
Interactive Authoring of Logical Forms for Multilingual Generation ∗

Ofer Biller, Michael Elhadad, Yael Netzer
Department of Computer Science

Ben Gurion University
Be’er-Sheva, 84105, Israel

{billero, elhadad, yaeln}@cs.bgu.ac.il

Abstract

We present an authoring system for logical forms
encoded as conceptual graphs (CG). The system
belongs to the family of WYSIWYM (What You
See Is What You Mean) text generation systems:
logical forms are entered interactively and the cor-
responding linguistic realization of the expressions
is generated in several languages. The system
maintains a model of the discourse context corre-
sponding to the authored documents.
The system helps users author documents formu-
lated in the CG format. In a first stage, a domain-
specific ontology is acquired by learning from ex-
ample texts in the domain. The ontology acquisi-
tion module builds a typed hierarchy of concepts
and relations derived from the WordNet and Verb-
net.
The user can then edit a specific document, by en-
tering utterances in sequence, and maintaining a
representation of the context. While the user en-
ters data, the system performs the standard steps
of text generation on the basis of the authored log-
ical forms: reference planning, aggregation, lexi-
cal choice and syntactic realization – in several lan-
guages (we have implemented English and Hebrew
- and are exploring an implementation using the
Bliss graphical language). The feedback in natural
language is produced in real-time for every single
modification performed by the author.
We perform a cost-benefit analysis of the applica-
tion of NLG techniques in the context of authoring
cooking recipes in English and Hebrew. By com-
bining existing large-scale knowledge resources
(WordNet, Verbnet, the SURGE and HUGG real-
ization grammars) and techniques from modern in-
tegrated software development environment (such
as the Eclipse IDE), we obtain an efficient tool for
the generation of logical forms, in domains where
content is not available in the form of databases.

∗Research supported by the Israel Ministry of Science - Knowl-
edge Center for Hebrew Computational Linguistics and by the
Frankel Fund

1 Introduction
Natural language generation techniques can be applied to
practical systems when the “input” data to be rendered in text
can be obtained in a cost-effective manner, and when the “out-
put” requires such variability (multiple styles or languages,
or customization to specific users or classes) that producing
documents manually becomes prohibitively expensive.

The input data can be either derived from an existing appli-
cation database or it can be authored specifically to produce
documents. Applications where the data is available in a data-
base include report generators (e.g., ANA[Kukich, 1983],
PlanDoc[Shawet al., 1994], Multimeteo[Coch, 1998], FOG
[Goldberget al., 1994]). In other cases, researchers identi-
fied application domains where some of the data is available,
but not in sufficient detail to produce full documents. The
”WYSIWYM” approach was proposed ([Power and Scott,
1998], [Paris and Vander Linden, 1996]) as a system design
methodology where users author and manipulate an underly-
ing logical form through a user interface that provides feed-
back in natural language text.

The effort invested in authoring logical forms – either from
scratch or from a partial application ontology – is justified
when the logical form can be reused. This is the case when
documents must be generated in several languages. The field
of multilingual generation (MLG) has addressed this need
([Bateman, 1997], [Stede, 1996]). When documents must be
produced in several versions, adapted to various contexts or
users, the flexibility resulting from generation from logical
forms is also valuable. Another motivation for authoring logi-
cal forms (as opposed to textual documents) is that the logical
form can be used for other applicative requirements: search,
summarization of multiple documents, inference. This con-
cern underlies the research programme of the Semantic Web,
which promotes the encoding in standardized forms of on-
tological knowledge such as KIF[Berners-Leeet al., 2001],
[Genesereth and Fikes, 1992].

In this paper, we analyze an application of the WYSIWYM
method to author logical forms encoded in Sowa’s Concep-
tual Graphs (CG) format[Sowa, 1987]. In a first stage, users
submit sample texts in a domain to the system. The system
learns from the samples a hierarchy of concepts and relations.
Given this ontology, the author then enters expressions using
a simple variant of the CG Interchange Format (CGIF) which
we have designed to speed editing operations. The system



provides realtime feedback to the author in English and He-
brew.

We evaluate the specific features of such a system which
make it cost-effective as a tool to author logical forms. We
select the CG formalism as one of the representatives of
the family of knowledge encoding formalisms, which bene-
fits from well-established inference and quantification mech-
anisms and standard syntax encodings in graphical and linear
formats.

The editing system we developed can be seen as CG ed-
itor motivated and expanded by natural language generation
(NLG) techniques. The mixing of a practical ontology edit-
ing perspective with NLG techniques yielded the following
benefits:

• Generation tasks such as aggregation and reference plan-
ning are easily expressed as operations upon CGs.

• The construction and maintenance of context according
to models of text planning[Reiter and Dale, 1992], allow
the author to break a complex CG into a manageable
collection of small utterances. Each utterance links to a
global context in a natural manner.

• We designed a compact form to edit a textual encoding
of CGs taking into account defaults, knowledge of types
of concepts, sets and individual instances and context.
This format syntactically looks like a simple object-
oriented programming language with objects, methods
and attributes. We use an editing environment similar to
a modern programming language development environ-
ment – with a browser of types and instances, intelligent
typing completion based on type analysis, and context-
specific tooltip assistance.

• The simultaneous generation of text in two languages
(Hebrew and English) is important to distinguish be-
tween un-analyzed terms in the ontology and their lin-
guistic counterpart.

We evaluate the overall effectiveness of the authoring en-
vironment in the specific domain of cooking recipes (inspired
by [Dale, 1990]). We perform various usability studies to
evaluate the overall cost of authoring cooking recipes as log-
ical forms and evaluate the relative contribution of each com-
ponent of the system: ontology, natural language feedback,
user interface. We conclude that the combination of these
three factors results in an effective environment for authoring
logical forms.

In the paper, we first review the starting points upon which
this study builds in generation and knowledge editing. We
then present the tool we have implemented – its architecture,
the knowledge acquisition module and the editor, we finally
present the evaluation experiments and their results, and con-
clude with their analysis.

2 Related Work
Our work starts from several related research traditions: mul-
tilingual generation systems; WYSIWYM systems; knowl-
edge and ontology editors. We review these in this section in
turn.

2.1 Multilingual Generation
Multilingual texts generation (MLG) is a well motivated
method for the automatic production of technical documents
in multiple languages. The benefits of MLG over translation
from single language source were documented in the past and
include the high cost of human translation and the inaccu-
racy of automatic machine translation[Stede, 1996], [Coch,
1998], [Bateman, 1997]. In an MLG system, users enter data
in an interlingua, from which the target languages are gener-
ated.

MLG Systems aim to be as domain independent as pos-
sible (since development is expensive) but usually refer to a
narrow domain, since the design of the interlingua refers to
domain information. MLG systems share a common archi-
tecture consisting of the following modules:

• A language-independent underlying knowledge repre-
sentation: knowledge represented as AI plans[Rösner
and Stede, 1994] [Delin et al., 1994], [Paris and Van-
der Linden, 1996], knowledge bases (or ontologies)
such as LOOM, the Penman Upper-model and other
(domain-specific) concepts and instances[Rösner and
Stede, 1994].

• Micro-structure planning (rhetorical structure) - lan-
guage independent - this is usually done by the human
writers using the MLG application GUI.

• Sentence planning - different languages can express the
same content in various rhetorical structures, and plan-
ning must take it into consideration: either by avoiding
the tailoring of structure to a specific language[Rösner
and Stede, 1994] or by taking advantage of knowledge
on different realizations of rhetorical structures in differ-
ent languages at the underlying representation[Delin et
al., 1994].

• Lexical and syntactic realization resources (e.g., Eng-
lish PENMAN/German NIGEL in[Rösner and Stede,
1994])

As an MLG system, our system also includes similar mod-
ules. We have chosen to use Conceptual Graphs as an inter-
lingua for encoding document data[Sowa, 1987]. We use ex-
isting generation resources for English – SURGE[Elhadad,
1992] for syntactic realization and the lexical chooser de-
scribed in[Jing et al., 2000] and the HUGG grammar for
syntactic realization in Hebrew[Netzer, 1997]. For micro-
planning, we have implemented the algorithm for reference
planning described in[Reiter and Dale, 1992] and the ag-
gregation algorithm described in[Shaw, 1995]. The NLG
components rely on the C-FUF implementation of the FUF
language[Kharitonov, 1999] [Elhadad, 1991] – which is fast
enough to be used interactively in realtime for every single
editing modification of the semantic input.

2.2 WYSIWYM
In an influential series of papers[Power and Scott, 1998],
WYSIWYM (What You See Is What You Mean) was pro-
posed as a method for the authoring of semantic information
through direct manipulation of structures rendered in natural
language text. A WYSIWYM editor enables the user to edit



information at the semantic level. The semantic level is a di-
rect controlled feature, and all lower levels which are derived
from it, are considered as presentational features. While edit-
ing content, the user gets a feedback text and a graphical rep-
resentation of the semantic network. These representations
can be interactively edited, as the visible data is linked back
to the underlying knowledge representation.

Using this method, a domain expert produces data by edit-
ing the data itself in a formal way, using a tool that requires
only knowledge of the writer’s natural language. Knowledge
editing requires less training, and the natural language feed-
back strengthens the confidence of users in the validity of the
documents they prepare.

The system we have developed belongs to the WYSIWYM
family. The key aspects of the WYSIWYM method we in-
vestigate are the editing of the semantic information. Text
is generated as a feedback for every single editing operation.
Specifically, we evaluate how ontological information helps
speed up semantic data editing.

2.3 Controlled Languages
A way to ensure that natural language text is unambiguous
and “easy to process” is to constrain its linguistic form. Re-
searchers have designed “controlled languages” to ensure that
words in a limited vocabulary and simple syntactic struc-
tures are used (see for example[Pulman, 1996]). This notion
is related to that ofsublanguage[Kittredge and Lehrberger,
1982], which has been used to analyze and generate text in
specific domains such as weather reports.

With advances in robust methods for text analysis, it is be-
coming possible to parse text with high accuracy and recover
partial semantic information. For example, the DIRT system
[Lin and Pantel, 2001] recovers thematic structures from free
text in specific domains. Combined with lexical resources
(WordNet[Miller, 1995] and Verbnet[Kipper et al., 2000]),
it is now possible to confirm the thesis that controlled lan-
guages are easy to process automatically.

Complete semantic interpretation of text remains however
too difficult for current systems. In our system, we rely on
automatic interpretation of text samples in a specific sublan-
guage to assist in the acquisition of a domain-specific ontol-
ogy, as described below.

2.4 Graphical Editors for Logical Forms
Since many semantic encodings are described as graphs,
knowledge editing tools have traditionally been proposed as
graphical editors – where concepts are represented as nodes
and relations as edges. Such a “generic graphical editor” is
presented for example in[Paleyet al., 1997].

Conceptual graphs have also been traditionally represented
graphically, and there is a standard graphical encoding for
CGs. Graphical editors for CGs are available (e.g.,[Delu-
gach, 2001]).

While graphical editors are attractive, they suffer from
known problems of visual languages: they do not scale well
(large networks are particularly difficult to edit and under-
stand). Editing graphical representations is often slower than
editing textual representations. Finally, graphical representa-
tions convey too much information, as non-meaningful data

may be inferred from graphical features such as layout of
font, which is not constrained by the underlying visual lan-
guage.

2.5 Generation from CG
CGs have been used as an input to text generation in a variety
of systems in the past[Cote and Moulin, 1990], [Bontcheva,
1995] and others.

In our work, we do not view the CG level as a direct in-
put to a generation system. Instead, we view the CG level
as an ontological representation, lacking communicative in-
tention levels, and not linked directly to linguistic considera-
tions. The CG level is justified by its inferencing and query
retrieval capabilities, while taking into account sets, quantifi-
cation and nested contexts.

Processing is required to link the CG representation level
(see Fig. 1) to linguistically motivated rhetorical structures,
sentence planning and lexical choice. In our work, CGs are
formally converted to an input to a generation system by a
text planner and a lexical chooser, as described below. Ex-
isting generation components for lexical choice and syntac-
tic realization based on functional unification are used on the
output of the text planner.

Figure 1: Conceptual Graph in a linear representation.

3 Method and Architecture
We now present the system we have implemented, which we
have called SAUT (Semantic AUthoring Tool). Our objective
is to perform usability studies to evaluate:

• How ontological knowledge in the form of concept and
relation hierarchies is useful for semantic authoring;

• How natural language feedback improves the authoring
– and how feedback in two languages modifies the au-
thoring process;

• How user interface functionality improves the speed and
accuracy of the authoring.

The architecture of the system is depicted in Fig. 2.
The two key components of the system are the knowledge

acquisition system and the editing component. The knowl-
edge acquisition system is used to derive an ontology from
sample texts in a specific domain. In the editing component,
users enter logical expressions on the basis of the ontology.

3.1 Knowledge Acquisition
For the acquisition of the concepts/relations database, we use
two main sources: Verbnet[Kipperet al., 2000] and WordNet
[Miller, 1995].

We use the information for bootstrapping concept and rela-
tion hierarchies. Given sample texts in the target domain, we



Figure 2: Architecture of the SAUT system

perform shallow syntactic analysis and extract nouns, verbs
and adjectives from the text. Dependency structures for verbs
and nouns are also extracted. We currently perform manually
anaphora resolution and word sense disambiguation, since
automatic methods do not produce accurate enough results.

Given the set of nouns and adjectives, we induce the hyper-
nym hierarchy from WordNet, resulting in a tree of concepts
– one for each synset appearing in the list of words in the
sample texts.1

In addition to the concept hierarchy, we derive relations
among the concepts and predicates by using the Verbnet lexi-
cal database[Kipper et al., 2000]. Verbnet supplies informa-
tion on the conceptual level, in the form of selectional restric-
tions for the thematic roles.

These relations allow us to connect the concepts and rela-
tions in the derived ontology to nouns, verbs and adjectives.
The selectional restrictions in Verbnet refer to the WordNet
conceptual hierarchy. In Verbnet, verbs are classified fol-
lowing Levin’s classes[Levin, 1993] and thus its represen-
tation is easily adjustable with our verb lexicon[Jing et al.,
2000], which combined information on argument structure of
verbs from Levin, Comlex[Macleod and Grishman, 1995]
and WordNet. The rich information on argument structure
and selectional restrictions can be automatically adopted to
the domain concepts database. Thus, by connecting a con-
cept to a verb, given all the concepts that stand in relation to
it in a specific CG (the verb’s arguments and circumstantials)
– our lexical chooser finds the suitable structure (alternation)
to map the CG to a syntactic structure.

The outcome of this process is useful in the lexical and syn-
tactic module of the system due to the flexibility it offers to
the lexical chooser (a general word can be used instead of a

1Although hypernym relations in WordNet define a forest of
trees, we connect all trees with a general node.

specific word i.e.vehiclesinstead ofcars, and for the gener-
ality of selectional restrictions on verb/adjective arguments.

Since there are no Hebrew parallels to WordNet/verbnet,
we use a “naive” scheme of translating the English LC to He-
brew, with manual corrections of specific structures when er-
rors are found.

Once the knowledge is acquired, we automatically updated
a lexical chooser adopted to the domain. The lexical chooser
maps the ontological concepts and relations to nouns, verbs
and adjectives in the domain.

3.2 The SAUT Editor
To describe the SAUT editor, we detail the process of author-
ing a document using the tool. When the authoring tool is
initiated, the next windows are presented (see Fig. 3):

• Input window

• Global context viewer

• Local context viewer

• CG feedback viewer

• Feedback text viewer

• Generated document viewer.

The user operates in the input window. This window in-
cludes three panels:

• Defaults: rules that are enforced by default on the rest of
the document. The defaults can be changed while edit-
ing. Defaults specify attribute values which are auto-
matically copied to the authored CGs according to their
type.

• Participants: a list of objects to which the document
refers. Each participant is described by an instance (or a
generic) CG, and is given an alias. The system provides



Figure 3: Snapshot of editing state in the SAUT system

an automatic identifier for participants, but these can be
changed by the user to a meaningful identifier.

• Utterances: editing information proposition by proposi-
tion.

The system provides suggestions to complete expressions
according to the context in the form of popup windows. In
these suggestion windows, the user can either scroll or choose
with the mouse or by entering the first letters of the desired
word, when the right word is marked by the system, the user
can continue, and the word will be automatically completed
by the system. For example, when creating a new participant,
the editor presents a selection window with all concepts in
the ontology that can be instantiated. If the user chooses the
concept type”Dog” the system creates a new object of type
dog, with the given identifier. The user can further enrich this
object with different properties. This is performed using the
”.” notation to modify a concept with an attribute. While the
user enters the instance specification and its initial properties,
a feedback text and a conceptual graph in linear form are gen-
erated simultaneously. When the user moves to the next line,
the new object is updated on the global context view. Each
object is placed in a folder corresponding to its concept type,
and will include its instance name and its description in CG
linear form.

In the Utterances panel, the author enters propositions in-
volving the objects he declared in the participants section. To
create an utterance, the user first specifies the object which is
the topic of the utterance. The user can choose one of the par-
ticipants declared earlier from an identifiers list, or by choos-

ing a concept type from a list. Choosing a concept type will
result in creating a new instance of this concept type. Every
instance created in the system will be viewed in the context
viewer. After choosing an initial object, the user can add ex-
pressions in order to add information concerning this object.
After entering the initial object in an utterance, the user can
press the dot key which indicates that he wants to enrich this
object with information. The system will show the user list
of expressions that can add information on this object. In CG
terms, the system will fill the list with items which fall in one
of the following three categories:

• Relationsthat can be created by the system and their se-
lectional restrictions are such that they allow the modi-
fied object as a source for the relation.

• Propertiesthat can be added to the concept object such
as name and quantity.

• Concept typesthat expect relations, the first of whom
can connect to the new concept. For example the con-
cept type”Eat” expects a relation ”Agent” and a relation
”Patient.” The selectional restriction on the destination
of ”Agent” will be for example ”Animate”. Therefore
the concept”Eat” will appear on the list of an object of
type”Dog” .

The author can modify and add information to the active
object by pressing the dot key. An object which itself mod-
ifies an object previously entered, can be modified with new
relations, properties and concepts in the same manner. The
global context is updated whenever a new instance is created
in the utterances. When the author has finished composing



the utterance, the system will update the local context and
will add this information to the generated natural language
document.

The comma operator (“,”) is used to define sets in exten-
sion. For example, in Fig.3, the set”salt and pepper” is
created by entering the expression#sa,#pe. The set itself be-
comes an object in the context and is assigned its own identi-
fier.

The dot notation combined with named variables allows
for easy and intuitive editing of the CG data. In addition,
the organization of the document as defaults, participants and
context (local and global) – provides an intuitive manner to
organize documents.

Propositions, after they are entered as utterances, can also
be named, and therefore can become arguments for further
propositions. This provides a natural way to cluster large con-
ceptual graphs into smaller chunks.

The text generation component proceeds from this infor-
mation, according to the following steps:

• Pronouns are generated when possible using the local
and global context information.

• Referring expression are planned using the competing
expressions from the context information, excluding and
including information and features of the object in the
generated text, so the object identity can be resolved by
the reader, but without adding unnecessary information.

• Aggregation of utterances which share certain features
using the aggregation algorithm described in[Shaw,
1995].

Consider the example cooking recipe in Fig.3. The author
uses the participants section in order to introduce the ingre-
dients needed for this recipe. One of the ingredients is”six
large eggs”. The author first chooses an identifier name for
the eggs, for example”eg” . From the initial list of concepts
types proposed by the system, we choose the concept type
”egg” . Pressing the dot key will indicate we want to pro-
vide the system with further information about the newly cre-
ated object. We choose”quantity” from a given list by typ-
ing ”qu” . seeing that the word ”quantity” was automatically
marked in the list. Pressing the space key will automatically
open brackets, which indicates we have to provide the system
with an argument. A tool tip text will pop to explain the user
what is the function of the required argument. After entering
number, we will hit the space bar to indicate we have no more
information to supply about the”quantity” ; the brackets will
be automatically closed. After the system has been told no
more modification will be made on the quantity, the”egg”
object is back to be the active one. The system marks the ac-
tive object in any given time by underline the related word in
the input text.

Pressing the dot will pop the list box with the possible mod-
ifications for the object. We will now choose”attribute” .
Again the system will open brackets, and a list of possible
concepts will appear. The current active node in the graph is
”attribute” . Among the possible concepts we will choose the
”big” concept, and continue by clicking the enter key (the
lexical chooser will map the “big” concept to the collocation
”large” appropriate for”eggs” ). A new folder in the global

context view will be added with the title of”egg” and will
contain the new instance with its identifier and description as
a CG in linear form.

Each time a dot or an identifier is entered, the system con-
verts the current expression to a CG, maps the CG to a FUF
Functional Description which serves as input to the lexical
chooser; lexical choice and syntactic realization is performed,
and feedback is provided in both English and Hebrew.

The same generated sentence is shown without context (in
the left part of the screen), and in context (after reference
planning and aggregation).

When generating utterances, the author can refer to an ob-
ject from the context by clicking on the context view. This
enters the corresponding identifier in the utterance graph.

4 Evaluation
The objectives of the SAUT authoring system are to pro-
vide the user with a fast, intuitive and accurate way to com-
pose semantic structures that represent meaning s/he wants to
convey, then presenting the meaning in various natural lan-
guages. Therefore, an evaluation of these aspects (speed, in-
tuitiveness, accuracy and coverage) is required, and we have
conducted an experiment with human subjects to measure
them. The experiment measures a snapshot of these parame-
ters at a given state of the implementation. In the error analy-
sis we have isolated parameters which depend on specifics
of the implementation and those which require essential revi-
sions to the approach followed by SAUT.

4.1 User Experiment
We have conducted a user experiment, in which ten subjects
were given three to four recipes in English (all taken from
the Internet) from a total pool of ten. The subjects had to
compose semantic documents for these recipes using SAUT
2. The ontology and lexicon for the specific domain of cook-
ing recipes were prepared in advance, and we have tested the
tool by composing these recipes with the system. The docu-
ments the authors prepared are later used as a ’gold standard’
(we refer to them as”reference documents”). The experi-
ment was managed as follows: first, a short presentation of
the tool (20 minutes) was given. Then, each subject recieved
a written interactive tutorial which took approximately half
an hour to process. Finally, each subject composed a set of 3
to 4 documents. The overall time taken for each subject was
2.5 hours.

4.2 Evaluation
We have measured the following aspects of the system during
the experiment.

Coverage- answers the questions”can I say everything I
mean” and”how much of the possible meanings that can be
expressed in natural language can be expressed using the in-
put language”. In order to check the coverage of the tool,
we examined the reference documents. We compared the
text generated from the reference documents with the orig-
inal recipes and checked which parts of the information were

2All subjects were computer science students.



included, excluded or expressed in a partial way with respect
to the original. We counted each of these in number of words
in the original text, and expressed these 3 counts as a per-
centage of the words in the original recipe. We summed up
the result as a coverage index which combined the 3 counts
(correct, missing, partial) with a factor of 70% for the partial
count.

The results were checked by two authors independently
and we report here the average of these two verifications. On
a total of 10 recipes, containing 1024 words overall, the cov-
erage of the system is 91%. Coverage was uniform across
recipes and judges. We performed error analysis for the re-
maining 9% of the un-covered material below.

Intuitiveness - to assess the ease of use of the tool,
we measured the ”learning curve” for users first using the
system, and measuring the time it takes to author a recipe for
each successive document (1st, 2nd, 3rd, 4th). For 10 users
first facing the tool, the time it took to author the documents
is as follows:

Document # Average Time to author
1st 36 mn
2nd 28 mn
3rd 22 mn
4th 14 mn

The time distribution among 10 users was extremely uni-
form. We did not find variation in the quality of the authored
documents across users and across number of document.
The tool is mastered quickly, by users with no prior train-
ing in knowledge representation or natural language process-
ing. Composing thereference documents(approximately
100-words recipes) by the authors took an average of 12
minutes.

Speed- we measured the time required to compose a docu-
ment as a semantic representation, and compare it to the time
taken to translate the same document in a different language.
We compare the average time for trained users to author a
recipe (14 minutes) with that taken by 2 trained translators to
translate 4 recipes (from English to Hebrew).

Semantic Authoring Time Translation Time
14 (minutes) 6 (minutes)

The comparison is encouraging - it indicates that a tool for
semantic authoring could become cost-effective if it is used
to generate in 2 or 3 languages.

Accuracy - We analyzed the errors in the documents pre-
pared by the 10 users according to the following breakup:

• Words in the source document not present in the seman-
tic form

• Words in the source document presented inaccurately in
the semantic form

• Users’ errors in semantic form that are not included in
the former two parameters.

We calculated the accuracy for each document produced
by the subjects during the experiment. Then we compared
each document with the correspondingreference document
(used here as a gold standard). Relative accuracy of this
form estimates a form of confidence – ”how sure can the
user be that s/he wrote what s/he meant”? This measurement

depends on the preliminary assumption that for a given
recipe, any two readers (in the experiment environment –
including the authors), will extract similar information. This
assumption is warranted for cooking recipes. This measure
takes into account the limitations of the tool and reflects the
success of users to express all that the tool can express:

Document # Accuracy
1st 93%
2nd 92%
3rd 95%
4th 90%

Accuracy is quite consistent during the experiment ses-
sions,i.e., it does not change as practice increases. The aver-
age 92.5% accuracy is quite high.

We have categorized the errors found in subjects’ docu-
ments in the following manner:

• Content can be accurately expressed with SAUT (user
error)

• Content will be accurately expressed with changes in the
SAUT’s lexicon and ontology (ontology deficit)

• Content cannot be expressed in the current implemen-
tation, and requires further investigation of the concept
(implementation and conceptual limitations)

Document # Accuracy
User error 44%

Ontology deficit 23%
Tool limitations 33%

This breakdown indicates that the tool can be improved by
investing more time in the GUI and feedback quality and by
extending the ontology. The difficult conceptual issues (those
which will require major design modifications, or put in ques-
tion our choice of formalism for knowledge encoding) repre-
sent 33% of the errors – overall accounting for 2.5% of the
words in the word count of the generated text.

5 Analysis
The current prototype of SAUT proves the feasibility of se-
mantic authoring combined with natural language generation.
The system includes a lexical chooser of several hundred
verbs and nouns derived from WordNet in a specific domain.

The system is easy to use and requires training of less than
one hour. User interface features make it very fast to enter
CGs of the type required for a recipe. If the documents are
generated in more than 2 languages, the tool can even become
cost effective at its current level of ergonomy.

The current prototype indicates that combining techniques
from NLG with User Interfaces techniques from program-
ming languages editors results in an efficient knowledge edi-
tor. In future work, we intend to evaluate how to use semantic
forms for summarization and inferencing. We also will evalu-
ate how rhetorical information can be managed in the system,
by applying the tool to different domains.

References
[Bateman, 1997] John Bateman. Enabling technology for

multilingual natural language generation: the KPML de-



velopment. Natural Language Engineering, 1(1):1 – 42,
1997.

[Berners-Leeet al., 2001] Tim Berners-Lee, James Hendler,
and Ora Lassila. Semantic web.Scientific American, 2001.

[Bontcheva, 1995] Kalina Bontcheva. Generation of multi-
lingual eplanations from conceptual graphs. InProc. of
RANLP’97, Batak, Bulgaria, 1995.

[Coch, 1998] J. Coch. Interactive generation and knowledge
administration in multimeteo. InProc. of the 9th Workshop
INLG, pages 300–303, Canada, 1998.

[Cote and Moulin, 1990] D. Cote and B. Moulin. Refin-
ing sowa’s con-ceptual graph theory for text genera-
tion. In Proc. of IEA/AIE90, volume 1, pages 528–537,
Charleston, SC, 1990.

[Dale, 1990] Robert Dale. Generating recipes: An overview
of epicure. In Michael Zock Robert Dale, Chris Mellish,
editor,Current Research in Natural Language Generation,
pages 229–255. Academic Press, New York, 1990.

[Delin et al., 1994] Judy Delin, Anthony Hartley, Ćecile L.
Paris, Donia Scott, and Keith Vander Linden. Expressing
Procedural Relationships in Multilingual Instructions. In
Proc. of the 7th. Int. Workshop on NLG, pages 61 – 70,
1994.

[Delugach, 2001] Harry Delugach. Charger: A graphical
conceptual graph editor. InProc. of ICCS 2001 CGTools
Workshop, 2001.

[Elhadad, 1991] Michael Elhadad. FUF user manual - ver-
sion 5.0. Technical Report CUCS-038-91, University of
Columbia, 1991.

[Elhadad, 1992] Michael Elhadad.Using Argumentation to
Control Lexical Choice: A Functional Unification Imple-
mentation. PhD thesis, Columbia University, 1992.

[Genesereth and Fikes, 1992] M.R. Genesereth and R.E.
Fikes. Knowledge interchange format, version 3.0 ref-
erence manual. Technical Report Logic-92-1, Computer
Science Department, Stanford University, 1992.

[Goldberget al., 1994] E. Goldberg, N. Driedger, and
R. Kittredge. Using natural-language processing to pro-
duce weather forecasts.IEEE Expert, 9(2):45–53, 1994.

[Jinget al., 2000] Hongyan Jing, Yael Dahan Netzer,
Michael Elhadad, and Kathleen McKeown. Integrating
a large-scale, reusable lexicon with a natural language
generator. InProceedings of the 1st INLG, pages 209–216,
Mitzpe Ramon, Israel, 2000.

[Kharitonov, 1999] Mark Kharitonov. Cfuf: A fast inter-
preter for the functional unification formalism. Master’s
thesis, BGU, Israel, 1999.

[Kipperet al., 2000] K. Kipper, H. Trang Dang, and
M. Palmer. Class-based construction of a verb lexicon.
In Proceeding of AAAI-2000, 2000.

[Kittredge and Lehrberger, 1982] R. Kittredge and
J. Lehrberger. Sublanguage: Studies of Language in
Restricted Semantic Domains. De Gruyter, Berlin, 1982.

[Kukich, 1983] Karen Kukich. Knowledge-based report gen-
eration: A technique for automatically generating natural
language reports from databases. InProc. of the 6th Inter-
national ACM SIGIR Conference, 1983.

[Levin, 1993] Beth Levin. English Verb Classes and Verb
Alternations: A Preliminary Investigation.University of
Chicago Press, 1993.

[Lin and Pantel, 2001] Dekang Lin and Patrick Pantel. DIRT
@SBT@discovery of inference rules from text. InKnowl-
edge Discovery and Data Mining, pages 323–328, 2001.

[Macleod and Grishman, 1995] C. Macleod and R. Grish-
man. COMLEX Syntax Reference Manual. Proteus
Project, NYU, 1995.

[Miller, 1995] George A. Miller. Wordnet: a lexical database
for english.Commun. ACM, 38(11):39–41, 1995.

[Netzer, 1997] Yael Netzer. Design and evaluation of a func-
tional input specification language for the generation of
bilingual nominal expressions (hebrew/english). Master’s
thesis, BGU, Israel, 1997.

[Paleyet al., 1997] S.M. Paley, Lowrance, J.D., and P.D.
Karp. A generic knowledge-base browser and editor. In
Proc. of the 1997 National Conference on AI, 1997.

[Paris and Vander Linden, 1996] Cécile Paris and Keith Van-
der Linden. DRAFTER: An interactive support tool
for writing multilingual instructions. IEEE Computer,
29(7):49–56, 1996.

[Power and Scott, 1998] Roger Power and Donia Scott. Mul-
tilingual authoring using feedback texts. InProc. of
COLING-ACL 98, Montreal, Canada, 1998.

[Pulman, 1996] Stephen Pulman. Controlled language for
knowledge representation. InProc. of the 1st Int. Work-
shop on Controlled Language Applications, pages 233 –
242, 1996.

[Reiter and Dale, 1992] Ehud Reiter and Robert Dale. A
fast algorithm for the generation of referring expressions.
In Proc. of the 14th COLING, pages 232–238, Nantes,
France, 1992.

[Rösner and Stede, 1994] D. Rösner and M. Stede. Generat-
ing multilingual documents from a knowledge base: The
techdoc project. InProc. of COLING’94, pages 339–346,
Kyoto, 1994.

[Shawet al., 1994] J. Shaw, K. Kukich, and K. Mckeown.
Practical issues in automatic documentation generation. In
Proceeding of the 4th ANLP, pages 7–14, 1994.

[Shaw, 1995] James Shaw. Conciseness through aggregation
in text generation. InProc. of the 33rd conference on ACL,
pages 329 – 331, Morristown, NJ, USA, 1995.

[Sowa, 1987] J. F. Sowa. Semantic networks. In S. C.
Shapiro, editor,Encyclopedia of Artificial Intelligence 2.
John Wiley & Sons, New York, 1987.

[Stede, 1996] Manfred Stede.Lexical semantics and knowl-
edge representation in multilingual sentence generation.
PhD thesis, University of Toronto, 1996.


