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Abstract 

In this paper, we explore the use of struc-
tured content as semantic constraints for 
enhancing the performance of traditional 
term-based document retrieval in special 
domains. First, we describe a method for 
automatic extraction of semantic content 
in the form of attribute-value (AV) pairs 
from natural language texts based on 
domain models constructed from a semi-
structured web resource. Then, we ex-
plore the effect of combining a state-of-
the-art term-based IR system and a sim-
ple constraint-based search system that 
uses the extracted AV pairs. Our evalua-
tion results have shown that such combi-
nation produces some improvement in IR 
performance over the term-based IR sys-
tem on our test collection. 

1 Introduction 

The questions of where and how sophisticated 
natural language processing techniques can im-
prove traditional term-based information re-
trieval have been explored for more than a dec-
ade. A considerable amount of work has been 
carried out that seeks to leverage semantic in-
formation for improving traditional IR. Early 
TREC systems such as INQUERY handled both 
natural language and semi-structured queries and 
tried to search for constraint expressions for 
country and time etc. in queries (Croft et al., 
1994). Later work, as discussed in (Strzalkowski 
et al., 1996), has focused on exploiting semantic 
information at the word level, including various 
attempts at word-sense disambiguation, e.g., 
(Voorhees, 1998), or the use of special-purpose 
terms; other approaches have looked at phrase-
level indexing or full-text query expansion. No 
approaches to date, however, have sought to em-
ploy semantic information beyond the word 

level, such as that expressed by attribute-value 
(AV) pairs, to improve term-based IR.  

Attribute-value pairs offer an abstraction for 
instances of many application domains. For ex-
ample, a person can be represented by a set of 
attributes such as name, date-of-birth, job title, 
and home address, and their associated values; a 
house has a different set of attributes such as ad-
dress, size, age and material; many product 
specifications can be mapped directly to AV 
pairs. AV pairs represent domain specific seman-
tic information for domain instances. 

Using AV pairs as semantic constraints for re-
trieval is related to some recent developments in 
areas such as Semantic Web retrieval, XML 
document retrieval, and the integration of IR and 
databases. In these areas, structured information 
is generally assumed. However, there is abundant 
and rich information that exists in unstructured 
text only. The goal of this work includes first to 
explore a method for automatically extracting 
structured information in the form of AV pairs 
from text, and then to utilize the AV pairs as se-
mantic constraints for enhancing traditional 
term-based IR systems. 

The paper is organized as follows. Section 2 
describes our method of adding AV annotations 
to text documents that utilizes a domain model 
automatically extracted from the Web. Section 3 
presents two IR systems using a vector space 
model and semantic constraints respectively, as 
well as a system that combines the two. Section 4 
describes the data set and topic set for evaluating 
the IR systems. In Section 5, we compare the 
performance of the three IR systems, and draw 
initial conclusions on how NLP techniques can 
improve traditional IR in specific domains. 

2 Domain-Driven AV Extraction 

This section describes a method that automati-
cally discovers attribute-value structures from 
unstructured texts, the result of which is repre-
sented as texts annotated with semantic tags.   
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We chose the digital camera domain to illus-
trate and evaluate the methodology described in 
this paper. We expect this method to be applica-
ble to all domains whose main features can be 
represented as a set of specifications.  

2.1 Construction of Domain Model 

A domain model (DM) specifies a terminology 
of concepts, attributes and values for describing 
objects in a domain. The relationships between 
the concepts in such a model can be heterogene-
ous (e.g., the link between two concepts can 
mean inheritance or containment).  In this work, 
a domain model is used for establishing a vo-
cabulary as well as for establishing the attribute-
value relationship between phrases.  

For the digital camera domain, we automati-
cally constructed a domain model from existing 
Web resources. Web sites such as epinions.com 
and dpreview.com generally present information 
about cameras in HTML tables generated from 
internal databases. By querying these databases 
and extracting table content from the dynamic 
web pages, we can automatically reconstruct the 
databases as domain models that could be used 
for NLP purposes. These models can optionally 
be organized hierarchically. Although domain 
models generated from different websites of the 
same domain are not exactly the same, they often 
share many common features.  

From the epinions.com product specifications 
for 1157 cameras, we extracted a nearly compre-
hensive domain model for digital cameras, con-
sisting of a set of attributes (or features) and their 
possible values. A portion of the model is repre-
sented as follows: 

{Digital Camera} 

    <Brand> <Price> <Lens> 

{Brand} 

    (57) Canon 

    (33) Nikon 

{Price} $ 

    (136) 100 - 200 

    (100) >= 400 

{Lens} 

    <Optical Zoom> <Focus Range> 

{Optical Zoom} x 

    (17) 4 

    (3) 2.5 

{Focus Range} in., ” 

    (2) 3.9 - infinity 

    (1) 12 - infinity 

In this example, attributes are shown in curly 
brackets and sub-attributes in angle brackets. 
Attributes are followed by possible units for their 
numerical values. Values come below the attrib-
utes, headed by their frequencies in all specifica-

tions. The frequency information (in parentheses) 
is used to calculate term weights of attributes and 
values. 

Specifications in HTML tables generally do 
not specify explicitly the type restrictions on val-
ues (even though the types are typically defined 
in the underlying databases).  As type restrictions 
contain important domain information that is 
useful for value extraction, we recover the type 
restrictions by identifying patterns in values. For 
example, attributes such as price or dimension 
usually have numerical values, which can be ei-
ther a single number (“$300”), a range (“$100 - 
$200”), or a multi-dimensional value (“4 in. x 3 
in. x 2 in.”), often accompanied by a unit, e.g., $ 
or inches, whereas attributes such as brand and 
accessory usually have string values, e.g., 
“Canon” or “battery charger”.  

We manually compile a list of units for identi-
fying numerical values, which is partially do-
main general. We identify range and multi-
dimensional values using such patterns as “A – 
B”, “A to B”, “less than A”, and “A x B”, etc. 
Numerical values are then normalized to a uni-
form format. 

2.2 Identification of AV Pairs 

Based on the constructed domain model, we can 
identify domain values in unstructured texts and 
assign attribute names and domains to them. We 
focus on extracting values of a domain attribute.  
Attribute names appearing by themselves are not 
of interest here because attribute names alone 
cannot establish attribute-value relations. How-
ever, identification of attribute names is neces-
sary for disambiguation. 

The AV extraction procedure contains the fol-
lowing steps: 

1. Use MINIPAR (Lin, 1998) to generate 
dependency parses of texts. 

2. For all noun phrase chunks in parses, it-
eratively match sub-phrases of each 
chunk with the domain model to find all 
possible matches of attribute names and 
values above a threshold: 

• A chunk contains all words up to 
the noun head (inclusive); 

• Post-head NP components (e.g., 
PP and clauses) are treated as 
separate chunks. 

3. Disambiguate values with multiple at-
tribute assignments using the sentence 
context, with a preference toward closer 
context based on dependency. 
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4. Mark up the documents with XML tags 
that represent AV pairs. 

Steps 2 and 3 are the center of the AV extrac-
tion process, where different strategies are em-
ployed to handle values of different types and 
where ambiguous values are disambiguated. We 
describe these strategies in detail below. 

Numerical Value 

Numerical values are identified based on the unit 
list and the range and multi-dimensional number 
patterns described earlier in Section 2.1. The 
predefined mappings between units and attrib-
utes suggest attribute assignment. It is possible 
that one unit can be mapped to multiple attrib-
utes.  For example, “x” can be mapped to either 
optical zoom or digital zoom, both of which are 
kept as possible candidates for future disam-
biguation. For range and multi-dimensional 
numbers, we find all attributes in the domain 
model that have at least one matched range or 
multi-dimensional value, and keep attributes 
identified by either a unit or a pattern as candi-
dates. Numbers without a unit can only be 
matched exactly against an existing value in the 
domain model. 

String Value 

Human users often refer to a domain entity in 
different ways in text. For example, a camera 
called “Canon PowerShot G2 Black Digital 
Camera” in our domain model is seldom men-
tioned exactly this way in ads or reviews, but 
rather as “Canon PowerShot G2”, “Canon G2”, 
etc.  However, a domain model generally only 
records full name forms rather than their all pos-
sible variations. This makes the identification of 
domain values difficult and invalidates the use of 
a trained classifier that needs training samples 
consisting of a large variety of name references. 

An added difficulty is that web texts often 
contain grammatical errors and incomplete sen-
tences as well as large numbers of out-of-
vocabulary words and, therefore, make the de-
pendency parses very noisy. As a result, effec-
tiveness of extraction algorithms based on certain 
dependency patterns can be adversely affected.  

Our approach makes use of the more accurate 
parser functionalities of part-of-speech tagging 
and phrase boundary detection, while reducing 
the reliance on low level dependency structures. 
For noun phrase chunks extracted from parse 
trees, we iteratively match all sub-phrases of 

each chunk with the domain model to find 
matching attributes and values above a threshold. 
It is often possible to find multiple AV pairs in a 
single NP chunk. 

Assigning domain attributes to an NP is essen-
tially a classification problem. In our domain 
model, each attribute can be seen as a target class 
and its values as the training set. For a new 
phrase, the idea is to find the value in the domain 
model that is most similar and then assign the 
attribute of this nearest neighbor to the phrase. 
This motivates us to adopt K Nearest Neighbor 
(KNN) (Fix and Hodges, 1951) classification for 
handling NP values. The core of KNN is a simi-
larity metric. In our case, we use word editing 
distance (Wagner and Fischer, 1974) that takes 
into account the cost of word insertions, dele-
tions, and substitutions. We compute word edit-
ing distance using dynamic programming tech-
niques. 

Intuitively, words do not carry equal weights 
in a domain. In the earlier example, words such 
as “PowerShot” and “G2” are more important 
than “digital” and “camera”, so editing costs for 
such words should be higher. This draws an 
analogy to the metric of Inverse Document Fre-
quency (IDF) in the IR community, used to 
measure the discriminative capability of a term 
in a document collection. If we regard each value 
string as a document, we can use IDF to measure 
the weight of each term in a value string to em-
phasize important domain terms and de-
emphasize more general ones. The normalized 
cost is computed as: 

)log(/)/log( TNNTN  

where TN is the total number of values for an 
attribute, and N is the number of values where a 
term occurs. This equation assigns higher cost to 
more discriminative terms and lower cost to 
more general terms.  It is also used to compute 
costs of terms in attribute names.  For words not 
appearing in a class the cost is 1, the maximum 
cost. 

The distance between a new phrase and a DM 
phrase is then calculated using word editing cost 
based on the costs of substitution, insertion, and 
deletion, where 

Costsub = (CostDM + Costnew) / 2 
Costins = Costnew 
Costdel = CostDM 
Costedit = min(Costsub, Costins, Costdel) 
 

where CostDM is the cost of a word in a domain 
value (i.e., its normalized IDF score), and Costnew 
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is that of a word in the new phrase. The cost is 
also normalized by the larger of the weighted 
lengths of the two phrases.  We use a threshold 
of 0.6 to cut off phrases with higher cost.  

For a phrase that returns only a couple of 
matches, the similarity, i.e., the matching prob-
ability, is computed as 1 - Costedit; otherwise, the 
similarity is the maximum likelihood of an at-
tribute based on the number of returned values 
belonging to this attribute. 

Disambiguation by Sentence Context 

The AV identification process often returns mul-
tiple attribute candidates for a phrase that needs 
to be further disambiguated. The words close to 
the phrase usually provide good indications of 
the correct attribute names. Motivated by this 
observation, we design the disambiguation pro-
cedure as follows. First we examine the sibling 
nodes of the target phrase node in the depend-
ency structure for a mention of an attribute name 
that overlaps with a candidate. Next, we recur-
sively traverse upwards along the dependency 
tree until we find an overlap or reach the top of 
the tree. If an overlap is found, that attribute be-
comes the final assignment; otherwise, the at-
tribute with the highest probability is assigned. 
This method gives priority to the context closest 
(in terms of dependency) to the target phrase. For 
example, in the sentence “The 4x stepless digital 
zoom lets you capture intricate details” (parse 
tree shown below), “4x” can be mapped to both 
optical zoom and digital zoom, but the sentence 
context points to the second candidate.  

 

3 Document Retrieval Systems 

This section introduces three document retrieval 
systems: the first one retrieves unstructured texts 
based on vector space models, the second one 
takes advantage of semantic structures con-
structed by the methods in Section 2, and the last 
one combines the first two systems. 

3.1 Term-Based Retrieval (S1) 

Our system for term-based retrieval from un-
structured text is based on the CLARIT system, 
implementing a vector space retrieval model (Ev-

ans and Lefferts, 1995; Qu et al., 2005). The 
CLARIT system identifies terms in documents 
and constructs its index based on NLP-
determined linguistic constituents (NPs, sub-
phrases and words). The index is built upon full 
documents or variable-length subdocuments. We 
used subdocuments in the range of 8 to 12 sen-
tences as the basis for indexing and scoring 
documents in our experiments. 

Various similarity measures are supported in 
the model. For the experiments described in the 
paper, we used the dot product function for com-
puting similarities between a query and a docu-
ment: 

 
where WQ(t) is the weight associated with the 
query term t and WD(t) is the weight associated 
with the term t in the document D. The two 
weights were computed as follows: 
 

 

where IDF and TF are standard inverse docu-
ment frequency and term frequency statistics, 
respectively. IDF(t) was computed with the tar-
get corpus for retrieval. The coefficient C(t) is an 
“importance coefficient”, which can be modified 
either manually by the user or automatically by 
the system (e.g., updated during feedback). 

For term-based document retrieval, we have 
also experimented with pseudo relevance feed-
back (PRF) with various numbers of retrieved 
documents and various numbers of terms from 
such documents for query expansion. While PRF 
did result in improvement in performance, it was 
not significant. This is probably due to the fact 
that in this restricted domain, there is not much 
vocabulary variation and thus the advantage of 
using query expansion is not fully realized. 

3.2 Constraint-Based Retrieval (S2) 

The constraint-based retrieval approach searches 
through the AV-annotated document collection 
based on the constraints extracted from queries. 
Given a query q, our constraint-based system 
scores each document in the collection by com-
paring the extracted AV pairs with the con-
straints in q. Suppose q has a constraint c(a, v) 
that restricts the value of the attribute a to v, 
where v can be either a concrete value (e.g., 5 
megapixels) or a range (e.g., less than $400). If a 

)()()()( tIDFtTFtCtW QQ ⋅⋅=

).()()( tIDFtTFtW DD ⋅=

).()(),( tWtWDQsim D

DQt

Q ⋅= ∑
∩∈
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is present in a document d with a value v’ that 
satisfies v, that is, v’= v if v is a concrete value or 
v’ falls in the range defined by v, d is given a 
positive score w. However, if v’ does not satisfy 
v, then d is given a negative score -w. No men-
tion of a does not change the score of d, except 
that, when c is a string constraint, we use a back-
off model that awards d a positive score w if it 
contains v as a substring. The final score of d 
given q is the sum of all scores for each con-
straint in q, normalized by the maximum score 

for q: ∑
=

n

i

iiwc
1

, where ci is one of the n con-

straints specified in q and wi its score. 
We rank the documents by their scores. This 

scoring schema facilitates a sensible cutoff point, 
so that a constraint-based retrieval system can 
return 0 or fewer than top N documents when a 
query has no or very few relevant documents.  

3.3 Combined Retrieval (S3) 

Lee (1997) analyzed multiple post-search data 
fusion methods using TREC3 ad hoc retrieval 
data and explained the combination of different 
search results on the grounds that different runs 
retrieve similar sets of relevant documents, but 
different sets of non-relevant documents. The 
combination methods therefore boost the ranks 
of the relevant documents. One method studied 
was the summation of individual similarities, 
which bears no significant difference from the 
best approach (i.e., further multiply the summa-
tion with the number of nonzero similarities). 

Our system therefore adopts the summation 
method for its simplicity. Because the scores 
from term-based and constraint-based retrieval 
are normalized, we simply add them together for 
each document retrieved by both approaches and 
re-rank the documents based on their new scores. 
More sophisticated combination methods can be 
explored here, such as deciding which score to 
emphasize based on the characterizations of the 
queries, e.g., whether a query has more numeri-
cal values or string values. 

4 Experimental Study 

In this section, we describe the experiments we 
performed to investigate combining terms and 
semantic constraints for document retrieval. 

4.1 Data Sets 

To construct a domain corpus, we used search 
results from craigslist.org.  We chose the “for 

sale – electronics” section for the “San Francisco 
Bay Area”.  We then submitted the search term 
“digital camera” in order to retrieve advertise-
ments.  After manually removing duplicates and 
expired ads, our corpus consisted of 437 ads 
posted between 2005-10-28 and 2005-11-07.  A 
typical ad is illustrated below, with a small set of 
XML tags specifying the fields of the title of the 
ad (title), date of posting (date), ad body (text), 
ad id (docno), and document (doc).  The length 
of the documents varies considerably, from 5 or 
6 sentences to over 70 (with specifications cop-
ied from other websites).  The ads have an aver-
age length of 230 words. 
 

<doc> 
<docno>docid519</docno> 
<title>brand new 12 mega pixel digital cam-
era</title> 
<date>2005-11-07,  8:27AM PST</date> 
<text> 

BRAND NEW 12 mega pixel digital cam-
era..............only $400, 
-12 Mega pixels (4000x3000) Max Resolution 
-2.0 Color LCD Display 
-8x Digital Zoom 
-16MB Built-In (internal) Memory 
-SD or MMC card (external) Memory 
-jpeg picture format 

ALSO COMES WITH SOFTWARE & CABLES 
</text> 

</doc> 
 

The test queries were constructed based on 
human written questions from the Digital Pho-
tography Review website (www.dpreview.com) 
Q&A forums, which contain discussions from 
real users about all aspects of digital photogra-
phy. Often, users ask for suggestions on purchas-
ing digital cameras and formulate their needs as a 
set of constraints. These queries form the base of 
our topic collection.  

The following is an example of such a topic 
manually annotated with the semantic constraints 
of interest to the user:  

<topic> 
<id>1</id> 
<query> 

I wanted to know what kind of Digital SLR cam-
era I should buy. I plan to spend nothing higher 
than $1500. I was told to check out the Nikon 
D70.  

</query> 
<constraint> 

<hard: type = “SLR” /> 
<hard: price le $1500 /> 
<soft: product_name = “Nikon D70” /> 

</constraint> 
</topic> 
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In this example, the user query text is in the 
query field and the manually extracted AV con-
straints based on the domain model are in the 
constraint field. Two types of constraints are 
distinguished: hard and soft. The hard constraints 
must be satisfied while the soft constraints can be 
relaxed. Manual determination of hard vs. soft 
constraints is based on the linguistic features in 
the text. Automatic constraint extraction goes 
one step beyond AV extraction for the need to 
identify relations between attributes and values, 
for example, “nothing higher than” indicates a 
“<=” relationship. Such constraints can be ex-
tracted automatically from natural text using a 
pattern-based method. However, we have yet to 
produce a rich set of patterns addressing con-
straints. In addition, such query capability can be 
simulated with a form-based parametric search 
interface. 

In order to make a fair comparison between 
systems, we use only phrases in the manually 
extracted constraints as queries to system S1. For 
the example topic, S1 extracted the NP terms 
“SLR”, “1500” and “Nikon D70”. During re-
trieval, a term is further decomposed into its sub-
terms for similarity matching. For instance, the 
term “Nikon D70” is decomposed into subterms 
“Nikon” and “D70” and thus documents that 
mention the individual subterms can be retrieved. 

For this topic, the system S2 produced annota-
tions as those shown in the constraint field.  

Table 1 gives a summary of the distribution 
statistics of terms and constraints for 30 topics 
selected from the Digital Photography Review 
website. 

 
 Average Min Max 

No. of terms 13.2 2 31 

No. of constraints 3.2 1 7 

No. of hard constraints 2.4 1 6 

No. of soft constraints 0.8 0 3 

No. of string constraints 1.4 0 5 

No. of numerical constraints 1.8 0 4 

Table 1: Summary of the distribution statistics of 

terms and constraints in the test topics 

 

4.2 Relevance Judgments 

Instead of using human subjects to give rele-
vance judgments for each document and query 
combination, we use a human annotator to mark 
up all AV pairs in each document, using the 
GATE annotation tool (Cunningham et al, 2002). 
The attribute set contains the 40 most important 
attributes for digital cameras based on automati-

cally computed term distributions in our data set. 
The inter-annotator agreement (without annotator 
training) as measured by Kappa is 0.72, which 
suggests satisfactory agreement.  

Annotating AV pairs in all documents gives us 
the capability of making relevance judgments 
automatically, based on the number of matches 
between the AV pairs in a document and the 
constraints in a topic. This automatic approach is 
reasonable because unlike TREC queries which 
are short and ambiguous, the queries in our ap-
plication represent very specific information 
needs and are therefore much longer. The lack of 
ambiguity makes our problem closer to boolean 
search with structured queries like SQL than tra-
ditional IR search. In this case, a human assessor 
should give the same relevance judgments as our 
automatic system if they follow the same instruc-
tions closely. An example instruction could be “a 
document is relevant if it describes a digital cam-
era whose specifications satisfy at least one con-
straint in the query, otherwise it is not relevant” 
(similar to the narrative field of a TREC topic).  

We specify two levels of relevance: strict and 
relaxed. Strict means that all hard constraints of a 
topic have to be satisfied for a document to be 
relevant to the topic, whereas relaxed means that 
at least half of the hard constraints have to be 
satisfied. Soft constraints play no role in a rele-
vance judgment. The advantage of the automatic 
approach is that when the levels of relevance are 
modified for different application purposes, the 
relevance judgment can be recomputed easily, 
whereas in the manual approach, the human as-
sessor has to examine all documents again. 
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Figure 1: Distribution of relevant documents 

across topics for relaxed and strict judgments 

 

Figure 1 shows the distributions of the rele-
vant documents for the test topic set.  With strict 
judgments, only 20 out of the 30 topics have 
relevant documents, and among them 6 topics 
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have fewer than 10 relevant documents. The top-
ics with many constraints are likely to result in 
low numbers of relevant documents. The average 
numbers of relevant documents for the set are 
57.3 for relaxed judgments, and 18 for strict 
judgments.  

5  Results and Discussion 

Our goal is to explore whether using semantic 
information would improve document retrieval, 
taking into account the errors introduced by se-
mantic processing. We therefore evaluate two 
aspects of our system: the accuracy of AV ex-
traction and the precision of document retrieval.  

5.1 Evaluate AV Extraction 

We tested the AV extraction system on a portion 
of the annotated documents, which contains 253 
AV pairs.  Of these pairs, 151 have string values, 
and the rest have numerical values. 

The result shows a prediction accuracy of 
50.6%, false negatives (missing AV pairs) 
35.2%, false positives 11%, and wrong predica-
tions 3%. Some attributes such as brand and 
resolution have higher extraction accuracy than 
other attributes such as shooting mode and di-
mension. An analysis of the missing pairs reveals 
three main sources of error: 1) an incomplete 
domain model, which misses such camera Con-
dition phrases as “minor surface scratching”; 2) a 
noisy domain model, due to the automatic nature 
of its construction; 3) parsing errors caused by 
free-form human written texts. Considering that 
the predication accuracy is calculated over 40 
attributes and that no human labor is involved in 
constructing the domain model, we consider our 
approach a satisfactory first step toward explor-
ing the AV extraction problem. 

5.2 Evaluate AV-based Document Retrieval 

The three retrieval systems (S1, S2, and S3) each 
return top 200 documents for evaluation. Figure 
2 summarizes the precision they achieved against 
both the relaxed and strict judgments, measured 
by the standard TREC metrics (PN – Precision at 
N, MAP – Mean Average Precision, RP – R-
Precision)1. For both judgments, the combined 

                                                 
1 Precision at N is the precision at N document cutoff point; 
Average Precision is the average of the precision value ob-
tained after each relevant document is retrieved, and Mean 
Average Precision is the average of AP over all topics; R-
Precision is the precision after R documents have been re-
trieved, where R is the number of relevant documents for 
the topic. 

system S3 achieved higher precision and recall 
than S1 and S2 by all metrics. In the case of re-
call, the absolute scores improve at least nine 
percent. Table 2 shows a pairwise comparison of 
the systems on three of the most meaningful 
TREC metrics, using paired T-Test; statistically 
significant results are highlighted. The table 
shows that the improvement of S3 over S1 and 
S2 is significant (or very nearly) by all metrics 
for the relaxed judgment. However, for the strict 
judgment, none of the improvements are signifi-
cant. The reason might be that one third of the 
topics have no relevant documents in our data set. 
This reduces the actual number of topics for 
evaluation. In general, the performance of all 
three systems for the strict judgment is worse 
than that for the relaxed, likely due to the lower 
number of relevant documents for this category 
(averaged at 18 per topic), which makes it a 
harder IR task. 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P10 MAP RP Recall

S1_strict S2_strict S3_strict S1_relaxed S2_relaxed S3_relaxed
 

Figure 2: System performance as measured by 

TREC metrics, averaged over all topics with non-

zero relevant documents 

 

Paired T-Test (p) P10 AP RP 

(S1,S2) .22 .37 .65 

(S2,S3) 1 .004 .10 

strict 

(S1,S3) .17 .48 .45 

(S1,S2) .62 .07 .56 

(S2,S3) .056 <.0001 .0007 

relaxed 

(S1,S3) .04 .02 .03 

Table 2: Paired T-Test (with two-tailed distribu-

tion) between systems over all topics 

 
The constraint-based system S2 produces 

higher initial precision than S1 as measured by 
P10. However, semantic constraints contribute 
less and less as more documents are retrieved. 
The performance of S2 is slightly worse than S1 
as measured by AP and RP, which is likely due 
to errors from AV extraction. None of the met-
rics is statistically significant.  
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Topic-by-topic analysis gives us a more de-
tailed view of the behavior of the three systems.  
Figure 3 shows the performance of the systems 
measured by P10, sorted by that of S3. In gen-
eral, the performance of S1 and S2 deviates sig-
nificantly for individual topics. However, the 
combined system, S3, seems to be able to boost 
the good results from both systems for most top-
ics.  We are currently exploring the factors that 
contribute to the performance boost. 
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Figure 3: Precision@10 for relaxed judgment 

 

A closer look at topics where S3 improves 
significantly over S1 and S2 at P10 reveals that 
the combined lists are biased toward the docu-
ments returned by S2, probably due to the higher 
scores assigned to documents by S2 than those 
by S1. This suggests the need for better score 
normalization methods that take into account the 
advantage of each system. 

In conclusion, our results show that using se-
mantic information can improve IR results for 
special domains where the information need can 
be specified as a set of semantic constraints. The 
constraint-based system itself is not robust 
enough to be a standalone IR system, and has to 
be combined with a term-based system to 
achieve satisfactory results. The IR results from 
the combined system seem to be able to tolerate 
significant errors in semantic annotation, consid-
ering that the accuracy of AV-extraction is about 
50%. It remains to be seen whether similar im-
provement in retrieval can be achieved in general 
domains such as news articles. 

6 Summary 

This paper describes our exploratory study of 
applying semantic constraints derived from at-
tribute-value pair annotations to traditional term-
based document retrieval. It shows promising 
results in our test domain where users have spe-
cific information needs. In our ongoing work, we 

are expanding the test topic set for the strict 
judgment as well as the data set, improving AV 
extraction accuracy, analyzing how the combined 
system improves upon individual systems, and 
exploring alternative ways of combining seman-
tic constraints and terms for better retrieval. 
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