represent
a sequence of tokens representing context, associ-
ated with a symbolic class label representing the
word to be predicted. An IGTREE is composed of
nodes that each represent a partition of the original
example database, and are labeled by the most fre-
quent class of that partition. The root node of the
trie thus represents the entire example database and
carries the most frequent value as class label, while
end nodes (leafs) represent ahomogeneouspartition
of the database in which all examples have the same
class label. A node is either a leaf, or is a non-ending
node that branches out to nodes at a deeper level of
the trie. Each branch represents a test on a feature
value; branches fanning out of one node test on val-
ues of the same feature.

To attain high compression levels, IGTREE

adopts the same heuristic that most other decision-
tree induction algorithms adopt, such asC4.5 (Quin-
lan, 1993), which is to always branch out testing on
the most informative, or most class-discriminative
features first. LikeC4.5, IGTREE uses information
gain (IG) to estimate the most informative features.
The IG of featurei is measured by computing the
difference in uncertainty (i.e. entropy) between the
situations without and with knowledge of the value
of that feature with respect to predicting the class la-
bel: IGi = H(C)−∑

v∈Vi
P (v)×H(C|v), where

C is the set of class labels,Vi is the set of values
for featurei, andH(C) = −∑

c∈C
P (c) log2 P (c)

is the entropy of the class labels. In contrast with
C4.5, IGTREE computes the IG of all features once
on the full database of training examples, makes a
feature ordering once on these computed IG values,
and uses this ordering throughout the whole trie.

Another difference withC4.5 is that IGTREE

does not prune its produced trie, so that it performs
a lossless compression of the labeling information
of the original example database. As long as the
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database does not contain fully ambiguous examples
(with the same features, but different class labels),
the trie produced by IGTREE is able to reproduce
the classifications of all examples in the original ex-
ample database perfectly.

Due to the fact that IGTREE computes the IG
of all features once, it is functionally equivalent to
IB1-IG (Daelemans et al., 1999), ak-nearest neigh-
bor classifier for symbolic features, withk = 1
and using a particular feature weighting in the sim-
ilarity function in which the weight of each fea-
ture is larger than the sum of all weights of features
with a lower weight (e.g. as in the exponential se-
quence1, 2, 4, 8, . . . where2 > 1, 4 > (1 + 2),
8 > (1 + 2 + 4), etc.). Both algorithms will base
their classification on the example that matches on
most features, ordered by their IG, and guess a ma-
jority class of the set of examples represented at the
level of mismatching. IGTREE, therefore, can be
seen as an approximation ofIB1-IG with k = 1 that
has favorable asymptotic complexities as compared
to IB1-IG.

IGTREE’s computational bottleneck is the trie
construction process, which has an asymptotic com-
plexity ofO(n lg(v) f) of CPU, wheren is the num-
ber of training examples,v is the average branching
factor of IGTREE (how many branches fan out of
a node, on average), andf is the number of fea-
tures. Storing the trie, on the other hand, costs
O(n) in memory, which is less than theO(n f) of
IB1-IG. Classification in IGTREE takes an efficient
O(f lg(v)) of CPU, versus the cumbersome worst-
caseO(n f) of IB1-IG, that is, in the typical case
thatn is much higher thanf or v.

Interestingly, IGTREE is functionally equiva-
lent to back-off smoothing (Zavrel and Daelemans,
1997), with the IG of the features determining the
order in which to back off, which in the case of word
prediction tends to be from the outer context to the
inner context of the immediately neighboring words.
Like with probabilisticn-gram based models with
a back-off smoothing scheme, IGTREE will prefer
matches that are as exact as possible (e.g. match-
ing on all 14 features), but will back-off by dis-
regarding lesser important features first, down to a
simple bigram model drawing on the most impor-
tant feature, the immediately preceding left word.
In sum, IGTREE shares its scaling abilities withn-
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Figure 1: Learning curves of word prediction accu-
racies of IGTREE trained onTRAIN-REUTERS, and
tested onREUTERS, ALICE, andBROWN.

gram models, and its implementation allows it to
handle large values ofn.

3 All-words prediction

3.1 Learning curve experiments

The word prediction accuracy learning curves com-
puted on the three test sets, and trained on increasing
portions ofTRAIN-REUTERS, are displayed in Fig-
ure 1. The best accuracy observed is 42.2% with
30 million training examples, onREUTERS. Appar-
ently, training and testing on the same type of data
yields markedly higher prediction accuracies than
testing on a different-type corpus. Accuracies on
BROWN are slightly higher than onALICE, but the
difference is small; at 30 million training examples,
the accuracy onALICE is 12.6%, and onBROWN

15.8%.

A second observation is that all three learning
curves are progressing upward with more training
examples, and roughly at a constant log-linear rate.
When estimating the rates after about 50,000 exam-
ples (before which the curves appear to be more
volatile), with every tenfold increase of the num-
ber of training examples the prediction accuracy on
REUTERS increases by a constant rate of about 8%,
while the increases onALICE andBROWN are both
about 2% at every tenfold.
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3.2 Memory requirements and classification
speed

The numbers of nodes exhibit an interesting sublin-
ear relation with respect to the number of training
examples, which is in line with the asymptotic com-
plexity orderO(n), wheren is the number of train-
ing instances. An increasingly sublinear amount
of nodes is necessary; while at 10,000 training in-
stances the number of nodes is 7,759 (0.77 nodes
per instance), at 1 million instances the number of
nodes is 652,252 (0.65 nodes per instance), and at 30
million instances the number of nodes is 15,956,878
(0.53 nodes per instance).

A factor in classification speed is the average
amount of branching. Conceivably, the word predic-
tion task can lead to a large branching factor, espe-
cially in the higher levels of the tree. However, not
every word can be the neighbor of every other word
in finite amounts of text. To estimate the average
branching factor of a tree we compute thef th root
of the total number of nodes (f being the number
of features, i.e. 14). The largest decision tree cur-
rently constructed is the one on the basis of a train-
ing set of 30 million examples, having 15,956,878
nodes. This tree has an average branching factor of
14
√

15, 956, 878 ≈ 3.27; all other trees have smaller
branching factors. Together with the fact that we
have but 14 features, and the asymptotic complex-
ity order of classification isO(f lg(v)), wherev is
the average branching factor, classification can be
expected to be fast. Indeed, depending on the ma-
chine’s CPU on which the experiment is run, we
observe quite favorable classification speeds. Fig-
ure 2 displays the various speeds (in terms of the
number of test tokens predicted per second) attained
on the three test sets3. The best prediction accu-
racies are still attained at classification speeds of
over a hundred predicted tokens per second. Two
other relevant observations are that first, the classi-
fication speed hardly differs between the three test
sets (BROWN is classified only slightly slower than
the other two test sets), indicating that the classifier
is spending a roughly comparable amount of search-
ing through the decision trees regardless of genre
differences. Second, the decrease in speed settles

3Measurements were made on a GNU/Linux x86-based ma-
chine with 2.0 Ghz AMD Opteron processors.
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Figure 2: Word prediction speed, in terms of the
number of classified test examples per second, mea-
sured on the three test sets, with increasing training
examples. Both axes have a logarithmic scale.

on a low log-linear rate after about one million ex-
amples. Thus, while trees grow linearly, and accu-
racy increases log-linearly, the speed of classifica-
tion slowly diminishes at decreasing rates.

4 Confusables

Word prediction from context can be considered a
very hard task, due to the many choices open to the
predictor at many points in the sequence. Predicting
content words, for example, is often only possible
through subtle contextual clues or by having the ap-
propriate domain or world knowledge, or intimate
knowledge of the writer’s social context and inten-
tions. In contrast, certain function words tend to be
predictable due to the positions they take in syntac-
tic phrase structure; their high frequency tends to en-
sure that plenty of examples of them in context are
available.

Due to the important role of function words in
syntactic structure, it can be quite disruptive for a
parser and for human readers alike to encounter a
mistyped function word that in its intended form
is another function word. In fact, confusable er-
rors between frequent forms occur relatively fre-
quently. Examples of these so-called confusables
in English arethere versustheir and the contrac-
tion they’re; or the duothan and then. Confus-
ables can arise from having the same pronunciation
(homophones), or having very similar pronunciation
(countryor county) or spelling (dessert, desert), hav-
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ing very close lexical semantics (as betweenamong
andbetween), or being inflections or case variants of
the same stem (I versusme, or walk versuswalks),
and may stem from a lack of concentration or expe-
rience by the writer.

Distinguishing between confusables is essentially
the same task as word prediction, except that the
number of alternative outcomes is small, e.g. two
or three, rather than thousands or more. The typical
application setting is also more specific: given that a
writer has produced a text (e.g. a sentence in a word
processor), it is possible to check the correctness of
each occurrence of a word known to be part of a pair
or triple of confusables.

We performed a series of experiments on dis-
ambiguating nine frequent confusables in English
adopted from (Golding and Roth, 1999). We em-
ployed an experimental setting in which we use the
same experimental data as before, in which only ex-
amples of the confusable words are drawn – note
that we ignore possible confusable errors in both
training and test set. This data set generation proce-
dure reduces the amount of examples considerably.
Despite having over 130 million words inTRAIN-
REUTERS, frequent words such asthere and than
occur just over 100,000 times. To be able to run
learning curves with more than this relatively small
amount of examples, we expanded our training ma-
terial with the New York Times of 1994 to 2002
(henceforthTRAIN-NYT), part of the English Gi-
gaword collection published by the Linguistic Data
Consortium, offering 1,096,950,281 tokens.

As a first illustration of the experimental out-
comes, we focus on the three-way confusablethere
– their – they’re for which we trained one classi-
fier, which we henceforth refer to as a confusable
expert. The learning curve results of this confus-
able expert are displayed in Figure 3 as the top three
graphs. The logarithmic x-axis displays the full
number of instances fromTRAIN-REUTERS up to
130.3 million examples, and fromTRAIN-NYT after
this point. Counter to the learning curves in the all-
words prediction experiments, and to the observa-
tion by (Banko and Brill, 2001), the learning curves
of this confusable triple in the three different data
sets flatten, and converge, remarkably, to a roughly
similar score of about 98%. The convergence only
occurs after examples fromTRAIN-NYT are added.
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Figure 3: Learning curves in terms of word predic-
tion accuracy on deciding between the confusable
pair there, their, and they’re, by IGTREE trained
on TRAIN-REUTERS, and tested onREUTERS, AL -
ICE, andBROWN. The top graphs are accuracies at-
tained by the confusable expert; the bottom graphs
are attained by the all-words predictor trained on
TRAIN-REUTERS until 130 million examples, and
on TRAIN-NYT beyond (marked by the vertical bar).

In the bottom of the same Figure 3 we have also
plotted the word prediction accuracies on the three
words there, their, and they’re attained by the all-
words predictor described in the previous section on
the three test sets. The accuracies, or rather recall
figures (i.e. the percentage of occurrences of the
three words in the test sets which are correctly pre-
dicted as such), are considerably lower than those on
the confusable disambiguation task.

Table 2 presents the experimental results obtained
on nine confusable sets when training and testing on
Reuters material. The third column lists the accu-
racy (or recall) scores of the all-words word predic-
tion system at the maximal training set size of 30
million labeled examples. The fourth columns lists
the accuracies attained by the confusable expert for
the particular confusable pair or triple, measured at
30 million training examples, from which each par-
ticular confusable expert’s examples are extracted.
The amount of examples varies for the selected con-
fusable sets, as can be seen in the second column.

Scores attained by the all-words predictor on
these words vary from below 10% for relatively low-
frequent words to around 60% for the more frequent
confusables; the latter numbers are higher than the
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Accuracy (%) by
Number of all-words confus.

Confusable set examples prediction expert
cite - site- sight 2,286 0.0 100.0
accept- except 3,833 46.2 76.9
affect- effect 4,640 7.7 87.9
fewer- less 6,503 4.7 95.2
among- between 27,025 18.9 96.7
I - me 28,835 55.9 98.0
than- then 31,478 59.4 97.2
there- their - they’re 58,081 23.1 96.8
to - too - two 553,453 60.6 93.4

Table 2: Disambiguation scores on nine confusable
set, attained by the all-words prediction classifier
trained on 30 million examples ofTRAIN-REUTERS,
and by confusable experts on the same training set.
The second column displays the number of exam-
ples of each confusable set in the 30-million word
training set; the list is ordered on this column.

overall accuracy of this system onREUTERS. Nev-
ertheless they are considerably lower than the scores
attained by the confusable disambiguation classi-
fiers, while being trained on many more examples
(i.e., all 30 million available). Most of the confus-
able disambiguation classifiers attain accuracies of
well above 90%.

When the learning curves are continued beyond
TRAIN-REUTERS into TRAIN-NYT, about a thou-
sand times as many training examples can be gath-
ered as training data for the confusable experts. Ta-
ble 3 displays the nine confusable expert’s scores af-
ter being trained on examples extracted from a total
of one billion words of text, measured on all three
test sets. Apart from a few outliers, most scores are
above 90%, and more importantly, the scores onAL -
ICE andBROWN do not seriously lag behind those on
REUTERS; some are even better.

5 Related work

As remarked in the cases reported in the literature di-
rectly related to the current article, word prediction
is a core task to natural language processing, and one
of the few that takes no annotation layer to provide
data for supervised machine learning and probabilis-
tic modeling (Golding and Roth, 1999; Even-Zohar

Accuracy on test set (%)
Confusable set REUTERS ALICE BROWN

cite - site- sight 100.0 100.0 69.0
accept- except 84.6 100.0 97.0
affect- effect 92.3 100.0 89.5
fewer- less 90.5 100.0 97.2
among- between 94.4 77.8 74.4
I - me 99.0 98.3 98.3
than- then 97.2 92.9 95.8
there- their - they’re 98.1 97.8 97.3
to - too - two 94.3 93.4 92.9

Table 3: Disambiguation scores on nine confusable
set, attained by confusable experts trained on ex-
amples extracted from 1 billion words of text from
TRAIN-REUTERSplusTRAIN-NYT, on the three test
sets.

and Roth, 2000; Banko and Brill, 2001). Our dis-
crete, classificatio-nased approach has the same goal
as probabilistic methods for language modeling for
automatic speech recognition (Jelinek, 1998), and is
also functionally equivalent ton-gram models with
back-off smoothing (Zavrel and Daelemans, 1997).

The papers by Golding and Roth, and Banko and
Brill on confusable correction focus on the more
common type ofthan/then confusion that occurs a
lot in the process of text production. Both pairs of
authors use the confusable correction task to illus-
trate scaling issues, as we have. Golding and Roth
illustrate that multiplicative weight-updating algo-
rithms such as Winnow can deal with immense in-
put feature spaces, where for each single classifica-
tion only a small number of features is actually rel-
evant (Golding and Roth, 1999). With IGTREE we
have an arguably competitive efficient, but one-shot
learning algorithm; IGTREE does not need an itera-
tive procedure to set weights, and can also handle a
large feature space. Instead of viewing all positional
features as containers of thousands of atomic word
features, it treats the positional features as the basic
tests, branching on the word values in the tree.

More generally, as a precursor to the above-
mentioned work, confusable disambiguation has
been investigated in a string of papers discussing the
application of various machine learning algorithms
to the task (Yarowsky, 1994; Golding, 1995; Mangu
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and Brill, 1997; Huang and Powers, 2001).

6 Discussion

In this article we explored the scaling abilities of
IGTREE, a simple decision-tree algorithm with fa-
vorable asymptotic complexities with respect to
multi-label classification tasks. IGTREE is applied
to word prediction, a task for which virtually un-
limited amounts of training examples are available,
with very large amounts of predictable class labels;
and confusable disambiguation, a specialization of
word prediction focusing on small sets of confusable
words. Best results are 42.2% correctly predicted to-
kens (words and punctuation markers) when training
and testing on data from theReutersnewswire cor-
pus; and confusable disambiguation accuracies of
well above 90%. Memory requirements and speeds
were shown to be realistic.

Analysing the results of the learning curve experi-
ments with increasing amounts of training examples,
we observe that better word prediction accuracy can
be attained simply by adding more training exam-
ples, and that the progress in accuracy proceeds at a
log-linear rate. The best rate we observed was an 8%
increase in performance every tenfold multiplication
of the number of training examples, when training
and testing on the same data.

Despite the fact that all-words prediction lags be-
hind in disambiguating confusibles, in comparison
with classifiers that are focused on disambiguating
single sets of confusibles, we see that this lag is only
relative to the amount of training material available.
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Abstract

We consider the problem of identifying
among many candidates a single best so-
lution which jointly maximizes several
domain-specific target functions. Assum-
ing that the candidate solutions can be
generated incrementally, we model the er-
ror in prediction due to the incomplete-
ness of partial solutions as a normally
distributed random variable. Using this
model, we derive a probabilistic search al-
gorithm that aims at finding the best solu-
tion without the necessity to complete and
rank all candidate solutions. We do not as-
sume a Viterbi-type decoding, allowing a
wider range of target functions.

We evaluate the proposed algorithm on the
problem of best parse identification, com-
bining simple heuristic with more com-
plex machine-learning based target func-
tions. We show that the search algorithm
is capable of identifying candidates with a
very high score without completing a sig-
nificant proportion of the candidate solu-
tions.

1 Background

Most of the current NLP systems assume a pipeline
architecture, where each level of analysis is imple-
mented as a module that produces a single, locally
optimal solution that is passed to the next module in
the pipeline. There has recently been an increased

interest in the application of joint inference, which
identifies a solution that is globally optimal through-
out the system and avoids some of the problems of
the pipeline architecture, such as error propagation.

We assume, at least conceptually, a division of
the joint inference problem into two subproblems:
that of finding a set of solutions that are structurally
compatible with each of the modules, and that of se-
lecting the globally best of these structurally correct
solutions. Many of the modules define a target func-
tion that scores the solutions by some domain cri-
teria based on local knowledge. The globally best
solution maximizes some combination of the target
functions, for example a sum.

For illustration, consider a system comprising of
two modules: a POS tagger and a parser. The POS
tagger generates a set of tag sequences that are com-
patible with the sentence text. Further, it may im-
plement a target function, based, for instance, on
tag n-grams, that scores these sequences according
to POS-centric criteria. The parser produces a set
of candidate parses and typically also implements a
target function that scores the parses based on their
structural and lexical features. Each parse that is
compatible with both the POS tagger and the parser
is structurally correct. The best solution may be de-
fined, for instance, as such a solution that maximizes
the sum of the scores of the POS- and parser-centric
target functions.

In practice, the set of structurally correct solu-
tions may be computed, for example, through the
intersection or composition of finite-state automata
as in the formalism of finite-state intersection gram-
mars (Koskenniemi, 1990). Finding the best so-
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lution may be implemented as a best-path search
through Viterbi decoding, given a target function
that satisfies the Viterbi condition.

Most of the recent approaches to NLP tasks like
parse re-ranking make, however, use of feature-
based representations and machine-learning induced
target functions, which do not allow efficient search
strategies that are guaranteed to find the global op-
timum. In general case, all structurally correct so-
lutions have to be generated and scored by the tar-
get functions in order to guarantee that the globally
optimal solution is found. Further, each of the vari-
ous problems in natural language processing is typ-
ically approached with a different class of models,
ranging from n-gram statistics to complex regressors
and classifiers such as the support vector machines.
These different approaches need to be combined in
order to find the globally optimal solution. There-
fore, in our study we aim to develop a search strat-
egy that allows to combine a wider range of target
functions.

An alternative approach is that of propagating n

best solutions through the pipeline system, where
each step re-ranks the solutions by local criteria
(Ji et al., 2005). Incorporating a wide range of
features representing information from all levels of
analysis into a single master classifier is other com-
monly used method (Kambhatla, 2004; Zelenko et
al., 2004).

In this paper, we assume the possibility of gen-
erating the structurally correct solutions incremen-
tally, through a sequence of partially completed so-
lutions. We then derive a probabilistic search algo-
rithm that attempts to identify the globally best solu-
tion, without fully completing all structurally correct
solutions. Further, we do not impose strong restric-
tions, such as the Viterbi assumption, on the target
functions.

To a certain extent, this approach is related to the
problem of cost-sensitive learning, where obtaining
a feature value is associated with a cost and the
objective is to minimize the cost of training data
acquisition and the cost of instance classification
(Melville et al., 2004). However, the crucial dif-
ference is that we do not assume the possibility to
influence when advancing a partial solution, which
feature will be obtained next.

2 Method

Let us consider a system in which there are N so-
lutions s1, . . . , sN ∈ S to a problem and M tar-
get functions f1, . . . , fM , where fk : S → R, that
assign a score to each of the solutions. The score
fk(si) expresses the extent to which the solution
si satisfies the criterion implemented by the target
function fk. The overall score of a solution si

f(si) =
M
∑

k=1

fk(si) (1)

is the sum of the scores given by the individual target
functions. The objective is to identify ŝ, the best
among the N possible solutions, that maximizes the
overall score:

ŝ = arg max
si

f(si) . (2)

Suppose that the solutions are generated in-
crementally so that each solution si can be
reached through a sequence of F partial solutions
si,1, si,2, . . . , si,F , where si,F = si. Let further
u : S → (0, 1] be a measure of a degree of com-
pletion for a particular solution. For a complete so-
lution si, u(si) = 1, and for a partial solution si,n,
u(si) < 1. For instance, when assigning POS tags
to the words of a sentence, the degree of completion
could be defined as the number of words assigned
with a POS tag so far, divided by the total number of
words in the sentence.

The score of a partial solution si,n is, to a certain
extent, a prediction of the score of the correspond-
ing complete solution si. Intuitively, the accuracy of
this prediction depends on the degree of completion.
The score of a partial solution with a high degree
of completion is generally closer to the final score,
compared to a partial solution with a low degree of
completion.

Let
δk(si,n) = fk(si)− fk(si,n) (3)

be the difference between the scores of si and si,n.
That is, δk(si,n) is the error in score caused by the in-
completeness of the partial solution si,n. As the so-
lutions are generated incrementally, the exact value
of δk(si,n) is not known at the moment of generating
si,n because the solution si has not been completed
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yet. However, we can model the error based on the
knowledge of si,n. We assume that, for a given si,n,
the error δk(si,n) is a random variable distributed ac-
cording to a probability distribution with a density
function ∆k, denoted as

δk(si,n) ∼ ∆k(δ; si,n) . (4)

The partial solution si,n is a parameter to the distri-
bution and, in theory, each partial solution gives rise
to a different distribution of the same general shape.

We assume that the error δ(si,n) is distributed
around a mean value and for a ‘reasonably behav-
ing’ target function, the probability of a small error
is higher than the probability of a large error. Ideally,
the target function will not exhibit any systematic er-
ror, and the mean value would thus be zero1. For in-
stance, a positive mean error indicates a systematic
bias toward underestimating the score. The mean
error should approach 0 as the degree of completion
increases and the error of a complete solution is al-
ways 0. We have further argued that the reliability
of the prediction grows with the degree of comple-
tion. That is, the error of a partial solution with a
high degree of completion should exhibit a smaller
variance, compared to that of a largely incomplete
solution. The variance of the error for a complete
solution is always 0.

Knowing the distribution ∆k of the error δk, the
density of the distribution dk(f ; si,n) of the final
score fk(si) is obtained by shifting the density of
the error δk(si,n) by fk(si,n), that is,

fk(si) ∼ dk(f ; si,n) , (5)

where

dk(f ; si,n) = ∆k(f − fk(si,n) ; si,n) . (6)

So far, we have discussed the case of a single tar-
get function fk. Let us now consider the general
case of M target functions. Knowing the final score
density dk for the individual target functions fk, it is
now necessary to find the density of the overall score
f(si). By Equation 1, it is distributed as the sum

1We will see in our evaluation experiments that this is not
the case, and the target functions may exhibit a systematic bias
in the error δ.

µ(si,n)

d(f ; si,n)

σ2(si,n)

ε

η(si,n)f (si,n)0

Sys. bias in error δ

Figure 1: The probability density d(f ; si,n) of the
distribution of the final score f(si), given a partial
solution si,n. The density is assumed normally dis-
tributed, with mean µ(si,n) and variance σ2(si,n).
With probability 1 − ε, the final score is less than
η(si,n).

of the random variables f1(si) , . . . , fM (si). There-
fore, assuming independence, its density is the con-
volution of the densities of these variables, that is,
given si,n,

d(f ; si,n) = (d1 ∗ . . . ∗ dM )(f ; si,n) , (7)

and
f(si) ∼ d(f ; si,n) . (8)

We have assumed the independence of the target
function scores. Further, we will make the assump-
tion that d takes the form of the normal distribution,
which is convolution-closed, a property necessary
for efficient calculation by Equation 7. We thus have

d(f ; si,n) = n
(

f ; µ(si,n) , σ2(si,n)
)

, (9)

where n is the normal density function. While it
is unlikely that independence and normality hold
strictly, it is a commonly used approximation, nec-
essary for an analytical solution of (7). The notions
introduced so far are illustrated in Figure 1.

2.1 The search algorithm

We will now apply the model introduced in the pre-
vious section to derive a probabilistic search algo-
rithm.
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Let us consider two partial solutions si,n and sj,m

with the objective of deciding which one of them is
‘more promising’, that is, more likely to lead to a
complete solution with a higher score. The condi-
tion of ‘more promising’ can be defined in several
ways. For instance, once again assuming indepen-
dence, it is possible to directly compute the proba-
bility P (f(si) < f(sj)):

P (f(si) < f(sj))

= P (f(si)− f(sj) < 0)

=

∫

0

−∞
(dsi,n

∗ (−dsj,m
))(f) df ,

(10)

where dsi,n
refers to the function d(f ; si,n). Since

d is the convolution-closed normal density, Equa-
tion 10 can be directly computed using the normal
cumulative distribution. The disadvantage of this
definition is that the cumulative distribution needs
to be evaluated separately for each pair of partial
solutions. Therefore, we assume an alternate defi-
nition of ‘more promising’ in which the cumulative
distribution is evaluated only once for each partial
solution.

Let ε ∈ [0, 1] be a probability value and η(si,n)
be the score such that P (f(si) > η(si,n)) = ε. The
value of η(si,n) can easily be computed from the in-
verse cumulative distribution function correspond-
ing to the density function d(f ; si,n). The interpre-
tation of η(si,n) is that with probability of 1 − ε,
the partial solution si,n, once completed, will lead
to a score smaller than η(si,n). The constant ε is
a parameter, set to an appropriate small value. See
Figure 1 for illustration.

We will refer to η(si,n) as the maximal expected
score of si,n. Of the two partial solutions, we con-
sider as ‘more promising’ the one, whose maximal
expected score is higher. As illustrated in Figure 2,
it is possible for a partial solution si,n to be more
promising even though its score f(si,n) is lower than
that of some other partial solution sj,m.

Further, given a complete solution si and a partial
solution sj,m, a related question is whether sj,m is a
promising solution, that is, whether it is likely that
advancing it will lead to a score higher than f(si).
Using the notion of maximal expected score, we say
that a solution is promising if η(sj,m) > f(si).

With the definitions introduced so far, we are

f (si,n) f (sj,m) η(si,n)

η(sj,m)

d(f ; si,n)

d(f ; sj,m)

Figure 2: Although the score of si,n is lower than
the score of sj,m, the partial solution si,n is more
promising, since η(si,n) > η(sj,m). Note that for
the sake of simplicity, a zero systematic bias of the
error δ is assumed, that is, the densities are centered
around the partial solution scores.

now able to perform two basic operations: compare
two partial solutions, deciding which one of them is
more promising, and compare a partial solution with
some complete solution, deciding whether the par-
tial solution is still promising or can be disregarded.
These two basic operations are sufficient to devise
the following search algorithm.

• Maintain a priority queue of partial solutions,
ordered by their maximal expected score.

• In each step, remove from the queue the par-
tial solution with the highest maximal expected
score, advance it, and enqueue any resulting
partial solutions.

• Iterate while the maximal expected score of the
most promising partial solution remains higher
than the score of the best complete solution dis-
covered so far.

The parameter ε primarily affects how early the
algorithm stops, however, it influences the order in
which the solutions are considered as well. Low val-
ues of ε result in higher maximal expected scores
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and therefore partial solutions need to be advanced
to a higher degree of completion before they can be
disregarded as unpromising.

While there are no particular theoretical restric-
tions on the target functions, there is an important
practical consideration. Since the target function is
evaluated every time a partial solution si,n is ad-
vanced into si,n+1, being able to use the informa-
tion about si,n to efficiently compute fk(si,n+1) is
necessary.

The algorithm is to a large extent related to the A?

search algorithm, which maintains a priority queue
of partial solutions, ordered according to a score
g(x) + h(x), where g(x) is the score of x and h(x)
is a heuristic overestimate2 of the final score of the
goal reached from x. Here, the maximal expected
score of a partial solution is an overestimate with
the probability of 1−ε and can be viewed as a prob-
abilistic counterpart of the A? heuristic component
h(x). Note that A? only guarantees to find the best
solution if h(x) never underestimates, which is not
the case here.

2.2 Estimation of µk(si,n) and σ2

k
(si,n)

So far, we have assumed that for each partial so-
lution si,n and each target function fk, the density
∆k(δ; si,n) is defined as a normal density specified
by the mean µk(si,n) and variance σ2

k(si,n). This
density models the error δk(si,n) that arises due to
the incompleteness of si,n. The parameters µk(si,n)
and σ2

k(si,n) are, in theory, different for each si,n and
reflect the behavior of the target function fk as well
as the degree of completion and possibly other at-
tributes of si,n. It is thus necessary to estimate these
two parameters from data.

Let us, for each target function fk, consider a
training set of observations Tk ⊂ S × R. Each
training observation tj =

(

sj,nj
, δk

(

sj,nj

))

∈ Tk

corresponds to a solution sj,nj
with a known error

δk

(

sj,nj

)

= fk(sj)− fk

(

sj,nj

)

.
Before we introduce the method to estimate the

density ∆k(δ; si,n) for a particular si,n, we discuss
data normalization. The overall score f(si,n) is de-
fined as the sum of the scores assigned by the in-
dividual target functions fk. Naturally, it is desir-

2In the usual application of A? to shortest-path search, h(x)
is a heuristic underestimate since the objective is to minimize
the score.

able that these scores are of comparable magnitudes.
Therefore, we normalize the target functions using
the z-normalization

z(x) =
x−mean(x)

stdev(x)
. (11)

Each target function fk is normalized separately,
based on the data in the training set Tk. Throughout
our experiments, the values of the target function are
always z-normalized.

Let us now consider the estimation of the mean
µk(si,n) and variance σ2

k(si,n) that define the den-
sity ∆k(δ; si,n). Naturally, it is not possible to es-
timate the distribution parameters for each solution
si,n separately. Instead, we approximate the parame-
ters based on two most salient characteristics of each
solution: the degree of completion u(si,n) and the
score fk(si,n). Thus,

µk(si,n) ≈ µk(u(si,n) , fk(si,n)) (12)

σ2
k(si,n) ≈ σ2

k(u(si,n) , fk(si,n)) . (13)

Let us assume the following notation: ui = u(si,n),
fi = fk(si,n), uj = u

(

sj,nj

)

, fj = fk

(

sj,nj

)

, and
δj = δk

(

sj,nj

)

. The estimate is obtained from Tk

using kernel smoothing (Silverman, 1986):

µk(ui, fi) =

∑

tj∈T
δjK

∑

tj∈T
K

(14)

and

σ2
k(ui, fi) =

∑

tj∈T
(δj − µk(ui, fi))

2 K
∑

tj∈T
K

, (15)

where K stands for the kernel value Kui,fi
(uj , fj).

The kernel K is the product of two Gaussians, cen-
tered at ui and fi, respectively.

Kui,fi
(uj , fj)

= n
(

uj ; ui, σ
2
u

)

· n
(

fj ; fi, σ
2
f

)

, (16)

where n
(

x; µ, σ2
)

is the normal density function.
The variances σ2

u and σ2
f control the degree of

smoothing along the u and f axes, respectively.
High variance results in stronger smoothing, com-
pared to low variance. In our evaluation, we set the
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Figure 3: Mean and variance of the error δ(si,n).
By (12) and (13), the error is approximated as a
function of the degree of completion u(si,n) and the
score fk(si,n). The degree of completion is on the
horizontal and the score on the vertical axis. The
estimates (µA, σ2

A) and (µB, σ2
B) correspond to the

RLSC regressor and average link length target func-
tions, respectively.

variance such that σu and σf equal to 10% of the dis-
tance from min(uj) to max(uj) and from min(fj)
to max(fj), respectively.

The kernel-smoothed estimates of µ and σ2 for
two of the four target functions used in the evalua-
tion experiments are illustrated in Figure 3. While
both estimates demonstrate the decrease both in
mean and variance for u approaching 0, the tar-
get functions generally exhibit a different behav-
ior. Note that the values are clearly dependent on
both the score and the degree of completion, indi-
cating that the degree of completion alone is not suf-
ficiently representative of the partial solutions. Ide-
ally, the values of both the mean and variance should
be strictly 0 for u = 1, however, due to the effect of
smoothing, they remain non-zero.

3 Evaluation

We test the proposed search algorithm on the prob-
lem of dependency parsing. We have previously de-
veloped a finite-state implementation (Ginter et al.,
2006) of the Link Grammar (LG) parser (Sleator and
Temperley, 1991) which generates the parse through
the intersection of several finite-state automata. The
resulting automaton encodes all candidate parses.
The parses are then generated from left to right, pro-
ceeding through the automaton from the initial to
the final state. A partial parse is a sequence of n

words from the beginning of the sentence, together
with string encoding of their dependencies. Advanc-
ing a partial parse corresponds to appending to it the
next word. The degree of completion is then defined
as the number of words currently generated in the
parse, divided by the total number of words in the
sentence.

To evaluate the ability of the proposed method to
combine diverse criteria in the search, we use four
target functions: a complex state-of-the-art parse re-
ranker based on a regularized least-squares (RLSC)
regressor (Tsivtsivadze et al., 2005), and three mea-
sures inspired by the simple heuristics applied by
the LG parser. The criteria are the average length of
a dependency, the average level of nesting of a de-
pendency, and the average number of dependencies
linking a word. The RLSC regressor, on the other
hand, employs complex features and word n-gram
statistics.

The dataset consists of 200 sentences ran-
domly selected from the BioInfer corpus of
dependency-parsed sentences extracted from ab-
stracts of biomedical research articles (Pyysalo et
al., 2006). For each sentence, we have randomly
selected a maximum of 100 parses. For sentences
with less than 100 parses, all parses were selected.
The average number of parses per sentence is 62.
Further, we perform 5 × 2 cross-validation, that is,
in each of five replications, we divide the data ran-
domly to two sets of 100 sentences and use one set to
estimate the probability distributions and the other
set to measure the performance of the search algo-
rithm. The RLSC regressor is trained once, using a
different set of sentences from the BioInfer corpus.
The results presented here are averaged over the 10
folds. As a comparative baseline, we use a simple
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greedy search algorithm that always advances the
partial solution with the highest score until all so-
lutions have been generated.

3.1 Results

For each sentence s with parses S {s1, . . . , sN}, let
SC ⊆ S be the subset of parses fully completed be-
fore the algorithm stops and SN = S \ SC the sub-
set of parses not fully completed. Let further TC be
the number of iterations taken before the algorithm
stops, and T be the total number of steps needed to
generate all parses in S . Thus, |S| is the size of the
search space measured in the number of parses, and
T is the size of the search space measured in the
number of steps. For a single parse si, rank(si) is
the number of parses in S with a score higher than
f(si) plus 1. Thus, the rank of all solutions with
the maximal score is 1. Finally, ord(si) corresponds
to the order in which the parses were completed by
the algorithm (disregarding the stopping criterion).
For example, if the parses were completed in the
order s3, s8, s1, then ord(s3) = 1, ord(s8) = 2,
and ord(s1) = 3. While two solutions have the
same rank if their scores are equal, no two solutions
have the same order. The best completed solution
ŝC ∈ SC is the solution with the highest rank in SC

and the lowest order among solutions with the same
rank. The best solution ŝ is the solution with rank 1
and the lowest order among solutions with rank 1. If
ŝ ∈ SC , then ŝC = ŝ and the objective of the algo-
rithm to find the best solution was fulfilled. We use
the following measures of performance: rank(ŝC),
ord(ŝ), |SC |

|S| , and TC

T
. The most important criteria

are rank(ŝC) which measures how good the best
found solution is, and TC

T
which measures the pro-

portion of steps actually taken by the algorithm of
the total number of steps needed to complete all the
candidate solutions. Further, ord(ŝ), the number
of parses completed before the global optimum was
reached regardless the stopping criterion, is indica-
tive about the ability of the search to reach the global
optimum early among the completed parses. Note
that all measures except for ord(ŝ) equal to 1 for
the baseline greedy search, since it lacks a stopping
criterion.

The average performance values for four settings
of the parameter ε are presented in Table 1. Clearly,

ε rank(ŝC) ord(ŝ) |SC |
|S|

TC

T

0.01 1.6 8.8 0.78 0.94
0.05 2.8 11.2 0.62 0.85
0.10 4.0 12.2 0.53 0.79
0.20 6.0 13.5 0.41 0.73
Base 1.0 28.7 1.00 1.00

Table 1: Average results over all sentences.

the algorithm behaves as expected with respect to
the parameter ε. While with the strictest setting
ε = 0.01, 94% of the search space is explored, with
the least strict setting of ε = 0.2, 73% is explored,
thus pruning one quarter of the search space. The
proportion of completed parses is generally consid-
erably lower than the proportion of explored search
space. This indicates that the parses are generally
advanced to a significant level of completion, but
then ruled out. The behavior of the algorithm is
thus closer to a breadth-first, rather than depth-first
search. We also notice that the average rank of the
best completed solution is very low, indicating that
although the algorithm does not necessarily identify
the best solution, it generally identifies a very good
solution. In addition, the order of the best solution is
low as well, suggesting that generally good solutions
are identified before low-score solutions. Further,
compared to the baseline, the globally optimal solu-
tion is reached earlier among the completed parses,
although this does not imply that it is reached earlier
in the number of steps. Apart from the overall aver-
ages, we also consider the performance with respect
to the number of alternative parses for each sentence
(Table 2). Here we see that even with the least strict
setting, the search finds a reasonably good solution
while being able to reduce the search space to 48%.

4 Conclusions and future work

We have considered the problem of identifying a
globally optimal solution among a set of candidate
solutions, jointly optimizing several target functions
that implement domain criteria. Assuming the solu-
tions are generated incrementally, we have derived
a probabilistic search algorithm that aims to identify
the globally optimal solution without completing all
of the candidate solutions. The algorithm is based on
a model of the error in prediction caused by the in-
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ε = 0.01 ε = 0.2 Base
|S| # rank(ŝC) ord(ŝ) |SC |

|S|
TC

T
rank(ŝC) ord(ŝ) |SC |

|S|
TC

T
ord(ŝ)

1-10 40 1.0 1.6 1.00 1.00 1.2 1.8 0.84 0.95 2.85
11-20 18 1.1 4.4 0.88 0.97 2.8 7.0 0.54 0.79 9.82
21-30 8 1.0 2.9 1.00 1.00 1.0 2.4 0.80 0.98 14.75
31-40 9 1.2 7.8 0.79 0.95 2.6 10.8 0.48 0.74 20.67
41-50 6 1.0 4.4 0.80 0.89 4.9 9.8 0.28 0.61 18.07
51-60 3 1.0 2.3 0.64 0.88 7.1 5.9 0.30 0.59 38.67
61-70 5 1.1 26.9 0.86 0.99 3.4 23.2 0.22 0.68 32.60
71-80 3 1.0 8.7 0.78 0.98 9.2 19.6 0.30 0.71 49.67
81-90 6 2.5 8.2 0.61 0.94 9.3 16.6 0.24 0.76 47.67

91-100 102 5.2 20.9 0.50 0.81 18.9 38.2 0.15 0.48 52.69

Table 2: Average results with respect to the number of alternative parses. The column # contains the number
of sentences in the dataset which have the given number of parses.

completeness of a partial solution. Using the model,
the order in which partial solutions are explored is
defined, as well as a stopping criterion for the algo-
rithm.

We have performed an evaluation using best parse
identification as the model problem. The results in-
dicate that the method is capable of combining sim-
ple heuristic criteria with a complex regressor, iden-
tifying solutions with a very low average rank.

The crucial component of the method is the model
of the error δ. Improving the accuracy of the model
may potentially further improve the performance of
the algorithm, allowing a more accurate stopping
criterion and better order in which the parses are
completed. We have assumed independence be-
tween the scores assigned by the target functions. As
a future work, a multivariate model will be consid-
ered that takes into account the mutual dependencies
of the target functions.
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Abstract

Markov logic is a highly expressive language
recently introduced to specify the connec-
tivity of a Markov network using first-order
logic. While Markov logic is capable of
constructing arbitrary first-order formulae
over the data, the complexity of these for-
mulae is often limited in practice because
of the size and connectivity of the result-
ing network. In this paper, we present ap-
proximate inference and estimation meth-
ods that incrementally instantiate portions
of the network as needed to enable first-
order existential and universal quantifiers
in Markov logic networks. When applied
to the problem of identity uncertainty, this
approach results in a conditional probabilis-
tic model that can reason about objects,
combining the expressivity of recently in-
troduced BLOG models with the predic-
tive power of conditional training. We vali-
date our algorithms on the tasks of citation
matching and author disambiguation.

1 Introduction

Markov logic networks (MLNs) combine the proba-
bilistic semantics of graphical models with the ex-
pressivity of first-order logic to model relational de-
pendencies (Richardson and Domingos, 2004). They
provide a method to instantiate Markov networks
from a set of constants and first-order formulae.

While MLNs have the power to specify Markov
networks with complex, finely-tuned dependencies,
the difficulty of instantiating these networks grows
with the complexity of the formulae. In particular,
expressions with first-order quantifiers can lead to

networks that are large and densely connected, mak-
ing exact probabilistic inference intractable. Because
of this, existing applications of MLNs have not ex-
ploited the full richness of expressions available in
first-order logic.

For example, consider the database of researchers
described in Richardson and Domingos (2004),
where predicates include Professor(person),
Student(person), AdvisedBy(person, per-
son), and Published(author, paper). First-
order formulae include statements such as “students
are not professors” and “each student has at most
one advisor.” Consider instead statements such as
“all the students of an advisor publish papers with
similar words in the title” or “this subset of stu-
dents belong to the same lab.” To instantiate an
MLN with such predicates requires existential and
universal quantifiers, resulting in either a densely
connected network, or a network with prohibitively
many nodes. (In the latter example, it may be nec-
essary to ground the predicate for each element of
the power set of students.)

However, as discussed in Section 2, there may
be cases where these aggregate predicates increase
predictive power. For example, in predicting
the value of HaveSameAdvisor(ai . . . ai+k),
it may be useful to know the values
of aggregate evidence predicates such as
CoauthoredAtLeastTwoPapers(ai . . . ai+k),
which indicates whether there are at least two papers
that some combination of authors from ai . . . ai+k

have co-authored. Additionally, we can construct
predicates such as NumberOfStudents(ai) to
model the number of students a researcher is likely
to advise simultaneously.

These aggregate predicates are examples of uni-
versal and existentially quantified predicates over ob-
served and unobserved values. To enable these sorts
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of predicates while limiting the complexity of the
ground Markov network, we present an algorithm
that incrementally expands the set of aggregate pred-
icates during the inference procedure. In this paper,
we describe a general algorithm for incremental ex-
pansion of predicates in MLNs, then present an im-
plementation of the algorithm applied to the problem
of identity uncertainty.

2 Related Work

MLNs were designed to subsume various previously
proposed statistical relational models. Probabilistic
relational models (Friedman et al., 1999) combine
descriptive logic with directed graphical models, but
are restricted to acyclic graphs. Relational Markov
networks (Taskar et al., 2002) use SQL queries to
specify the structure of undirected graphical mod-
els. Since first-order logic subsumes SQL, MLNs
can be viewed as more expressive than relational
Markov networks, although existing applications of
MLNs have not fully utilized this increased expres-
sivity. Other approaches combining logic program-
ming and log-linear models include stochastic logic
programs (Cussens, 2003) and MACCENT(Dehaspe,
1997), although MLNs can be shown to represent
both of these.

Viewed as a method to avoid grounding an in-
tractable number of predicates, this paper has similar
motivations to recent work in lifted inference (Poole,
2003; de Salvo Braz et al., 2005), which performs
inference directly at the first-order level to avoid in-
stantiating all predicates. Although our model is not
an instance of lifted inference, it does attempt to re-
duce the number of predicates by instantiating them
incrementally.

Identity uncertainty (also known as record linkage,
deduplication, object identification, and co-reference
resolution) is the problem of determining whether a
set of constants (mentions) refer to the same object
(entity). Successful identity resolution enables vi-
sion systems to track objects, database systems to
deduplicate redundant records, and text processing
systems to resolve disparate mentions of people, or-
ganizations, and locations.

Many probabilistic models of object identification
have been proposed in the past 40 years in databases
(Fellegi and Sunter, 1969; Winkler, 1993) and nat-
ural language processing (McCarthy and Lehnert,
1995; Soon et al., 2001). With the introduction
of statistical relational learning, more sophisticated
models of identity uncertainty have been developed
that consider the dependencies between related con-
solidation decisions.

Most relevant to this work are the recent relational

models of identity uncertainty (Milch et al., 2005;
McCallum and Wellner, 2003; Parag and Domingos,
2004). McCallum and Wellner (2003) present exper-
iments using a conditional random field that factor-
izes into a product of pairwise decisions about men-
tion pairs (Model 3). These pairwise decisions are
made collectively using relational inference; however,
as pointed out in Milch et al. (2004), there are short-
comings to this model that stem from the fact that it
does not capture features of objects, only of mention
pairs. For example, aggregate features such as “a re-
searcher is unlikely to publish in more than 2 differ-
ent fields” or “a person is unlikely to be referred to by
three different names” cannot be captured by solely
examining pairs of mentions. Additionally, decom-
posing an object into a set of mention pairs results
in “double-counting” of attributes, which can skew
reasoning about a single object (Milch et al., 2004).
Similar problems apply to the model in Parag and
Domingos (2004).

Milch et al. (2005) address these issues by con-
structing a generative probabilistic model over pos-
sible worlds called BLOG, where realizations of ob-
jects are typically sampled from a generative process.
While BLOG model provides attractive semantics for
reasoning about unknown objects, the transition to
generatively trained models sacrifices some of the at-
tractive properties of the discriminative model in Mc-
Callum and Wellner (2003) and Parag and Domin-
gos (2004), such as the ability to easily incorporate
many overlapping features of the observed mentions.
In contrast, generative models are constrained either
to assume the independence of these features or to
explicitly model their interactions.

Object identification can also be seen as an in-
stance of supervised clustering. Daumé III and
Marcu (2004) and Carbonetto et al. (2005) present
similar Bayesian supervised clustering algorithms
that use a Dirichlet process to model the number
of clusters. As a generative model, it has similar ad-
vantages and disadvantages as Milch et al. (2005),
with the added capability of integrating out the un-
certainty in the true number of objects.

In this paper, we present of identity uncertainty
that incorporates the attractive properties of Mc-
Callum and Wellner (2003) and Milch et al. (2005),
resulting in a discriminative model to reason about
objects.

3 Markov logic networks

Let F = {Fi} be a set of first order formulae with
corresponding real-valued weights w = {wi}. Given
a set of constants C = {ci}, define ni(x) to be the
number of true groundings of Fi realized in a setting
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of the world given by atomic formulae x. A Markov
logic network (MLN) (Richardson and Domingos,
2004) defines a joint probability distribution over
possible worlds x. In this paper, we will work with
discriminative MLNs (Singla and Domingos, 2005),
which define the conditional distribution over a set
of query atoms y given a set of evidence atoms x.
Using the normalizing constant Zx, the conditional
distribution is given by

P (Y = y|X = x) =
1

Zx
exp

|Fy|∑
i=1

wini(x, y)

 (1)

where Fy ⊆ F is the set of clauses for which at least
one grounding contains a query atom, and ni(x, y)
is the number of true groundings of the ith clause
containing evidence atom x and query atom y.

3.1 Inference Complexity in Ground
Markov Networks

The set of predicates and constants in Markov logic
define the structure of a Markov network, called a
ground Markov network. In discriminative Markov
logic networks, this resulting network is a conditional
Markov network (also known as a conditional ran-
dom field (Lafferty et al., 2001)).

From Equation 1, the formulae Fy specify the
structure of the corresponding Markov network as
follows: Each grounding of a predicate specified in
Fy has a corresponding node in the Markov network;
and an edge connects two nodes in the network if and
only if their corresponding predicates co-occur in a
grounding of a formula Fy. Thus, the complexity
of the formulae in Fy will determine the complexity
of the resulting Markov network, and therefore the
complexity of inference. When Fy contains complex
first-order quantifiers, the resulting Markov network
may contain a prohibitively large number of nodes.

For example, let the set of constants C be the set of
authors {ai}, papers {pi}, and conferences {ci} from
a research publication database. Predicates may in-
clude AuthorOf(ai, pj), AdvisorOf(ai, aj), and
ProgramCommittee(ai, cj). Each grounding of a
predicate corresponds to a random variable in the
corresponding Markov network.

It is important to notice how query predicates and
evidence predicates differ in their impact on inference
complexity. Grounded evidence predicates result in
observed random variables that can be highly con-
nected without resulting in an increase in inference
complexity. For example, consider the binary evi-
dence predicate HaveSameLastName(ai . . . ai+k).

This aggregate predicate reflects informa-
tion about a subset of (k − i + 1) constants.
The value of this predicate is dependent on
the values of HaveSameLastName(ai, ai+1),
HaveSameLastName(ai, ai+2), etc. However,
since all of the corresponding variables are observed,
inference does not need to ensure their consistency
or model their interaction.

In contrast, complex query predicates can make
inference more difficult. Consider the query
predicate HaveSameAdvisor(ai . . . ai+k). Here,
the related predicates HaveSameAdvisor(ai, ai+1),
HaveSameAdvisor(ai, ai+2), etc., all correspond
to unobserved binary random variables that the
model must predict. To ensure their consistency,
the resulting Markov network must contain depen-
dency edges between each of these variables, result-
ing in a densely connected network. Since inference
in general in Markov networks scales exponentially
with the size of the largest clique, inference in the
grounded network quickly becomes intractable.

One solution is to limit the expressivity of the
predicates. In the previous example, we can decom-
pose the predicate HaveSameAdvisor(ai . . . ai+k)
into its (k − i + 1)2 corresponding pairwise pred-
icates, such as HaveSameAdvisor(ai, ai+1). An-
swering an aggregate query about the advisors of a
group of students can be handled by a conjunction
of these pairwise predicates.

However, as discussed in Sections 1 and 2, we
would like to reason about objects, not just pairs
of mentions, because this enables richer evidence
predicates. For example, the evidence predicates
AtLeastTwoCoauthoredPapers(ai . . . ai+k)
and NumberOfStudents(ai) can be
highly predictive of the query predicate
HaveSameAdvisor(ai . . . ai+k).

Below, we describe a discriminative MLN for iden-
tity uncertainty that is able to reason at the object
level.

3.2 Identity uncertainty

Typically, MLNs make a unique names assumption,
requiring that different constants refer to distinct ob-
jects. In the publications database example, each
author constant ai is a string representation of one
author mention found in the text of a citation. The
unique names assumption assumes that each ai refers
to a distinct author in the real-world. This simplifies
the network structure at the risk of weak or fallacious
predictions (e.g., AdvisorOf(ai, aj) is erroneous if
ai and aj actually refer to the same author). The
identity uncertainty problem is the task of removing
the unique names assumption by determining which
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constants refer to the same real-world objects.
Richardson and Domingos (2004) address this con-

cern by creating the predicate Equals(ci, cj) be-
tween each pair of constants. While this retains the
coherence of the model, the restriction to pairwise
predicates can be a drawback if there exist informa-
tive features over sets of constants. In particular,
by only capturing features of pairs of constants, this
solution cannot model the compatibility of object at-
tributes, only of constant attributes (Section 2).

Instead, we desire a conditional model that allows
predicates to be defined over a set of constants.

One approach is to introduce constants that repre-
sent objects, and connect them to their mentions by
predicates such as IsMentionOf(ci, cj). In addition
to computational issues, this approach also some-
what problematically requires choosing the number
of objects. (See Richardson and Domingos (2004) for
a brief discussion.)

Instead, we propose instantiating aggregate pred-
icates over sets of constants, such that a setting of
these predicates implicitly determines the number of
objects. This approach allows us to model attributes
over entire objects, rather than only pairs of con-
stants. In the following sections, we describe aggre-
gate predicates in more detail, as well as the approx-
imations necessary to implement them efficiently.

3.3 Aggregate predicates

Aggregate predicates are predicates that take as ar-
guments an arbitrary number of constants. For ex-
ample, the HaveSameAdvisor(ai . . . ai+k) predi-
cate in the previous section is an example of an ag-
gregate predicate over k − i + 1 constants.

Let IC = {1 . . . N} be the set of indices into the set
of constants C, with power set P(IC). For any subset
d ∈ P(IC), an aggregate predicate A(d) defines a
property over the subset of constants d.

Note that aggregate predicates can be trans-
lated into first-order formulae. For example,
HaveSameAdvisor(ai . . . ai+k) can be re-written
as ∀(ax, ay) ∈ {ai . . . ai+k} SameAdvisor(ax, ay).
By using aggregate predicates we make explicit the
fact that we are modeling the attributes at the object
level.

We distinguish between aggregate query predi-
cates, which represent unobserved aggregate vari-
ables, and aggregate evidence predicates, which rep-
resent observed aggregate variables. Note that using
aggregate query predicates can complicate inference,
since they represent a collection of fully connected
hidden variables. The main point of this paper is
that although these aggregate query predicates are
specifiable in MLNs, they have not been utilized be-

cause of the resulting inference complexity. We show
that the gains made possible by these predicates of-
ten outweigh the approximations required for infer-
ence.

As discussed in Section 3.1, for each aggregate
query predicates A(d), it is critical that the model
predict consistent values for every related subset of d.
Enforcing this consistency requires introducing de-
pendency edges between aggregate query predicates
that share arguments. In general, this can be a diffi-
cult problem. Here, we focus on the special case for
identity uncertainty where the main query predicate
under consideration is AreEqual(d).

The aggregate query predicate AreEqual(d) is
true if and only if all constants di ∈ d refer to the
same object. Since each subset of constants corre-
sponds to a candidate object, a (consistent) setting
of all the AreEqual predicates results in a solution
to the object identification problem. The number
of objects is chosen based on the optimal grounding
of each of these aggregate predicates, and therefore
does not require a prior over the number of objects.
That is, once all the AreEqual predicates are set,
they determine a clustering with a fixed number of
objects. The number of objects is not modeled or set
directly, but is implied by the result of MAP infer-
ence. (However, a posterior over the number of ob-
jects could be modeled discriminatively in an MLN
(Richardson and Domingos, 2004).)

This formulation also allows us to compute aggre-
gate evidence predicates over objects to help predict
the values of each AreEqual predicate. For exam-
ple, NumberFirstNames(d) returns the number of
different first names used to refer to the object ref-
erenced by constants d. In this way, we can model
aggregate features of an object, capturing the com-
patibility among its attributes.

For a given C, there are |P(IC)| possible ground-
ings of the AreEqual query predicates. Naively im-
plemented, such an approach would require enumer-
ating all subsets of constants, ultimately resulting in
an unwieldy network.

An equivalent way to state the problem is that
using N -ary predicates results in a Markov network
with one node for each grounding of the predicate.
Since in the general case there is one grounding
for each subset of C, the size of the corresponding
Markov network will be exponential in |C|. See Fig-
ure 1 for an example instantiation of an MLN with
three constants (a, b, c) and one AreEqual predi-
cate.

In this paper, we provide algorithms to per-
form approximate inference and parameter estima-
tion by incrementally instantiating these predicates
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AreEqual(a,b) AreEqual(a,c) AreEqual(b,c)

AreEqual(a,b,c)

Figure 1: An example of the network instantiated
by an MLN with three constants and the aggregate
predicate AreEqual, instantiated for all possible
subsets with size ≥ 2.

as needed.

3.4 MAP Inference

Maximum a posteriori (MAP) inference seeks the so-
lution to

y∗ = argmax
y

P (Y = y|X = x)

where y∗ is the setting of all the query predicates
Fy (e.g. AreEqual) with the maximal conditional
density.

In large, densely connected Markov networks, a
common approximate inference technique is loopy
belief propagation (i.e. the max-product algorithm
applied to a cyclic graph). However, the use of ag-
gregate predicates makes it intractable even to in-
stantiate the entire network, making max-product
an inappropriate solution.

Instead, we employ an incremental inference tech-
nique that grounds aggregate query predicates in
an agglomerative fashion based on the model’s cur-
rent MAP estimates. This algorithm can be viewed
as a greedy agglomerative search for a local opti-
mum of P (Y |X), and has connections to recent work
on correlational clustering (Bansal et al., 2004) and
graph partitioning for MAP estimation (Boykov et
al., 2001).

First, note that finding the MAP estimate does not
require computing Zx, since we are only interested in
the relative values of each configuration, and Zx is
fixed for a given x. Thus, at iteration t, we compute
an unnormalized score for yt (the current setting of
the query predicates) given the evidence predicates
x as follows:

S(yt, x) = exp

|F t|∑
i=0

wini(x, yt)


where F t ⊆ Fy is the set of aggregate predicates
representing a partial solution to the object identifi-
cation task for constants C, specified by yt.

Algorithm 1 Approximate MAP Inference Algo-
rithm
1: Given initial predicates F 0

2: while ScoreIsIncreased do
3: F ∗

i ⇐ FindMostLikelyPredicate(F t)
4: F ∗

i ⇐ true
5: F t ⇐ ExpandPredicates(F ∗

i , F t)
6: end while

Algorithm 1 outlines a high-level description of the
approximate MAP inference algorithm. The algo-
rithm first initializes the set of query predicated F 0

such that all AreEqual predicates are restricted
to pairs of constants, i.e. AreEqual(ci, cj) ∀(i, j).
This is equivalent to a Markov network containing
one unobserved random variable for each pair of con-
stants, where each variable indicates whether a pair
of constants refer to the same object.

Initially, each AreEqual predicate is assumed
false. In line 3, the procedure FindMostLike-
lyPredicate iterates through each query predicate
in F t, setting each to true in turn and calculating its
impact on the scoring function. The procedure re-
turns the predicate F ∗

i such that setting F ∗
i to True

results in the greatest increase in the scoring function
S(yt, x).

Let (c∗i . . . c∗j ) be the set of constants “merged”
by setting their AreEqual predicate to true. The
ExpandPredicates procedure creates new predi-
cates AreEqual(c∗i . . . c∗j , ck . . . cl) corresponding to
all the potential predicates created by merging the
constants c∗i . . . c∗j with any of the other previously
merged constants. For example, after the first it-
eration, a pair of constants (c∗i , c

∗
j ) are merged.

The set of predicates are expanded to include
AreEqual(c∗i , c

∗
j , ck) ∀ck, reflecting all possible ad-

ditional references to the proposed object referenced
by c∗i , c

∗
j .

This algorithm continues until there is no predi-
cate that can be set to true that increases the score
function.

In this way, the final setting of Fy is a local max-
imum of the score function. As in other search
algorithms, we can employ look-ahead to reduce
the greediness of the search (i.e., consider multiple
merges simultaneously), although we do not include
look-ahead in experiments reported here.

It is important to note that each expansion of the
aggregate query predicates Fy has a corresponding
set of aggregate evidence predicates. These evidence
predicates characterize the compatibility of the at-
tributes of each hypothesized object.
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3.4.1 Pruning

The space required for the above algorithm scales
Ω(|C|2), since in the initialization step we must
ground a predicate for each pair of constants. We use
the canopy method of McCallum et al. (2000), which
thresholds a “cheap” similarity metric to prune un-
necessary comparisons. This pruning can be done
at subsequent stages of inference to restrict which
predicates variables will be introduced.

Additionally, we must ensure that predicate set-
tings at time t do not contradict settings at t − 1
(e.g. if F t(a, b, c) = 1, then F t+1(a, b) = 1). By
greedily setting unobserved nodes to their MAP es-
timates, the inference algorithm ignores inconsistent
settings and removes them from the search space.

3.5 Parameter estimation

Given a fully labeled training set D of constants an-
notated with their referent objects, we would like to
estimate the value of w that maximizes the likelihood
of D. That is, w∗ = argmaxw Pw(y|x).

When the data are few, we can explicitly instan-
tiate all AreEqual(d) predicates, setting their cor-
responding nodes to the values implied by D. The
likelihood is given by Equation 1, where the normal-
izer is Zx =

∑
y′ exp

(∑|F ′
y|

i=1 wini(x, y′)
)
.

Although this sum over y′ to calculate Zx is ex-
ponential in |y|, many inconsistent settings can be
pruned as discussed in Section 3.4.1.

In general, however, instantiating the entire set
of predicates denoted by y and calculating Zx is
intractable. Existing methods for MLN parame-
ter estimation include pseudo-likelihood and voted
perceptron (Richardson and Domingos, 2004; Singla
and Domingos, 2005). We instead follow the recent
success in piecewise training for complex undirected
graphical models (Sutton and McCallum, 2005) by
making the following two approximations. First, we
avoid calculating the global normalizer Zx by calcu-
lating local normalizers, which sum only over the two
values for each aggregate query predicate grounded
in the training data. We therefore maximize the sum
of local probabilities for each query predicate given
the evidence predicates.

This approximation can be viewed as constructing
a log-linear binary classifier to predict whether an
isolated set of constants refer to the same object.
Input features include arbitrary first-order features
over the input constants, and the output is a binary
variable. The parameters of this classifier correspond
to the w weights in the MLN. This simplification
results in a convex optimization problem, which we
solve using gradient descent with L-BFGS, a second-

order optimization method (Liu and Nocedal, 1989).
The second approximation addresses the fact that

all query predicates from the training set cannot be
instantiated. We instead sample a subset FS ∈ Fy

and maximize the likelihood of this subset. The sam-
pling is not strictly uniform, but is instead obtained
by collecting the predicates created while perform-
ing object identification using a weak method (e.g.
string comparisons). More explicitly, predicates are
sampled from the training data by performing greedy
agglomerative clustering on the training mentions,
using a scoring function that computes the similar-
ity between two nodes by string edit distance. The
goal of this clustering is not to exactly reproduce the
training clusters, but to generate correct and incor-
rect clusters that have similar characteristics (size,
homogeneity) to what will be present in the testing
data.

4 Experiments

We perform experiments on two object identification
tasks: citation matching and author disambiguation.
Citation matching is the task of determining whether
two research paper citation strings refer to the same
paper. We use the Citeseer corpus (Lawrence et al.,
1999), containing approximately 1500 citations, 900
of which are unique. The citations are manually la-
beled with cluster identifiers, and the strings are seg-
mented into fields such as author, title, etc. The cita-
tion data is split into four disjoint categories by topic,
and the results presented are obtained by training on
three categories and testing on the fourth.

Using first-order logic, we create a number of ag-
gregate predicates such as AllTitlesMatch, Al-
lAuthorsMatch, AllJournalsMatch, etc., as
well as their existential counterparts, ThereExist-
sTitleMatch, etc. We also include count predi-
cates, which indicate the number of these matches in
a set of constants.

Additionally, we add edit distance predicates,
which calculate approximate matches1 between title
fields, etc., for each pair of citations in a set of cita-
tions. Aggregate features are used for these, such as
“there exists a pair of citations in this cluster which
have titles that are less than 30% similar” and “the
minimum edit distance between titles in a cluster is
greater than 50%.”

We evaluate using pairwise precision, recall, and
F1, which measure the system’s ability to predict
whether each pair of constants refer to the same ob-
ject or not. Table 1 shows the advantage of our

1We use the Secondstring package, found at
http://secondstring.sourceforge.net
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Table 1: Precision, recall, and F1 performance for
citation matching task, where Objects is an MLN
using aggregate predicates, and Pairs is an MLN us-
ing only pairwise predicates. Objects outperforms
Pairs on three of the four testing sets.

Objects Pairs
pr re f1 pr re f1

constraint 85.8 79.1 82.3 63.0 98.0 76.7
reinforce 97.0 90.0 93.4 65.6 98.2 78.7

face 93.4 84.8 88.9 74.2 94.7 83.2
reason 97.4 69.3 81.0 76.4 95.5 84.9

Table 2: Performance on the author disambiguation
task. Objects outperforms Pairs on two of the
three testing sets.

Objects Pairs
pr re f1 pr re f1

miller d 73.9 29.3 41.9 44.6 1.0 61.7
li w 39.4 47.9 43.2 22.1 1.0 36.2

smith b 61.2 70.1 65.4 14.5 1.0 25.4

proposed model (Objects) over a model that only
considers pairwise predicates of the same features
(Pairs). Note that Pairs is a strong baseline that
performs collective inference of citation matching de-
cisions, but is restricted to use only IsEqual(ci, cj)
predicates over pairs of citations. Thus, the perfor-
mance difference is due to the ability to model first-
order features of the data.

Author disambiguation is the task of deciding
whether two strings refer to the same author. To in-
crease the task complexity, we collect citations from
the Web containing different authors with matching
last names and first initials. Thus, simply performing
a string match on the author’s name would be insuffi-
cient in many cases. We searched for three common
last name / first initial combinations (Miller, D;
Li, W; Smith, B). From this set, we collected 400
citations referring to 56 unique authors. For these
experiments, we train on two subsets and test on the
third.

We generate aggregate predicates similar to those
used for citation matching. Additionally, we in-
clude features indicating the overlap of tokens from
the titles and indicating whether there exists a pair
of authors in this cluster that have different mid-
dle names. This last feature exemplifies the sort of
reasoning enabled by aggregate predicates: For ex-
ample, consider a pairwise predicate that indicates
whether two authors have the same middle name.

Very often, middle name information is unavailable,
so the name “Miller, A.” may have high similarity to
both “Miller, A. B.” and “Miller, A. C.”. However,
it is unlikely that the same person has two different
middle names, and our model learns a weight for this
feature. Table 2 demonstrates the advantage of this
method.

Overall, Objects achieves F1 scores superior to
Pairs on 5 of the 7 datasets. These results indicate
the potential advantages of using complex first-order
quantifiers in MLNs. The cases in which Pairs out-
performs Objects are likely due to the fact that the
approximate inference used in Objects is greedy.
Increasing the robustness of inference is a topic of
future research.

5 Conclusions and Future Work

We have presented an algorithm that enables practi-
cal inference in MLNs containing first-order existen-
tial and universal quantifiers, and have demonstrated
the advantages of this approach on two real-world
datasets. Future work will investigate efficient ways
to improve the approximations made during infer-
ence, for example by reducing its greediness by revis-
ing the MAP estimates made at previous iterations.

Although the optimal number of objects is cho-
sen implicitly by the inference algorithm, there may
be reasons to explicitly model this number. For ex-
ample, if there exist global features of the data that
suggest there are many objects, then the inference al-
gorithm should be less inclined to merge constants.
Additionally, the data may exhibit “preferential at-
tachment” such that the probability of a constant
being added to an existing object is proportional to
the number of constants that refer to that object.
Future work will examine the feasibility of adding
aggregate query predicates to represent these values.

More subtly, one may also want to directly model
the size of the object population. For example, given
a database of authors, we may want to estimate not
only how many distinct authors exist in the database,
but also how many distinct authors exist outside of
the database, as discussed in Milch et al. (2005).
Discriminatively-trained models cannot easily reason
about objects for which they have no observations;
so a generative/discriminative hybrid model may be
required to properly estimate this value.

Finally, while the inference algorithm we describe
is evaluated only on the object uncertainty task, we
would like to extend it to perform inference over ar-
bitrary query predicates.
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Abstract 

Integrating information from different 
stages of an NLP processing pipeline can 
yield significant error reduction. We dem-
onstrate how re-ranking can improve name 
tagging in a Chinese information extrac-
tion system by incorporating information 
from relation extraction, event extraction, 
and coreference. We evaluate three state-
of-the-art re-ranking algorithms (MaxEnt-
Rank, SVMRank, and p-Norm Push Rank-
ing), and show the benefit of multi-stage 
re-ranking for cross-sentence and cross-
document inference. 

1 Introduction 

In recent years, re-ranking techniques have been 
successfully applied to enhance the performance 
of NLP analysis components based on generative 
models. A baseline generative model produces N-
best candidates, which are then re-ranked using a 
rich set of local and global features in order to 
select the best analysis. Various supervised learn-
ing algorithms have been adapted to the task of re-
ranking for NLP systems, such as MaxEnt-Rank 
(Charniak and Johnson, 2005; Ji and Grishman, 
2005), SVMRank (Shen and Joshi, 2003), Voted 
Perceptron (Collins, 2002; Collins and Duffy, 
2002; Shen and Joshi, 2004), Kernel Based Meth-
ods (Henderson and Titov, 2005), and RankBoost 
(Collins, 2002; Collins and Koo, 2003; Kudo et al., 
2005). 

These algorithms have been used primarily 
within the context of a single NLP analysis com-
ponent, with the most intensive study devoted to 

improving parsing performance. The re-ranking 
models for parsing, for example, normally rely on 
structures generated within the baseline parser 
itself. Achieving really high performance for some 
analysis components, however, requires that we 
take a broader view, one that looks outside a sin-
gle component in order to bring to bear knowl-
edge from the entire NL analysis process.  In this 
paper we will demonstrate the potential of this 
approach in enhancing the performance of Chi-
nese name tagging within an information extrac-
tion application.  

Combining information from other stages in the 
analysis pipeline allows us to incorporate informa-
tion from a much wider context, spanning the en-
tire document and even going across documents.  
This will give rise to new design issues; we will 
examine and compare different re-ranking algo-
rithms when applied to this task.  

We shall first describe the general setting and 
the special characteristics of re-ranking for name 
tagging. Then we present and evaluate three re-
ranking algorithms – MaxEnt-Rank, SVMRank 
and a new algorithm, p-Norm Push Ranking – for 
this problem, and show how an approach based on 
multi-stage re-ranking can effectively handle fea-
tures across sentence and document boundaries. 

2 Prior Work 

2.1 Ranking 

We will describe the three state-of-the-art super-
vised ranking techniques considered in this work. 
Later we shall apply and evaluate these algorithms 
for re-ranking in the context of name tagging. 

Maximum Entropy modeling (MaxEnt) has 
been extremely successful for many NLP classifi-
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cation tasks, so it is natural to apply it to re-
ranking problems. (Charniak and Johnson, 2005) 
applied MaxEnt to improve the performance of a 
state-of-art parser; also in (Ji and Grishman, 2005) 
we used it to improve a Chinese name tagger.  

Using SVMRank, (Shen and Joshi, 2003) 
achieved significant improvement on parse re-
ranking. They compared two different sample 
creation methods, and presented an efficient train-
ing method by separating the training samples into 
subsets.  

The last approach we consider is a boosting-
style approach. We implement a new algorithm 
called p-Norm Push Ranking (Rudin, 2006). This 
algorithm is a generalization of RankBoost 
(Freund et al. 1998) which concentrates specifi-
cally on the top portion of a ranked list. The pa-
rameter “p” determines how much the algorithm 
concentrates at the top.  

2.2 Enhancing Named Entity Taggers 

There have been a very large number of NE tagger 
implementations since this task was introduced at 
MUC-6 (Grishman and Sundheim, 1996).  Most 
implementations use local features and a unifying 
learning algorithm based on, e.g., an HMM, Max-
Ent, or SVM. Collins (2002) augmented a baseline 
NE tagger with a re-ranker that used only local, 
NE-oriented features.  Roth and Yih (2002) com-
bined NE and semantic relation tagging, but 
within a quite different framework (using a linear 
programming model for joint inference). 

3 A Framework for Name Re-Ranking 

3.1 The Information Extraction Pipeline 

The extraction task we are addressing is that of the 
Automatic Content Extraction (ACE)1 evaluations. 
The 2005 ACE evaluation had 7 types of entities, 
of which the most common were PER (persons), 
ORG (organizations), LOC (natural locations) and 
GPE (‘geo-political entities’ – locations which are 
also political units, such as countries, counties, 
and cities).  There were 6 types of semantic rela-
tions, with 18 subtypes.  Examples of these rela-
tions are “the CEO of Microsoft” (an 
organization-affiliation relation), “Fred’s wife” (a 
                                                           
1 The ACE task description can be found at 
http://www.itl.nist.gov/iad/894.01/tests/ace/ 

personal-social relation), and “a military base in 
Germany” (a located relation). And there were 8 
types of events, with 33 subtypes, such as “Kurt 
Schork died in Sierra Leone yesterday” (a Die 
event), and “Schweitzer founded a hospital in 
1913” (a Start-Org event). 
  To extract these elements we have developed a 
Chinese information extraction pipeline that con-
sists of the following stages: 
• Name tagging and name structure parsing 

(which identifies the internal structure of some 
names); 

• Coreference resolution, which links "men-
tions" (referring phrases of selected semantic 
types) into "entities": this stage is a combina-
tion of high-precision heuristic rules and 
maximum entropy models; 

• Relation tagging, using a K-nearest-neighbor 
algorithm to identify relation types and sub-
types; 

• Event patterns, semi-automatically extracted 
from ACE training corpora. 

3.2 Hypothesis Representation and Genera-
tion 

Again, the central idea is to apply the baseline 
name tagger to generate N-Best multiple hypothe-
ses for each sentence; the results from subsequent 
components are then exploited to re-rank these 
hypotheses and the new top hypothesis is output 
as the final result. 

In our name re-ranking model, each hypothesis 
is an NE tagging of the entire sentence. For ex-
ample, “<PER>John</PER> was born in 
<GPE>New York</GPE>.” is one hypothesis 
for the sentence “John was born in New York”. 

We apply a HMM tagger to identify four named 
entity types: Person, GPE, Organization and Loca-
tion. The HMM tagger generally follows the 
Nymble model (Bikel et al, 1997), and uses best-
first search to generate N-Best hypotheses. It also 
computes the “margin”, which is the difference 
between the log probabilities of the top two hy-
potheses.  This is used as a rough measure of con-
fidence in the top hypothesis. A large margin 
indicates greater confidence that the first hypothe-
sis is correct. The margin also determines the 
number of hypotheses (N) that we will store. Us-
ing cross-validation on the training data, we de-
termine the value of N required to include the best 
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hypothesis, as a function of the margin.  We then 
divide the margin into ranges of values, and set a 
value of N for each range, with a maximum of 30. 

To obtain the training data for the re-ranking 
algorithm, we separate the name tagging training 
corpus into k folders, and train the HMM name 
tagger on k-1 folders. We then use the HMM to 
generate N-Best hypotheses H = {h1, h2,…,hN} for 
each sentence in the remaining folder.  Each hi in 
H is then paired with its NE F-measure, measured 
against the key in the annotated corpus. 

We define a “crucial pair” as a pair of hypothe-
ses such that, according to F-Measure, the first 
hypothesis in the pair should be more highly 
ranked than the second. That is, if for a sentence, 
the F-Measure of hypothesis hi is larger than that 
of hj, then (hi, hj) is a crucial pair. 

3.3 Re-Ranking Functions 

We investigated the following three different for-
mulations of the re-ranking problem: 

• Direct Re-Ranking by Score 
For each hypothesis hi, we attempt to learn a scor-
ing function f : H  R, such that f(hi) > f(hj) if the 
F-Measure of hi is higher than the F-measure of hj. 

• Direct Re-Ranking by Classification 
For each hypothesis hi, we attempt to learn f : H 

 {-1, 1}, such that f(hi) = 1 if hi has the top F-
Measure among H; otherwise f(hi) = -1. This can 
be considered a special case of re-ranking by 
score. 

• Indirect Re-Ranking Function 
For each “crucial” pair of hypotheses (hi, hj), we 
learn f : H × H  {-1, 1}, such that f(hi, hj) = 1 if 
hi is better than hj; f (hi, hj) = -1 if hi is worse than 
hj. We call this “indirect” ranking because we 
need to apply an additional decoding step to pick 
the best hypothesis from these pair-wise compari-
son results. 

4 Features for Re-Ranking 

4.1 Inferences From Subsequent Stages 

Information extraction is a potentially symbiotic 
pipeline with strong dependencies between stages 
(Roth and Yih, 2002&2004; Ji and Grishman, 
2005). Thus, we use features based on the output 

of four subsequent stages – name structure parsing, 
relation extraction, event patterns, and coreference 
analysis – to seek the best hypothesis.  

We included ten features based on name struc-
ture parsing to capture the local information 
missed by the baseline name tagger such as details 
of the structure of Chinese person names. 

The relation and event re-ranking features are 
based on matching patterns of words or constitu-
ents.  They serve to correct name boundary errors 
(because such errors would prevent some patterns 
from matching).  They also exert selectional pref-
erences on their arguments, and so serve to correct 
name type errors.  For each relation argument, we 
included a feature whose value is the likelihood 
that relation appears with an argument of that se-
mantic type (these probabilities are obtained from 
the training corpus and binned).  For each event 
pattern, a feature records whether the types of the 
arguments match those required by the pattern. 

Coreference can link multiple mentions of 
names provided they have the same spelling 
(though if a name has several parts, some may be 
dropped) and same semantic type. So if the 
boundary or type of one mention can be deter-
mined with some confidence, coreference can be 
used to disambiguate other mentions, by favoring 
hypotheses which support more coreference. To 
this end, we incorporate several features based on 
coreference, such as the number of mentions re-
ferring to a name candidate.  

Each of these features is defined for individual 
name candidates; the value of the feature for a 
hypothesis is the sum of its values over all names 
in the hypothesis. The complete set of detailed 
features is listed in (Ji and Grishman, 2006). 

4.2 Handling Cross-Sentence Features by 
Multi-Stage Re-Ranking 

Coreference is potentially a powerful contributor 
for enhancing NE recognition, because it provides 
information from other sentences and even docu-
ments, and it applies to all sentences that include 
names. For a name candidate, 62% of its corefer-
ence relations span sentence boundaries.  How-
ever, this breadth poses a problem because it 
means that the score of a hypothesis for a given 
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sentence may depend on the tags assigned to the 
same names in other sentences.2 

Ideally, when we re-rank the hypotheses for one 
sentence S, the other sentences that include men-
tions of the same name should already have been 
re-ranked, but this is not possible because of the 
mutual dependence. Repeated re-ranking of a sen-
tence would be time-consuming, so we have 
adopted an alternative approach. Instead of incor-
porating coreference evidence with all other in-
formation in one re-ranker, we apply two re-
rankers in succession.  
   In the first re-ranking step, we generate new 
rankings for all sentences based on name structure, 
relation and event features, which are all sentence-
internal evidence.  Then in a second pass, we ap-
ply a re-ranker based on coreference between the 
names in each hypothesis of sentence S and the 
mentions in the top-ranking hypothesis (from the 
first re-ranker) of all other sentences.3  In this way, 
the coreference re-ranker can propagate globally 
(across sentences and documents) high-confidence 
decisions based on the other evidence. In our final 
MaxEnt Ranker we obtained a small additional 
gain by further splitting the first re-ranker into 
three separate steps: a name structure based re-
ranker, a relation based re-ranker and an event 
based re-ranker; these were incorporated in an 
incremental structure.   

4.3 Adding Cross-Document Information 

The idea in coreference is to link a name mention 
whose tag is locally ambiguous to another men-
tion that is unambiguously tagged based on local 
evidence.  The wider a net we can cast, the greater 
the chance of success.  To cast the widest net pos-
sible, we have used cross-document coreference 
for the test set. We cluster the documents using a 
cross-entropy metric and then treat the entire clus-
ter as a single document.      

We take all the name candidates in the top N 
hypotheses for each sentence in each cluster T to 
construct a “query set” Q. The metric used for the 
clustering is the cross entropy H(T, d) between the 
distribution of the name candidates in T and 

                                                           
2 For in-document coreference, this problem could be avoided if the tagging of 
an entire document constituted a hypothesis, but that would be impractical … a 
very large N would be required to capture sufficient alternative taggings in an 
N-best framework. 
3 This second pass is skipped for sentences for which the confidence in the top 
hypothesis produced by the first re-ranker is above a threshold. 

document d. If H(T, d) is smaller than a threshold 
then we add d to T. H(T, d) is defined by: 

∑
∈

×−=
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We built these clusters two ways: first, just 
clustering the test documents; second, by aug-
menting these clusters with related documents 
retrieved from a large unlabeled corpus (with 
document relevance measured using cross-
entropy). 

5 Re-Ranking Algorithms 

We have been focusing on selecting appropriate 
ranking algorithms to fit our application. We 
choose three state-of-the-art ranking algorithms 
that have good generalization ability. We now 
describe these algorithms. 

5.1 MaxEnt-Rank 

5.1.1  Sampling and Pruning 
 
Maximum Entropy models are useful for the task 
of ranking because they compute a reliable rank-
ing probability for each hypothesis.  We have tried 
two different sampling methods – single sampling 
and pairwise sampling.  

The first approach is to use each single hy-
pothesis hi as a sample. Only the best hypothesis 
of each sentence is regarded as a positive sample; 
all the rest are regarded as negative samples. In 
general, absolute values of features are not good 
indicators of whether a hypothesis will be the best 
hypothesis for a sentence; for example, a co-
referring mention count of 7 may be excellent for 
one sentence and poor for another.  Consequently, 
in this single-hypothesis-sampling approach, we 
convert each feature to a Boolean value, which is 
true if the original feature takes on its maximum 
value (among all hypotheses) for this hypothesis.  
This does, however, lose some of the detail about 
the differences between hypotheses. 

In pairwise sampling we used each pair of hy-
potheses (hi, hj) as a sample. The value of a fea-
ture for a sample is the difference between its 
values for the two hypotheses.  However, consid-
ering all pairs causes the number of samples to 
grow quadratically (O(N2)) with the number of 
hypotheses, compared to the linear growth with 
best/non-best sampling. To make the training and 
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test procedures more efficient, we prune the data 
in several ways.  

We perform pruning by beam setting, removing 
candidate hypotheses that possess very low prob-
abilities from the HMM, and during training we 
discard the hypotheses with very low F-measure 
scores. Additionally, we incorporate the pruning 
techniques used in (Chiang 2005), by which any 
hypothesis with a probability lower thanαtimes 
the highest probability for one sentence is dis-
carded. We also discard the pairs very close in 
performance or probability. 
 
5.1.2 Decoding 
 
If f is the ranking function, the MaxEnt model 
produces a probability for each un-pruned “cru-
cial” pair: prob(f(hi, hj) = 1), i.e., the probability 
that for the given sentence, hi is a better hypothe-
sis than hj. We need an additional decoding step to 
select the best hypothesis. Inspired by the caching 
idea and the multi-class solution proposed by 
(Platt et al. 2000), we use a dynamic decoding 
algorithm with complexity O(n) as follows. 

We scale the probability values into three types: 
CompareResult (hi, hj) = “better” if prob(f(hi, hj) = 
1) >δ1, “worse” if prob(f(hi, hj) = 1) <δ2, and 
“unsure” otherwise, where δ1≥δ2. 4  

 
Prune 

for i = 1 to n 
Num = 0; 
for j = 1 to n and j≠i 

If CompareResult(hi, hj) = “worse” 
Num++; 

    if Num>βthen discard hi from H 
 

Select 
Initialize: i = 1, j = n 
while (i<j) 

if CompareResult(hi, hj) = “better” 
discard hj from H; 
j--; 

else if CompareResult(hi, hj) = “worse” 
discard hi from H; 
i++; 

else break; 
 

                                                           
4 In the final stage re-ranker we useδ1=δ2 so that we don’t generate the 
output of “unsure”, and one hypothesis is finally selected. 

Output 
If the number of remaining hypotheses in H is 1, 
then output it as the best hypothesis; else propa-
gate all hypothesis pairs into the next re-ranker. 

5.2 SVMRank 

We implemented an SVM-based model, which 
can theoretically achieve very low generalization 
error. We use the SVMLight package (Joachims, 
1998), with the pairwise sampling scheme as for 
MaxEnt-Rank. In addition we made the following 
adaptations: we calibrated the SVM outputs, and 
separated the data into subsets. 

To speed up training, we divided our training 
samples into k subsets. Each subset contains N(N-
1)/k pairs of hypotheses of each sentence.  

In order to combine the results from these dif-
ferent SVMs, we must calibrate the function val-
ues; the output of an SVM yields a distance to the 
separating hyperplane, but not a probability. We 
have applied the method described in (Shen and 
Joshi, 2003), to map SVM’s results to probabili-
ties via a sigmoid. Thus from the kth SVM, we get 
the probability for each pair of hypotheses: 

)1),(( =jik hhfprob , 
namely the probability of hi being better than hj. 
Then combining all k SVMs’ results we get: 
       ∏ ==

k
jikji hhfprobhhZ )1),((),( . 

So the hypothesis hi with maximal value is cho-
sen as the top hypothesis:  

∏
j

ji
h

hhZ
i

)),((maxarg . 

5.3 P-Norm Push Ranking 

The third algorithm we have tried is a general 
boosting-style supervised ranking algorithm called 
p-Norm Push Ranking (Rudin, 2006). We de-
scribe this algorithm in more detail since it is quite 
new and we do not expect many readers to be fa-
miliar with it.  

The parameter “p” determines how much em-
phasis (or “push”) is placed closer to the top of the 
ranked list, where p≥1. The p-Norm Push Ranking 
algorithm generalizes RankBoost (take p=1 for 
RankBoost). When p is set at a large value, the 
rankings at the top of the list are given higher pri-
ority (a large “push”), at the expense of possibly 
making misranks towards the bottom of the list. 

53



Since for our application, we do not care about the 
rankings at the bottom of the list (i.e., we do not 
care about the exact rank ordering of the bad hy-
potheses), this algorithm is suitable for our prob-
lem. There is a tradeoff for the choice of p; larger 
p yields more accurate results at the very top of 
the list for the training data. If we want to consider 
more than simply the very top of the list, we may 
desire a smaller value of p. Note that larger values 
of p also require more training data in order to 
maintain generalization ability (as shown both by 
theoretical generalization bounds and experi-
ments). If we want large p, we must aim to choose 
the largest value of p that allows generalization, 
given our amount of training data. When we are 
working on the first stage of re-ranking, we con-
sider the whole top portion of the ranked list, be-
cause we use the rank in the list as a feature for 
the next stage. Thus, we have chosen the value 
p1=4 (a small “push”) for the first re-ranker. For 
the second re-ranker we choose p2=16 (a large 
“push”). 

The objective of the p-Norm Push Ranking al-
gorithm is to create a scoring function f: H R 
such that for each crucial pair (hi, hj), we shall 
have f(hi) > f(hj). The form of the scoring function 
is f(hi) = ∑αkgk(hi), where gk is called a weak 
ranker: gk : H  [0,1]. The values of αk are de-
termined by the p-Norm Push algorithm in an it-
erative way.  

The weak rankers gk are the features described 
in Section 4. Note that we sometimes allow the 
algorithm to use both gk and g’k(hi)=1-gk(hi) as 
weak rankers, namely when gk has low accuracy 
on the training set; this way the algorithm itself 
can decide which to use.  

As in the style of boosting algorithms, real-
valued weights are placed on each of the training 
crucial pairs, and these weights are successively 
updated by the algorithm. Higher weights are 
given to those crucial pairs that were misranked at 
the previous iteration, especially taking into ac-
count the pairs near the top of the list. At each 
iteration, one weak ranker gk is chosen by the al-
gorithm, based on the weights. The coefficient αk 
is then updated accordingly.  

6 Experiment Results 

6.1 Data and Resources 

We use 100 texts from the ACE 04 training corpus 
for a blind test. The test set included 2813 names: 
1126 persons, 712 GPEs, 785 organizations and 
190 locations. The performance is measured via 
Precision (P), Recall (R) and F-Measure (F). 

The baseline name tagger is trained from 2978 
texts from the People’s Daily news in 1998 and 
also 1300 texts from ACE training data.  

The 1,071,285 training samples (pairs of hy-
potheses) for the re-rankers are obtained from the 
name tagger applied on the ACE training data, in 
the manner described in Section 3.2. 

We use OpenNLP5 for the MaxEnt-Rank ex-
periments. We use SVMlight (Joachims, 1998) for 
SVMRank, with a linear kernel and the soft mar-
gin parameter set to the default value. For the p-
Norm Push Ranking, we apply 33 weak rankers, 
i.e., features described in Section 4. The number 
of iterations was fixed at 110, this number was 
chosen by optimizing the performance on a devel-
opment set of 100 documents. 

6.2 Effect of Pairwise Sampling 

We have tried both single-hypothesis and pairwise 
sampling (described in section 5.1.1) in MaxEnt-
Rank and p-Norm Push Ranking. Table 1 shows 
that pairwise sampling helps both algorithms. 
MaxEnt-Rank benefited more from it, with preci-
sion and recall increased 2.2% and 0.4% respec-
tively. 

 
Model P R F 
Single Sampling 89.6 90.2 89.9MaxEnt-

Rank Pairwise Sampling 91.8 90.6 91.2
Single Sampling 91.4 89.6 90.5p-Norm 

Push Pairwise Sampling 91.2 90.8 91.0
 

Table 1. Effect of Pairwise Sampling 

6.3 Overall Performance 

In Table 2 we report the overall performance for 
these three algorithms. All of them achieved im-
provements on the baseline name tagger. MaxEnt 
yields the highest precision, while p-Norm Push 
Ranking with p2 = 16 yields the highest recall. 

A larger value of “p” encourages the p-Norm 
Push Ranking algorithm to perform better near the 
top of the ranked list. As we discussed in section 

                                                           
5 http://maxent.sourceforge.net/index.html 
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5.3, we use p1 = 4 (a small “push”) for the first re-
ranker and p2 = 16 (a big “push”) for the second 
re-ranker. From Table 2 we can see that p2 = 16 
obviously performed better than p2 = 1. In general, 
we have observed that for p2 ≤16, larger p2 corre-
lates with better results. 
 

Model P R F 
Baseline  87.4 87.6 87.5
MaxEnt-Rank 91.8 90.6 91.2
SVMRank 89.5 90.1 89.8
p-Norm Push Ranking (p2 =16) 91.2 90.8 91.0
p-Norm Push Ranking  
(p2 =1, RankBoost) 

89.3 89.7 89.5

 
Table 2. Overall Performance  

The improved NE results brought better per-
formance for the subsequent stages of information 
extraction too. We use the NE outputs from Max-
Ent-Ranker as inputs for coreference resolver and 
relation tagger. The ACE value6 of entity detec-
tion (mention detection + coreference resolution) 
is increased from 73.2 to 76.5; the ACE value of 
relation detection is increased from 34.2 to 34.8. 

6.4 Effect of Cross-document Information 

As described in Section 4.3, our algorithm incor-
porates cross-document coreference information. 
The 100 texts in the test set were first clustered 
into 28 topics (clusters). We then apply cross-
document coreference on each cluster. Compared 
to single document coreference, cross-document 
coreference obtained 0.5% higher F-Measure, us-
ing MaxEnt-Ranker, improving performance for 
15 of these 28 clusters. 

These clusters were then extended by selecting 
84 additional related texts from a corpus of 15,000 
unlabeled Chinese news articles (using a cross-
entropy metric to select texts). 24 clusters gave 
further improvement, and an overall 0.2% further 
improvement on F-Measure was obtained.  

6.5 Efficiency 

Model Training Test 
MaxEnt-Rank 7 hours 55 minutes
SVMRank 48 hours 2 hours 
p-Norm Push Ranking 3.2 hours 10 minutes

 

Table 3. Efficiency Comparison 
                                                           
6 The ACE04 value scoring metric can be found at: 
http://www.nist.gov/speech/tests/ace/ace04/doc/ace04-evalplan-v7.pdf 

In Table 3 we summarize the running time of 
these three algorithms in our application. 

7 Discussion 

We have shown that the other components of an 
IE pipeline can provide information which can 
substantially improve the performance of an NE 
tagger, and that these improvements can be real-
ized through a variety of re-ranking algorithms.  
MaxEnt re-ranking using binary sampling and p-
Norm Push Ranking proved about equally effec-
tive.7  p-Norm Push Ranking was particularly ef-
ficient for decoding (about 10 documents / 
minute), although no great effort was invested in 
tuning these procedures for speed. 

We presented methods to handle cross-sentence 
inference using staged re-ranking and to incorpo-
rate additional evidence through document clus-
tering. 

An N-best / re-ranking strategy has proven ef-
fective for this task because with relatively small 
values of N we are already able to include highly-
rated hypotheses for most sentences.  Using the 
values of N we have used throughout (dependent 
on the margin of the baseline HMM, but never 
above 30), the upper bound of N-best performance 
(if we always picked the top-scoring hypothesis) 
is 97.4% recall, 96.2% precision, F=96.8%. 

Collins (2002) also applied re-ranking to im-
prove name tagging. Our work has addressed both 
name identification and classification, while his 
only evaluated name identification.  Our re-ranker 
used features from other pipeline stages, while his 
were limited to local features involving lexical 
information and 'word-shape' in a 5-token window.  
Since these feature sets are essentially disjoint, it 
is quite possible that a combination of the two 
could yield even further improvements. His boost-
ing algorithm is a modification of the method in 
(Freund et al., 1998), an adaptation of AdaBoost, 
whereas our p-Norm Push Ranking algorithm can 
emphasize the hypotheses near the top, matching 
our objective. 

Roth and Yih (2004) combined information 
from named entities and semantic relation tagging, 
adopting a similar overall goal but using a quite 
different approach based on linear programming.  

                                                           
7 The features were initially developed and tested using the MaxEnt re-ranker, 
so it is encouraging that they worked equally well with the p-Norm Push 
Ranker without further tuning. 
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They limited themselves to name classification, 
assuming the identification given.  This may be a 
natural subtask for English, where capitalization is 
a strong indicator of a name, but is much less use-
ful for Chinese, where there is no capitalization or 
word segmentation, and boundary errors on name 
identification are frequent. Expanding their ap-
proach to cover identification would have greatly 
increased the number of hypotheses and made 
their approach slower.  In contrast, we adjust the 
number of hypotheses based on the margin in or-
der to maintain efficiency while minimizing the 
chance of losing a high-quality hypothesis. 

In addition we were able to capture selectional 
preferences (probabilities of semantic types as 
arguments of particular semantic relations as 
computed from the corpus), whereas Roth and Yih 
limited themselves to hard (boolean) type con-
straints. 
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