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Abstract

This paper presents a method of automat-
ically constructing information extraction
patterns on predicate-argument structures
(PASs) obtained by full parsing from a
smaller training corpus. Because PASs
represent generalized structures for syn-
tactical variants, patterns on PASs are ex-
pected to be more generalized than those
on surface words. In addition, patterns
are divided into components to improve
recall and we introduce a Support Vector
Machine to learn a prediction model using
pattern matching results. In this paper, we
present experimental results and analyze
them on how well protein-protein interac-
tions were extracted from MEDLINE ab-
stracts. The results demonstrated that our
method improved accuracy compared to a
machine learning approach using surface
word/part-of-speech patterns.

1 Introduction

One primitive approach to Information Extrac-
tion (IE) is to manually craft numerous extrac-
tion patterns for particular applications and this
is presently one of the main streams of biomedi-
cal IE (Blaschke and Valencia, 2002; Koike et al.,
2003). Although such IE attempts have demon-
strated near-practical performance, the same sets
of patterns cannot be applied to different kinds of
information. A real-world task requires several
kinds of IE, thus manually engineering extraction
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patterns, which is tedious and time-consuming
process, is not really practical.

Techniques based on machine learning (Zhou et
al., 2005; Hao et al., 2005; Bunescu and Mooney,
2006) are expected to alleviate this problem in
manually crafted IE. However, in most cases, the
cost of manually crafting patterns is simply trans-
ferred to that for constructing a large amount of
training data, which requires tedious amount of
manual labor to annotate text.

To systematically reduce the necessary amount
of training data, we divided the task of construct-
ing extraction patterns into a subtask that general
natural language processing techniques can solve
and a subtask that has specific properties accord-
ing to the information to be extracted. The former
subtask is of full parsing (i.e. recognizing syntactic
structures of sentences), and the latter subtask is of
constructing specific extraction patterns (i.e. find-
ing clue words to extract information) based on the
obtained syntactic structures.

We adopted full parsing from various levels
of parsing, because we believe that it offers the
best utility to generalize sentences into normal-
ized syntactic relations. We also divided patterns
into components to improve recall and we intro-
duced machine learning with a Support Vector
Machine (SVM) to learn a prediction model us-
ing the matching results of extraction patterns. As
an actual IE task, we extracted pairs of interacting
protein names from biomedical text.

2 Full Parsing

2.1 Necessity for Full Parsing

A technique that many previous approaches have
used is shallow parsing (Koike et al., 2003; Yao
et al., 2004; Zhou et al., 2005). Their assertion is
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Distance Count (%) Sum (%)
−1 54 5.0 5.0
0 8 0.7 5.7
1 170 15.7 21.4
2–5 337 31.1 52.5
6–10 267 24.6 77.1
11– 248 22.9 100.0

Distance −1 means protein word has been annotated as in-
teracting with itself (e.g. “actin polymerization”). Distance 0
means words of the interacting proteins are directly next to
one another. Multi-word protein names are concatenated as
long as they do not cross tags to annotate proteins.

Table 1: Distance between Interacting Proteins

that shallow parsers are more robust and would be
sufficient for IE. However, their claims that shal-
low parsers are sufficient, or that full parsers do
not contribute to application tasks, have not been
fully proved by experimental results.

Zhou et al. (2005) argued that most informa-
tion useful for IE derived from full parsing was
shallow. However, they only used dependency
trees and paths on full parse trees in their experi-
ment. Such structures did not include information
of semantic subjects/objects, which full parsing
can recognize. Additionally, most relations they
extracted from the ACE corpus (Linguistic Data
Consortium, 2005) on broadcasts and newswires
were within very short word-distance (70% where
two entities are embedded in each other or sep-
arated by at most one word), and therefore shal-
low information was beneficial. However, Table 1
shows that the word distance is long between in-
teracting protein names annotated on the AImed
corpus (Bunescu and Mooney, 2004), and we have
to treat long-distance relations for information like
protein-protein interactions.

Full parsing is more effective for acquiring gen-
eralized data from long-length words than shallow
parsing. The sentences at left in Figure 1 exem-
plify the advantages of full parsing. The gerund
“activating” in the last sentence takes a non-local
semantic subject “ENTITY1”, and shallow parsing
cannot recognize this relation because “ENTITY1”
and “activating” are in different phrases. Full pars-
ing, on the other hand, can identify both the sub-
ject of the whole sentence and the semantic subject
of “activating” have been shared.

2.2 Predicate-argument Structures

We applied Enju (Tsujii Laboratory, 2005a) as
a full parser which outputs predicate-argument
structures (PASs). PASs are well normalized

forms that represent syntactic relations. Enju
is based on Head-driven Phrase Structure Gram-
mar (Sag and Wasow, 1999), and it has been
trained on the Penn Treebank (PTB) (Marcus et
al., 1994) and a biomedical corpus, the GENIA
Treebank (GTB) (Tsujii Laboratory, 2005b). We
used a part-of-speech (POS) tagger trained on the
GENIA corpus (Tsujii Laboratory, 2005b) as a
preprocessor for Enju. On predicate-argument re-
lations, Enju achieved 88.0% precision and 87.2%
recall on PTB, and 87.1% precision and 85.4% re-
call on GTB.

The illustration at right in Figure 1 is a PAS
example, which represents the relation between
“activate”, “ENTITY1” and “ENTITY2” of all sen-
tences to the left. The predicate and its argu-
ments are words converted to their base forms,
augmented by their POSs. The arrows denote
the connections from predicates to their arguments
and the types of arguments are indicated as arrow
labels, i.e., ARGn (n = 1, 2, . . .), MOD. For ex-
ample, the semantic subject of a transitive verb is
ARG1 and the semantic object is ARG2.

What is important here is, thanks to the strong
normalization of syntactic variations, that we can
expect that the construction algorithm for extract-
ing patterns that works on PASs will need a much
smaller training corpus than those working on
surface-word sequences. Furthermore, because of
the reduced diversity of surface-word sequences at
the PAS level, any IE system at this level should
demonstrate improved recall.

3 Related Work

Sudo et al. (2003), Culotta and Sorensen (2004)
and Bunescu and Mooney (2005) acquired sub-
structures derived from dependency trees as ex-
traction patterns for IE in general domains. Their
approaches were similar to our approach using
PASs derived from full parsing. However, one
problem with their systems is that they could
not treat non-local dependencies such as seman-
tic subjects of gerund constructions (discussed in
Section 2), and thus rules acquired from the con-
structions were partial.

Bunescu and Mooney (2006) also learned ex-
traction patterns for protein-protein interactions
by SVM with a generalized subsequence kernel.
Their patterns are sequences of words, POSs, en-
tity types, etc., and they heuristically restricted
length and word positions of the patterns. Al-
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ENTITY1 recognizes and activates ENTITY2.
ENTITY2 activated by ENTITY1 are not well characterized.
The herpesvirus encodes a functional ENTITY1 that activates human ENTITY2.
ENTITY1 can functionally cooperate to synergistically activate ENTITY2.
The ENTITY1 plays key roles by activating ENTITY2.

ENTITY1/NN activate/VB ENTITY2/NNARG1 ARG2
Figure 1: Syntactical Variations of “activate”

though they achieved about 60% precision and
about 40% recall, these heuristic restrictions could
not be guaranteed to be applied to other IE tasks.

Hao et al. (2005) learned extraction patterns
for protein-protein interactions as sequences of
words, POSs, entity tags and gaps by dynamic
programming, and reduced/merged them using a
minimum description length-based algorithm. Al-
though they achieved 79.8% precision and 59.5%
recall, sentences in their test corpus have too
many positive instances and some of the pat-
terns they claimed to have been successfully con-
structed went against linguistic or biomedical in-
tuition. (e.g. “ENTITY1 and interacts with EN-
TITY2” should be replaced by a more general pat-
tern because they aimed to reduce the number of
patterns.)

4 Method

We automatically construct patterns to extract
protein-protein interactions from an annotated
training corpus. The corpus needs to be tagged to
denote which protein words are interacting pairs.

We follow five steps in constructing extraction
patterns from the training corpus. (1) Sentences
in the training corpus are parsed into PASs and
we extract raw patterns from the PASs. (2) We
divide the raw patterns to generate both combi-
nation and fragmental patterns. Because obtained
patterns include inappropriate ones (wrongly gen-
erated or too general), (3) we apply both kinds of
patterns to PASs of sentences in the training cor-
pus, (4) calculate the scores for matching results
of combination patterns, and (5) make a prediction
model with SVM using these matching results and
scores.

We extract pairs of interacting proteins from a
target text in the actual IE phase, in three steps.
(1) Sentences in the target corpus are parsed into
PASs. (2) We apply both kinds of extraction pat-
terns to these PASs and (3) calculate scores for
combination pattern matching. (4) We use the pre-
diction model to predict interacting pairs.

ENTITY1 ENTITY2CD4/NN protein/NN interact/VBwith/IN polymorphic/JJ region/NN of/INMHCII/NNMOD ARG1 ARG1 ARG2 ARG1 ARG2
ARG1

Parsing Result

Raw Pattern

CD4 protein interacts with polymorphic regions of MHCII .ENTITY1 ENTITY2Sentence in Training Corpus

protein/NN interact/VBwith/IN region/NN of/INMOD ARG1 ARG1 ARG2 ARG1 ARG2

(1) (2) (3) (4) (5) (6)p0p0 p1p1 p2p2 p3p3 p4p4 p5p5 p6p6
ENTITY2/NNENTITY1/NN

Figure 2: Extraction of Raw Pattern

4.1 Full Parsing and Extraction of Raw
Patterns

As the first step in both the construction phase and
application phase of extraction patterns, we parse
sentences into PASs using Enju.1 We label all
PASs of the protein names as protein PASs.

After parsing, we extract the smallest set of
PASs, which connect words that denote interact-
ing proteins, and make it a raw pattern. We take
the same method to extract and refine raw patterns
as Yakushiji et al. (2005). Connecting means we
can trace predicate-argument relations from one
protein word to the other in an interacting pair.
The procedure to obtain a raw pattern (p0, . . . , pn)
is as follows:
predicate(p): PASs that have p as their argument
argument(p): PASs that p has as its arguments

1. pi = p0 is the PAS of a word correspondent
to one of interacting proteins, and we obtain
candidates of the raw pattern as follows:

1-1. If pi is of the word of the other interact-
ing protein, (p0, . . . , pi) is a candidate
of the raw pattern.

1-2. If not, make pattern candidates
for each pi+1 ∈ predicate(pi) ∪
argument(pi) − {p0, . . . , pi} by
returning to 1-1.

2. Select the pattern candidate of the smallest
set as the raw pattern.

1Before parsing, we concatenate each multi-word protein
name into the one word as long as the concatenation does not
cross name boundaries.
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3. Substitute variables (ENTITY1, ENTITY2) for
the predicates of PASs correspondent to the
interacting proteins.

The lower part of Figure 2 shows an example
of the extraction of a raw pattern. “CD4” and
“MHCII” are words representing interacting pro-
teins. First, we set the PAS of “CD4” as p0.
argument(p0) includes the PAS of “protein”, and
we set it as p1 (in other words, tracing the arrow
(1)). Next, predicate(p1) includes the PAS of “in-
teract” (tracing the arrow (2) back), so we set it
as p2. We continue similarly until we reach the
PAS of “MHCII” (p6). The result of the extracted
raw pattern is the set of p0, . . . , p6 with substitut-
ing variables ENTITY1 and ENTITY2 for “CD4”
and “MHCII”.

There are some cases where an extracted raw
pattern is not appropriate and we need to re-
fine it. One case is when unnecessary coordi-
nations/parentheses are included in the pattern,
e.g. two interactions are described in a combined
representation (“ENTITY1 binds this protein and
ENTITY2”). Another is when two interacting pro-
teins are connected directly by a conjunction or
only one protein participates in an interaction. In
such cases, we refine patterns by unfolding of co-
ordinations/parentheses and extension of patterns,
respectively. We have omitted detailed explana-
tions because of space limitations. The details are
described in the work of Yakushiji et al. (2005).

4.2 Division of Patterns
Division for generating combination patterns is
based on observation of Yakushiji et al. (2005) that
there are many cases where combinations of verbs
and certain nouns form IE patterns. In the work
of Yakushiji et al. (2005), we divided only patterns
that include only one verb. We have extended the
division process to also treat nominal patterns or
patterns that include more than one verb.

Combination patterns are not appropriate for
utilizing individual word information because they
are always used in rather strictly combined ways.
Therefore we have newly introduced fragmental
patterns which consist of independent PASs from
raw patterns, in order to use individual word infor-
mation for higher recall.

4.2.1 Division for Generating Combination
Patterns

Raw patterns are divided into some compo-
nents and the components are combined to con-

ENTITY1/NN protein/NN interact/VBwith/IN region/NNof/INENTITY2/NNMOD ARG1 ARG1 ARG2 ARG1 ARG2

*/VBwith/INARG1ARG2*/NN
ENTITY/NN protein/NNMOD region/NN of/INENTITY/NNARG1 ARG2

interact/VBARG1
=

*/NN
*/VBARG1*/NN=

$X

$X
Main

Prep
Entity Entity

Entity
MainEntity Main

Main

Entity

Raw Pattern
Combination Pattern

Figure 3: Division of Raw Pattern into Combina-
tion Pattern Components (Entity-Main-Entity)

struct combination patterns according to types of
the division. There are three types of division of
raw patterns for generating combination patterns.
These are:

(a) Two-entity Division
(a-1) Entity-Main-Entity Division
(a-2) Main-Entity-Entity Division

(b) Single-entity Division, and
(c) No Division (Naive Patterns).

Most raw patterns, where entities are at both
ends of the patterns, are divided into Entity-Main-
Entity. Main-Entity-Entity are for the cases where
there are PASs other than entities at the ends of
the patterns (e.g. “interaction between ENTITY1
and ENTITY2”). Single-entity is a special Main-
Entity-Entity for interactions with only one partic-
ipant (e.g. “ENTITY1 dimerization”).

There is an example of Entity-Main-Entity divi-
sion in Figure 3. First, the main component from
the raw pattern is the syntactic head PAS of the
raw pattern. If the raw pattern corresponds to a
sentence, the syntactic head PAS is the PAS of the
main verb. We underspecify the arguments of the
main component, to enable them to unify with the
PASs of any words with the same POSs. Next, if
there are PASs of prepositions connecting to the
main component, they become prep components.
If there is no PAS of a preposition next to the main
component on the connecting link from the main
component to an entity, we make the pseudo PAS
of a null preposition the prep component. The left
prep component ($X) in Figure 3 is a pseudo PAS
of a null preposition. We also underspecify the ar-
guments of prep components. Finally, the remain-
ing two parts, which are typically noun phrases, of
the raw pattern become entity components. PASs
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corresponding to the entities of the original pair
are labeled as only unifiable with the entities of
other pairs.

Main-Entity-Entity division is similar, except
we distinguish only one prep component as a
double-prep component and the PAS of the coor-
dinate conjunction between entities becomes the
coord component. Single-entity division is simi-
lar to Main-Entity-Entity division and the differ-
ence is that single-entity division produces no co-
ord and one entity component. Naive patterns are
patterns without division, where no division can be
applied (e.g. “ENTITY1/NN in/IN complexes/NN
with/IN ENTITY2/NN”).

All PASs on boundaries of components are la-
beled to determine which PAS on a boundary of
another component can be unified. Labels are rep-
resented by subscriptions in Figure 3. These re-
strictions on component connection are used in the
step of constructing combination patterns.

Constructing combination patterns by combin-
ing components is equal to reconstructing orig-
inal raw patterns with the original combination
of components, or constructing new raw patterns
with new combinations of components. For exam-
ple, an Entity-Main-Entity pattern is constructed
by combination of any main, any two prep and any
two entity components. Actually, this construction
process by combination is executed in the pattern
matching step. That is, we do not off-line con-
struct all possible combination patterns from the
components and only construct the combination
patterns that are able to match the target.

4.2.2 Division for Generating Fragmental
Patterns

A raw pattern is splitted into individual PASs
and each PAS becomes a fragmental pattern. We
also prepare underspecified patterns where one or
more of the arguments of the original are under-
specified, i.e., are able to match any words of
the same POSs and the same label of protein/not-
protein. We underspecify the PASs of entities in
fragmental patterns to enable them to unify with
any PASs with the same POSs and a protein la-
bel, although in combination patterns we retain the
PASs of entities as only unifiable with entities of
pairs. This is because fragmental patterns are de-
signed to be less strict than combination patterns.

4.3 Pattern Matching

Matching of combination patterns is executed as
a process to match and combine combination pat-
tern components according to their division types
(Entity-Main-Entity, Main-Entity-Entity, Single-
entity and No Division). Fragmental matching is
matching all fragmental patterns to PASs derived
from sentences.

4.4 Scoring for Combination Matching

We next calculate the score of each combination
matching to estimate the adequacy of the combina-
tion of components. This is because new combina-
tion of components may form inadequate patterns.
(e.g. “ENTITY1 be ENTITY2” can be formed of
components from “ENTITY1 be ENTITY2 recep-
tor”.) Scores are derived from the results of com-
bination matching to the source training corpus.

We apply the combination patterns to the train-
ing corpus, and count pairs of True Positives (TP)
and False Positives (FP). The scores are calculated
basically by the following formula:

Score = TP/(TP + FP ) + α× TP

This formula is based on the precision of the pat-
tern on the training corpus, i.e., an estimated pre-
cision on a test corpus. α works for smoothing,
that is, to accept only patterns of large TP when
FP = 0. α is set as 0.01 empirically. The formula
is similar to the Apriori algorithm (Agrawal and
Srikant, 1995) that learns association rules from a
database. The first term corresponds to the confi-
dence of the algorithm, and the second term corre-
sponds to the support.

For patterns where TP = FP = 0, which
are not matched to PASs in the training corpus
(i.e., newly produced by combinations of com-
ponents), we estimates TP ′ and FP ′ by using
the confidence of the main and entity compo-
nents. This is because main and entity components
tend to contain pattern meanings, whereas prep,
double-prep and coord components are rather
functional. The formulas to calculate the scores
for all cases are:

Score =

8

>

>

>

>

>

<

>

>

>

>

>

:

TP/(TP + FP ) + α× TP

(TP + FP ̸= 0)

TP ′/(TP ′ + FP ′)

(TP = FP = 0, TP ′ + FP ′ ̸= 0)

0 (TP = FP = TP ′ = FP ′ = 0)
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Combination Pattern
(1) Combination of components in combination

matching
(2) Main component in combination matching
(3) Entity components in combination matching
(4) Score for combination matching (SCORE)
Fragmental Pattern
(5) Matched fragmental patterns
(6) Number of PASs of example that are not matched

in fragmental matching
Raw Pattern
(7) Length of raw pattern derived from example

Table 2: Features for SVM Learning of Prediction
Model

TP ′ =
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TP ′
main + TP ′

entity1(+TP ′
entity2)

(for Two-entity, Single-entity)

0 (for Naive)

FP ′ = (similar to TP ′ but TP ′
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TPmain:two/(TPmain:two + FPmain:two)
 

TPmain:two + FPmain:two ̸= 0,

for Two-entity

!

TPmain:single/(TPmain:single + FPmain:single)
 

TPmain:single + FPmain:single ̸= 0,

for Single-entity

!

0 (other cases)

TP ′
entityi =

8

>

<

>

:

TPentityi/(TPentityi + FPentityi)
“

TPentityi + FPentityi ̸= 0
”

0 (other cases)

FP ′
x =

„

similar to TP ′
x but TP ′

y in the
numerators is replaced by FP ′

y

«

• TP : number of TPs by the combination of components
• TPmain:two: sum of TPs by two-entity combinations

that include the same main component
• TPmain:single: sum of TPs by single-entity combina-

tions that include the same main component
• TPentityi: sum of TPs by combinations that include

the same entity component which is not the straight en-
tity component

• FPx: similar to TPx but TP is replaced by FP

The entity component “ENTITY/NN”, which
only consists of the PAS of an entity, adds no infor-
mation to combinations of components. We call
this component a straight entity component and
exclude its effect from the scores.

4.5 Construction of Prediction Model
We use an SVM to learn a prediction model to de-
termine whether a new protein pair is interacting.
We used SV M light (Joachims, 1999) with an rbf
kernel, which is known as the best kernel for most
tasks. The prediction model is based on the fea-
tures of Table 2.
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Figure 4: Results of IE Experiment

ENTITY1FGF-2/NN bind well to FGFR1 but interact/VB with/INpoorly/RB ENTITY2KGFR/NNARG1 ARG1 ARG2
Figure 5: Example Demonstrating Advantages of
Full Parsing

5 Results and Discussion

5.1 Experimental Results on the AImed
Corpus

To evaluate extraction patterns automatically con-
structed with our method, we used the AImed cor-
pus, which consists of 225 MEDLINE (U.S. Na-
tional Library of Medicine, 2006) abstracts (1969
sentences) annotated with protein names and
protein-protein interactions, for the training/test
corpora. We used tags for the protein names given.

We measured the accuracy of the IE task using
the same criterion as Bunescu and Mooney (2006),
who used an SVM to construct extraction patterns
on word/POS/type sequences from the AImed cor-
pus. That is, an extracted interaction from an ab-
stract is correct if the proteins are tagged as inter-
acting with each other somewhere in that abstract
(document-level measure).

Figure 4 plots our 10-fold cross validation and
the results of Bunescu and Mooney (2006). The
line ALL represents results when we used all fea-
tures for SVM learning. The line SCORE repre-
sents results when we extracted pairs with higher
combination matching scores than various thresh-
old values. And the line ERK represents results
by Bunescu and Mooney (2006).

The line ALL obtained our best overall F-
measure 57.3%, with 71.8% precision and 48.4%
recall. Our method was significantly better than
Bunescu and Mooney (2006) for precision be-
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tween 50% and 80%. It also needs to be noted
that SCORE, which did not use SVM learning
and only used the combination patterns, achieved
performance comparable to that by Bunescu and
Mooney (2006) for the precision range from 50%
to 80%. And for this range, introducing the frag-
mental patterns with SVM learning raised the re-
call. This range of precision is practical for the
IE task, because precision is more important than
recall for significant interactions that tend to be
described in many abstracts (as shown by the
next experiment), and too-low recall accompa-
nying too-high precision requires an excessively
large source text.

Figure 5 shows the advantage of introducing
full parsing. “FGF-2” and “KGFR” is an interact-
ing protein pair. The pattern “ENTITY1 interact
with ENTITY2” based on PASs successfully ex-
tracts this pair. However, it is difficult to extract
this pair with patterns based on surface words, be-
cause there are 5 words between “FGF-2” and “in-
teract”.

5.2 Experimental Results on Abstracts of
MEDLINE

We also conducted an experiment to extract in-
teracting protein pairs from a large amount of
biomedical text, i.e. about 14 million titles and
8 million abstracts in MEDLINE. We constructed
combination patterns from all 225 abstracts of the
AImed corpus, and calculated a threshold value
of combination scores that produced about 70%
precision and 30% recall on the training corpus.
We extracted protein pairs with higher combi-
nation scores than the threshold value. We ex-
cluded single-protein interactions to reduce time
consumption and we used a protein name recog-
nizer in this experiment2.

We compared the extracted pairs with a man-
ually curated database, Reactome (Joshi-Tope et
al., 2005), which published 16,564 human pro-
tein interaction pairs as pairs of Entrez Gene
IDs (U.S. National Library of Medicine, 2006).
We converted our extracted protein pairs into pairs
of Entrez Gene IDs by the protein name recog-
nizer.3 Because there may be pairs missed by Re-

2Because protein names were recognized after the pars-
ing, multi-word protein names were not concatenated.

3Although the same protein names are used for humans
and other species, these are considered to be human proteins
without checking the context. This is a fair assumption be-
cause Reactome itself infers human interaction events from
experiments on model organisms such as mice.

Total 89
Parsing Error/Failure 35

(Related to coordinations) (14)
Lack of Combination Pattern Component 33
Requiring Anaphora Resolution 9
Error in Prediction Model 8
Requiring Attributive Adjectives 5
Others 10

More than one cause can occur in one error, thus the sum of
all causes is larger than the total number of False Negatives.

Table 3: Causes of Error for FNs

actome or pairs that our processed text did not in-
clude, we excluded extracted pairs of IDs that are
not included in Reactome and excluded Reactome
pairs of IDs that do not co-occur in the sentences
of our processed text.

After this postprocessing, we found that we had
extracted 7775 human protein pairs. Of them, 155
pairs were also included in Reactome ([a] pseudo
TPs) and 7620 pairs were not included in Reac-
tome ([b] pseudo FPs). 947 pairs of Reactome
were not extracted by our system ([c] pseudo False
Negatives (FNs)). However, these results included
pairs that Reactome missed or those that only co-
occurred and were not interacting pairs in the text.
There may also have been errors with ID assign-
ment.

To determine such cases, a biologist investi-
gated 100 pairs randomly selected from pairs of
pseudo TPs, FPs and FNs retaining their ratio of
numbers. She also checked correctness of the as-
signed IDs. 2 pairs were selected from pseudo
TPs, 88 pairs were from pseudo FPs and 10 pairs
were from pseudo FNs. The biologist found that
57 pairs were actual TPs (2 pairs of pseudo TPs
and 55 pairs of pseudo FPs) and 32 pairs were ac-
tual FPs of the pseudo FPs. Thus, the precision
was 64.0% in this sample set. Furthermore, even
if we assume that all pseudo FNs are actual FNs,
the recall can be estimated by actual TPs / (actual
TPs + pseudo FNs) × 100 = 83.8%.

These results mean that the recall of an IE sys-
tem for interacting proteins is improved for a large
amount of text even if it is low for a small corpus.
Thus, this justifies our assertion that a high degree
of precision in the low-recall range is important.

5.3 Error Analysis

Tables 3 and 4 list causes of error for FNs/FPs on
a test set of the AImed corpus using the predic-
tion model with the best F-measure with all the
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Total 35
Requiring Attributive Adjectives 13
Corpus Error 11
Error in Prediction Model 5
Requiring Negation Words 2
Parsing Error 1
Others 3
Table 4: Causes of Error for FPs

features. Different to Subsection 5.1, we individ-
ually checked each occurring pair of interacting
proteins. The biggest problems were parsing er-
ror/failure, lack of necessary patterns and learning
of inappropriate patterns.

5.3.1 Parsing Error

As listed in Table 3, 14 (40%) of the 35 pars-
ing errors/failures were related to coordinations.
Many of these were caused by differences in the
characteristics of the PTB/GTB, the training cor-
pora for Enju, and the AImed Corpus. For ex-
ample, Enju failed to obtain the correct structure
for “the ENTITY1 / ENTITY1 complex” because
words in the PTB/GTB are not segmented with
“/” and Enju could not be trained on such a case.
One method to solve this problem is to avoid seg-
menting words with “/” and introducing extraction
patterns based on surface characters, such as “EN-
TITY1/ENTITY2 complex”.

Parsing errors are intrinsic problems to IE meth-
ods using parsing. However, from Table 3, we can
conclude that the key to gaining better accuracy
is refining of the method with which the PAS pat-
terns are constructed (there were 46 related FNs)
rather than improving parsing (there were 35 FNs).

5.3.2 Lack of Necessary Patterns and
Learning of Inappropriate Patterns

There are two different reasons causing the
problems with the lack of necessary patterns and
the learning of inappropriate patterns: (1) the
training corpus was not sufficiently large to sat-
urate IE accuracy and (2) our method of pattern
construction was too limited.

Effect of Training Corpus Size To investigate
whether the training corpus was large enough to
maximize IE accuracy, we conducted experiments
on training corpora of various sizes. Figure 6 plots
graphs of F-measures by SCORE and Figure 7
plots the number of combination patterns on train-
ing corpora of various sizes. From Figures 6 and 7,
the training corpus (207 abstracts at a maximum)
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is not large enough. Thus increasing corpus size
will further improve IE accuracy.

Limitation of the Present Pattern Construc-
tion The limitations with our pattern construc-
tion method are revealed by the fact that we
could not achieve a high precision like Bunescu
and Mooney (2006) within the high-recall range.
Compared to theirs, one of our problems is that our
method could not handle attributives. One exam-
ple is “binding property of ENTITY1 to ENTITY2”.
We could not obtain “binding” because the small-
est set of PASs connecting “ENTITY1” and “EN-
TITY2” includes only the PASs of “property”, “of”
and “to”. To handle these attributives, we need dis-
tinguish necessary attributives from those that are
general4 by semantic analysis or bootstrapping.

Another approach to improve our method is to
include local information in sentences, such as
surface words between protein names. Zhao and
Grishman (2005) reported that adding local infor-
mation to deep syntactic information improved IE
results. This approach is also applicable to IE in
other domains, where related entities are in a short

4Consider the case where a source sentence for a pattern is
“ENTITY1 is an important homodimeric protein.” (“homod-
imeric” represents that two molecules of “ENTITY1” interact
with each other.)
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distance like the work of Zhou et al. (2005).

6 Conclusion

We proposed the use of PASs to construct pat-
terns as extraction rules, utilizing their ability to
abstract syntactical variants with the same rela-
tion. In addition, we divided the patterns for gen-
eralization, and used matching results for SVM
learning. In experiments on extracting of protein-
protein interactions, we obtained 71.8% precision
and 48.4% recall on a small corpus and 64.0% pre-
cision and 83.8% recall estimated on a large text,
which demonstrated the obvious advantages of our
method.
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