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Introduction

The last few years have seen a surge in interest in modeling techniques aimed at measuring
semantic equivalence and entailment, with work on paraphrase acquisition/generation, WordNet-
based expansion, distributional similarity, supervised learning of semantic variability in information
extraction, and the identification of patterns in template-based QA. Being able to identify when two
strings ”mean the same thing” or that one entails the other are crucial abilities for a broad range of
NLP-related applications, ranging from question answering to summarization.

These proceedings contain a rich variety of papers centered on the problem of modeling semantic
overlap between linguistic strings. This is a difficult problem space, encompassing issues of lexical
choice, syntactic alternation, semantic inference, and reference/discourse structure.

We were pleased by the strong level of interest in the workshop, which resulted in a number of high-
quality submissions. Each paper was blind-reviewed by 2-3 members of the Program Committee, and
we were forced to make some difficult choices in determining the final schedule.

This workshop is intended to bring together people working on empirical, application-independent
approaches to the practical problems of semantic inference. While different applications face similar
underlying semantic problems, these problems have typically been addressed in an application-specific
manner. In the absence of a generic evaluation framework, it is difficult to compare semantic methods
that were developed for different applications. We are particularly hopeful that the workshop will help
foster discussion around common datasets and evaluation strategies that will help guide future work in
this area.

We would like to express our deepest gratitude to the hard-working members of the program committee.
We’d also like to thank Mirella Lapata, Jason Eisner, Philipp Koehn, and Dragomir Radev for their
organizational help.

We hope you enjoy this workshop!

Bill Dolan and Ido Dagan
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Classification of semantic relations by humans and machines∗

Erwin Marsi and Emiel Krahmer
Communication and Cognition

Tilburg University, The Netherlands
{e.c.marsi, e.j.krahmer}@uvt.nl

Abstract

This paper addresses the classification of
semantic relations between pairs of sen-
tences extracted from a Dutch parallel cor-
pus at the word, phrase and sentence level.
We first investigate the performance of hu-
man annotators on the task of manually
aligning dependency analyses of the re-
spective sentences and of assigning one
of five semantic relations to the aligned
phrases (equals, generalizes, specifies, re-
states and intersects). Results indicate that
humans can perform this task well, with
an F-score of.98 on alignment and an F-
score of.95 on semantic relations (after
correction). We then describe and evalu-
ate a combined alignment and classifica-
tion algorithm, which achieves an F-score
on alignment of .85 (using EuroWordNet)
and an F-score of .80 on semantic relation
classification.

1 Introduction

An automatic method that can determine how two
sentences relate to each other in terms ofseman-
tic overlap or textual entailment (e.g., (Dagan and
Glickman, 2004)) would be a very useful thing to
have for robust natural language applications. A
summarizer, for instance, could use it to extract
the most informative sentences, while a question-
answering system – to give a second example –
could use it to select potential answer string (Pun-
yakanok et al., 2004), perhaps preferring more spe-
cific answers over more general ones. In general, it

∗This work was carried out within the IMIX-IMOGEN (In-
teractive Multimodal Output Generation) project, sponsored by
the Netherlands Organization of Scientific Research (NWO).

is very useful to know whether some sentenceS is
more specific (entails) or more general than (is en-
tailed by) an alternative sentenceS′, or whether the
two sentences express essentially the same informa-
tion albeit in a different way (paraphrasing).

Research on automatic methods for recognizing
semantic relations between sentences is still rela-
tively new, and many basic issues need to be re-
solved. In this paper we address two such related is-
sues: (1) to what extent can human annotators label
semantic overlap relations between words, phrases
and sentences, and (2) what is the added value of
linguistically informed analyses.

It is generally assumed that pure string overlap
is not sufficient for recognizing semantic relations;
and that using some form of syntactic analysis may
be beneficial (e.g., (Herrera et al., 2005), (Vander-
wende et al., 2005)). Our working hypothesis is that
semantic overlap at the word and phrase levels may
provide a good basis for deciding the semantic re-
lation between sentences. Recognising semantic re-
lations between sentences then becomes a two-step
procedure: first, the words and phrases in the re-
spective sentences need to be aligned, after which
the relations between the pairs of aligned words and
phrases should be labeled in terms of semantic rela-
tions.

Various alignment algorithms have been devel-
oped for data-driven approaches to machine trans-
lation (e.g. (Och and Ney, 2000)). Initially work
focused on word-based alignment, but more and
more work is also addressing alignment at the higher
levels (substrings, syntactic phrases or trees), e.g.,
(Meyers et al., 1996), (Gildea, 2003). For our pur-
poses, an additional advantage of aligning syntac-
tic structures is that it keeps the alignment feasible
(as the number of arbitrary substrings that may be
aligned grows exponentially to the number of words
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in the sentence). Here, following (Herrera et al.,
2005) and (Barzilay, 2003), we will align sentences
at the level ofdependency structures. In addition,
we will label the alignments in terms of five basic
semantic relations to be defined below. We will per-
form this task both manually and automatically, so
that we can address both of the issues raised above.

Section 2 describes a monolingual parallel cor-
pus consisting of two Dutch translations, and for-
malizes the alignment-classification task to be per-
formed. In section 3 we report the results on align-
ment, first describing interannotator agreement on
this task and then the results on automatic alignment.
In section 4, then, we address the semantic relation
classification; again, first describing interannotator
results, followed by results obtained using memory-
based machine learning techniques. We end with a
general discussion.

2 Corpus and Task definition

2.1 Corpus

We have developed aparallel monolingual corpus
consisting of two different Dutch translations of the
French book “Le petit prince” (the little prince) by
Antoine de Saint-Exupéry (published 1943), one by
Laetitia de Beaufort-van Hamel (1966) and one by
Ernst Altena (2000). For our purposes, this proved
to be a good way to quickly find a large enough
set of related sentence pairs, which differ semanti-
cally in interesting and subtle ways. In this work,
we used the first five chapters, with 290 sentences
and 3600 words in the first translation, and 277 sen-
tences and 3358 words in the second translation.
The texts were automatically tokenized and split into
sentences, after which errors were manually cor-
rected. Corresponding sentences from both trans-
lations were manually aligned; in most cases this
was a one-to-one mapping, but occasionally a sin-
gle sentence in one translation mapped onto two or
more sentences in the other: this occurred 23 times
in all five chapters. Next, theAlpino parser for
Dutch (e.g., (Bouma et al., 2001)) was used for part-
of-speech tagging and lemmatizing all words, and
for assigning a dependency analysis to all sentences.
The POS labels indicate the major word class (e.g.
verb, noun, adj, and adv). The dependency rela-
tions hold between tokens and are identical to those

used in the Spoken Dutch Corpus. These include de-
pendencies such ashead/subject, head/modifierand
coordination/conjunction. If a full parse could not
be obtained, Alpino produced partial analyses col-
lected under a single root node. Errors in lemmati-
zation, POS tagging, and syntactic dependency pars-
ing were not subject to manual correction.

2.2 Task definition

The task to be performed can be described infor-
mally as follows: given two dependency analyses,
align those nodes that are semantically related. More
precisely: For each nodev in the dependency struc-
ture for a sentenceS, we defineSTR(v) as the sub-
string of all tokens underv (i.e., the composition of
the tokens of all nodes reachable fromv). An align-
ment between sentencesS andS′ pairs nodes from
the dependency graphs for both sentences. Aligning
nodev from the dependency graphD of sentence
S with nodev′ from the graphD′ of S′ indicates
that there is a semantic relation betweenSTR(v) and
STR(v′), that is, between the respective substrings
associated withv and v′. We distinguish five po-
tential, mutually exclusive, relations between nodes
(with illustrative examples):

1. v equalsv′ iff STR(v) andSTR(v′) are literally
identical (abstracting from case). Example: “a
small and a large boa-constrictor” equals “a
large and a small boa-constrictor”;

2. v restates v′ iff STR(v) is a paraphrase of
STR(v′) (same information content but differ-
ent wording). Example: “a drawing of a boa-
constrictor snake” restates “a drawing of a boa-
constrictor”;

3. v specifiesv′ iff STR(v) is more specific than
STR(v′). Example: “the planet B 612” specifies
“the planet”;

4. v generalizesv′ iff STR(v′) is more specific
than STR(v). Example: “the planet” general-
izes “the planet B 612”;

5. v intersects v′ iff STR(v) and STR(v′) share
some informational content, but also each ex-
press some piece of information not expressed
in the other. Example: “Jupiter and Mars” in-
tersects “Mars and Venus”

Figure 1 shows an example alignment with seman-
tic relations between the dependency structures of
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hebben

komen

hebben

ik

ik op in in aanraking met

zo contact met in de loop van

veel

heel

persoon

serieus veel

massa

gewichtig

heel

leven

mijn

leven

het

manier

die mens

Figure 1: Dependency structures and alignment for the sentencesZo heb ik in de loop van mijn leven heel
veel contacten gehad met heel veel serieuze personen.(lit. ‘Thus have I in the course of my life very
many contacts had with very many serious persons’) andOp die manier kwam ik in het leven met massa’s
gewichtige mensen in aanraking.. (lit. ‘In that way came I in the life with mass-of weighty/important people
in touch’). The alignment relations areequals(dotted gray),restates(solid gray),specifies(dotted black),
andintersects(dashed gray). For the sake of transparency, dependency relations have been omitted.

two sentences. Note that there is an intuitive rela-
tion with entailment here: bothequalsand restates
can be understood as mutual entailment (i.e., if the
root nodes of the analyses correspondingS andS′

stand in an equal or restate relation,S entailsS′ and
S′ entailsS), if S specifiesS′ thenS also entailsS′

and ifS generalizesS′ thenS is entailed byS′.
In remainder of this paper, we will distinguish two

aspects of this task:alignment is the subtask of pair-
ing related nodes – or more precise, pairing the to-
ken strings corresponding to these nodes;classifica-
tion of semantic relationsis the subtask of labeling
these alignments in terms of the five types of seman-
tic relations.

2.3 Annotation procedure

For creating manual alignments, we developed a
special-purpose annotation tool which shows, side
by side, two sentences, as well as their respective
dependency graphs. When the user clicks on a node
v in the graph, the corresponding string (STR(v)) is
shown at the bottom. The tool enables the user to
manually construct an alignment graph on the basis
of the respective dependency graphs. This is done by
focusing on a node in the structure for one sentence,

and then selecting a corresponding node (if possible)
in the other structure, after which the user can select
the relevant alignment relation. The tool offers addi-
tional support for folding parts of the graphs, high-
lighting unaligned nodes and hiding dependency re-
lation labels.

All text material was aligned by the two authors.
They started with annotating the first ten sentences
of chapter one together in order to get a feel for
the task. They continued with the remaining sen-
tences from chapter one individually (35 sentences
and 521 in the first translation, and 35 sentences and
481 words in the second translation). Next, both
annotators discussed annotation differences, which
triggered some revisions in their respective annota-
tion. They also agreed on a single consensus annota-
tion. Interannotator agreement will be discussed in
the next two sections. Finally, each author annotated
two additional chapters, bringing the total to five.

3 Alignment

3.1 Interannotator agreement

Interannotator agreement was calculated in terms of
precision, recall and F-score (withβ = 1) on aligned
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(A1, A2) (A1′ , A2′) (Ac, A1′) (Ac, A2′)

#real: 322 323 322 322
#pred: 312 321 323 321
#correct: 293 315 317 318
precision: .94 .98 .98 .99
recall: .91 .98 .98 .99
F-score: .92 .98 .98 .99

Table 1: Interannotator agreement with respect
to alignment between annotators 1 and 2 before
(A1, A2) and after(A1′ , A2′) revision , and between
the consensus and annotator 1(Ac, A1′) and annota-
tor 2 (Ac, A2′) respectively.

node pairs as follows:

precision = | Areal ∩ Apred | / | Apred | (1)

recall = | Areal ∩ Apred | / | Areal | (2)

F -score = (2 × prec × rec) / (prec + rec) (3)

whereAreal is the set of all real alignments (the ref-
erence or golden standard),Apred is the set of all
predicted alignments, andApred∩Areal is the set all
correctly predicted alignments. For the purpose of
calculating interannotator agreement, one of the an-
notations (A1) was considered the ‘real’ alignment,
the other (A2) the ‘predicted’. The results are sum-
marized in Table 1 in column(A1, A2).1

As explained in section 2.3, both annotators re-
vised their initial annotations. This improved their
agreement, as shown in column(A1′ , A2′). In ad-
dition, they agreed on a single consensus annotation
(Ac). The last two columns of Table 1 show the re-
sults of evaluating each of the revised annotations
against this consensus annotation. The F-score of
.98 can therefore be regarded as the upper bound on
the alignment task.

3.2 Automatic alignment

Our tree alignment algorithm is based on the dy-
namic programming algorithm in (Meyers et al.,
1996), and similar to that used in (Barzilay, 2003).
It calculates the match between each node in de-
pendency treeD against each node in dependency
treeD′. The score for each pair of nodes only de-
pends on the similarity of the words associated with
the nodes and, recursively, on the scores of the best

1Note that since there are no classes, we can not calculate
change agreement retheKappa statistic.

matching pairs of their descendants. The node simi-
larity function relies either on identity of the lemmas
or on synonym, hyperonym, and hyponym relations
between them, as retrieved from EuroWordNet.

Automatic alignment was evaluated with the con-
sensus alignment of the first chapter as the gold
standard. A baseline was constructed by aligning
those nodes which stand in anequalsrelation to each
other, i.e., a nodev in D is aligned to a nodev′

in D′ iff STR(v) =STR(v′). This baseline already
achieves a relatively high score (an F-score of .56),
which may be attributed to the nature of our mate-
rial: the translated sentence pairs are relatively close
to each other and may show a sizeable amount of lit-
eral string overlap. In order to test the contribution
of synonym and hyperonym information for node
matching, performance is measured with and with-
out the use of EuroWordNet. The results for auto-
matic alignment are shown in Table 2. In compari-
son with the baseline, the alignment algorithm with-
out use of EuroWordnet loses a few points on preci-
sion, but improves a lot on recall (a 200% increase),
which in turn leads to a substantial improvement on
the overall F-score. The use of EurWordNet leads to
a small increase (two points) on both precision and
recall, and thus to small increase in F-score. How-
ever, in comparison with the gold standard human
score for this task (.95), there is clearly room for
further improvement.

4 Classification of semantic relations

4.1 Interannotator agreement

In addition to alignment, the annotation procedure
for the first chapter ofThe little princeby two anno-
tators (cf. section 2.3) also involved labeling of the
semantic relation between aligned nodes. Interanno-
tator agreement on this task is shown Table 3, before
and after revision. The measures areweightedpreci-
sion, recall and F-score. For instance, the precision
is the weighted sum of the separate precision scores
for each of the five relations. The table also shows
theκ-score. The F-score of.97 can be regarded as
the upper bound on the relation labeling task. We
think these numbers indicate that the classification
of semantic relations is a well defined task which
can be accomplished with a high level of interanno-
tator agreement.
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Alignment : Prec : Rec : F-score:

baseline .87 .41 .56
algorithm without wordnet .84 .82 .83
algorithm with wordnet .86 .84 .85

Table 2: Precision, recall and F-score on automatic
alignment

(A1, A2) (A1′ , A2′) (Ac, A1′) (Ac, A2′)

precision: .86 .96 .98 .97
recall: .86 .95 .97 .97
F-score: .85 .95 .97 .97
κ: .77 .92 .96 .96

Table 3: Interannotator agreement with respect to se-
mantic relation labeling between annotators 1 and 2
before(A1, A2) and after(A1′ , A2′) revision , and
between the consensus and annotator 1(Ac, A1′)
and annotator 2(Ac, A2′) respectively.

4.2 Automatic classification

For the purpose ofautomaticsemantic relation la-
beling, we approach the task as a classification prob-
lem to be solved by machine learning. Alignments
between node pairs are classified on the basis of the
lexical-semantic relation between the nodes, their
corresponding strings, and – recursively – on previ-
ous decisions about the semantic relations of daugh-
ter nodes. The input features used are:

• a boolean feature representing string identity
between the strings corresponding to the nodes

• a boolean feature for each of the five semantic
relations indicating whether the relation holds
for at least one of the daughter nodes;

• a boolean feature indicating whether at least
one of the daughter nodes isnot aligned;

• a categorical feature representing the lexical se-
mantic relation between the nodes (i.e. the
lemmas and their part-of-speech) as found in
EuroWordNet, which can besynonym, hyper-
onym, or hyponym.2

To allow for the use of previous decisions, the
nodes of the dependency analyses are traversed in
a bottom-up fashion. Whenever a node is aligned,
the classifier assigns a semantic label to the align-
ment. Taking previous decisions into account may

2These three form the bulk of all relations in Dutch Eu-
roWordnet. Since no word sense disambiguation was involved,
we simply used all word senses.

Prec : Rec : F-score:

equals .93 ± .06 .95 ± .04 .94 ± .02
restates .56 ± .08 .78 ± .04 .65 ± .05
specifies n.a. 0 n.a.
generalizes .19 ± .06 .37 ± .09 .24 ± .05
intersects n.a. 0 n.a.

Combined: .62 ± .01 .70 ± .02 .64 ± .02

Table 4: Average precision, recall and F-score (and
SD) over all 5 folds on automatic classification of
semantic relations

cause a proliferation of errors: wrong classification
of daughter nodes may in turn cause wrong classifi-
cation of the mother node. To investigate this risk,
classification experiments were run both with and
without (i.e. using the annotation) previous deci-
sions.

Since our amount of data is limited, we used
a memory-based classifier, which – in contrast to
most other machine learning algorithms – performs
no abstraction, allowing it to deal with productive
but low-frequency exceptions typically occurring in
NLP tasks(Daelemans et al., 1999). All memory-
based learning was performed with TiMBL, version
5.1 (Daelemans et al., 2004), with its default set-
tings (overlap distance function, gain-ratio feature
weighting,k = 1).

The five first chapters ofThe little princewere
used to run a 5-fold cross-validated classification ex-
periment. The first chapter is the consensus align-
ment and relation labeling, while the other four were
done by one out of two annotators. The alignments
to be classified are those from to thehumanalign-
ment. The baseline of always guessingequals– the
majority class – gives a precision of0.26, a recall of
0.51, and an F-score of0.36. Table 4 presents the re-
sults broken down to relation type. The combined F-
score of0.64 is almost twice the baseline score. As
expected, the highest score goes toequals, followed
by a reasonable score onrestates. Performance on
the other relation types is rather poor, with even no
predictions ofspecifiesandintersectsat all.

Faking perfect previous decisions by using the
annotation gives a considerable improvement, as
shown in Table 5, especially onspecifies, general-
izesand intersects. This reveals that the prolifera-
tion of classification errors is indeed a problem that
should be addressed.
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Prec : Rec : F-score:

equals .99 ± .02 .97 ± .02 .98 ± .01
restates .65 ± .04 .82 ± .04 .73 ± .03
specifies .60 ± .12 .48 ± .10 .53 ± .09
generalizes .50 ± .11 .52 ± .10 .50 ± .09
intersects .69 ± .27 .35 ± .12 .46 ± .16

Combined: .82 ± .02 .81 ± .02 .80 ± .02

Table 5: Average precision, recall and F-score (and
SD) over all 5 folds on automatic classification of
semantic relations without using previous decisions.

In sum, these results show that automatic classifi-
cation of semantic relations is feasible and promis-
ing – especially when the proliferation of classifica-
tion errors can be prevented – but still not nearly as
good as human performance.

5 Discussion and Future work

This paper presented an approach to detecting se-
mantic relations at the word, phrase and sentence
level on the basis of dependency analyses. We inves-
tigated the performance of human annotators on the
tasks of manually aligning dependency analyses and
of labeling the semantic relations between aligned
nodes. Results indicate that humans can perform this
task well, with an F-score of.98 on alignment and an
F-score of.92 on semantic relations (after revision).
We also described and evaluated automatic methods
addressing these tasks: a dynamic programming tree
alignment algorithm which achieved an F-score on
alignment of.85 (using lexical semantic information
from EuroWordNet), and a memory-based seman-
tic relation classifier which achieved F-scores of.64
and .80 with and without using real previous deci-
sions respectively.

One of the issues that remains to be addressed
in future work is the effect of parsing errors. Such
errors were not corrected, but during manual align-
ment, we sometimes found that substrings could not
be properly aligned because the parser had failed to
identify them as syntactic constituents. As far as
classification of semantic relations is concerned, the
proliferation of classification errors is an issue that
needs to be solved. Classification performance may
be further improved with additional features (e.g.
phrase length information), optimization, and more
data. Also, we have not yet tried to combine au-
tomatic alignment and classification. Yet another

point concerns the type of text material. The sen-
tence pairs from our current corpus are relatively
close, in the sense that both translations more or less
convey the same information. Although this seems a
good starting point to study alignment, we intend to
continue with other types of text material in future
work. For instance, in extending our work to the ac-
tual output of a QA system, we expect to encounter
sentences with far less overlap.
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Abstract

This work explores computing distribu-
tional similarity between sub-parses, i.e.,
fragments of a parse tree, as an extension
to general lexical distributional similarity
techniques. In the same way that lexical
distributional similarity is used to estimate
lexical semantic similarity, we propose us-
ing distributional similarity between sub-
parses to estimate the semantic similarity of
phrases. Such a technique will allow us to
identify paraphrases where the component
words are not semantically similar. We
demonstrate the potential of the method by
applying it to a small number of examples
and showing that the paraphrases are more
similar than the non-paraphrases.

1 Introduction

An expression is said to textually entail another ex-
pression if the meaning of the second expression can
be inferred from the meaning of the first. For exam-
ple, the sentence “London is an English city,” tex-
tually entails the sentence “London is in England.”
As discussed by Dagan et al. (2005) in their intro-
duction to the first Recognising Textual Entailment
Challenge, identifying textual entailment can be seen
as a subtask of a variety of other natural language
processing (NLP) tasks. For example, Question An-
swering (QA) can be cast as finding an answer which
is entailed by the proposition in the question. Other
identified tasks include summarization, paraphras-
ing, Information Extraction (IE), Information Re-
trieval (IR) and Machine Translation (MT).

The Natural Habitats (NatHab) project1 (Weeds
et al., 2004; Owen et al., 2005) provides an inter-
esting setting in which to study paraphrase and tex-

1http://www.informatics.susx.ac.uk/projects/nathab/

tual entailment recognition as a tool for natural lan-
guage understanding. The aim of the project is to
enable non-technical users to configure their perva-
sive computing environments. They do this by stat-
ing policies in natural language which describe how
they wish their environment to behave. For exam-
ple, a user, who wishes to restrict the use of their
colour printer to the printing of colour documents,
might have as a policy, “Never print black-and-white
documents on my colour printer.” Similarly, a user,
who wishes to be alerted by email when their mobile
phone battery is low, might have as a policy, “If my
mobile phone battery is low then send me an email.”
The natural language understanding task is to in-
terpret the user’s utterance with reference to a set
of policy templates and an ontology of services (e.g.
print) and concepts (e.g. document). The use of pol-
icy templates and an ontology restricts the number of
possible meanings that a user can express. However,
there is still considerable variability in the way these
policies can be expressed. Simple variations on the
theme of the second policy above include, “Send me
an email whenever my mobile phone battery is low,”
and “If the charge on my mobile phone is low then
email me.” Our approach is to tackle the interpreta-
tion problem by identifying parts of expressions that
are paraphrases of those expressions whose interpre-
tation with respect to the ontology is more directly
encoded. Here, we investigate extending distribu-
tional similarity methods from words to sub-parses.

The rest of this paper is organised as follows. In
Section 2 we discuss the background to our work.
We consider the limitations of an approach based on
lexical similarity and syntactic templates, which mo-
tivates us to look directly at the similarity of larger
units. In Section 3, we introduce our proposed ap-
proach, which is to measure the distributional simi-
larity of sub-parses. In Section 4, we consider exam-
ples from the Pascal Textual Entailment Challenge
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Datasets2 (Dagan et al., 2005) and demonstrate em-
pirically how similarity can be found between corre-
sponding phrases when parts of the phrases cannot
be said to be similar. In Section 5, we present our
conclusions and directions for further work.

2 Background

One well-studied approach to the identification of
paraphrases is to employ a lexical similarity func-
tion. As noted by Barzilay and Elhadad (2003), even
a lexical function that simply computes word over-
lap can accurately select paraphrases. The prob-
lem with such a function is not in the accuracy of
the paraphrases selected, but in its low recall. One
popular way of improving recall is to relax the re-
quirement for words in each sentence to be identi-
cal in form, to being identical or similar in mean-
ing. Methods to find the semantic similarity of two
words can be broadly split into those which use lex-
ical resources, e.g., WordNet (Fellbaum, 1998), and
those which use a distributional similarity measure
(see Weeds (2003) for a review of distributional sim-
ilarity measures). Both Jijkoun and deRijke (2005)
and Herrara et al. (2005) show how such a measure
of lexical semantic similarity might be incorporated
into a system for recognising textual entailment be-
tween sentences.

Previous work on the NatHab project (Weeds et
al., 2004) used such an approach to extend lexi-
cal coverage. Each of the user’s uttered words was
mapped to a set of candidate words in a core lexicon3,
identified using a measure of distributional similar-
ity. For example, the word send is used when talk-
ing about printing or about emailing, and a good
measure of lexical similarity would identify both of
these conceptual services as candidates. The best
choice of candidate was then chosen by optimising
the match between grammatical dependency rela-
tions and paths in the ontology over the entire sen-
tence. For example, an indirect-object relation be-
tween the verb send and a printer can be mapped to
the path in the ontology relating a print request to
its target printer.

As well as lexical variation, our previous work
(Weeds et al., 2004) allowed a certain amount of
syntactic variation via its use of grammatical depen-
dencies and policy templates. For example, the pas-
sive “paraphrase” of a sentence can be identified by
comparing the sets of grammatical dependency rela-
tions produced by a shallow parser such as the RASP

2http://www.pascal-network.org/Challenges/RTE/
3The core lexicon lists a canonical word form for each

concept in the ontology.

parser (Briscoe and Carroll, 1995). In other words,
by looking at grammatical dependency relations, we
can identify that “John is liked by Mary,” is a para-
phrase of “Mary likes John,” and not of “John likes
Mary.” Further, where there is a limited number of
styles of sentence, we can manually identify and list
other templates for matches over the trees or sets of
dependency relations. For example, “If C1 then C2”
is the same as “C2 if C1”.

However, the limitations of this approach, which
combines lexical variation, grammatical dependency
relations and template matching, become increas-
ingly obvious as one tries to scale up. As noted by
Herrera (2005), similarity at the word level is not
required for similarity at the phrasal level. For ex-
ample, in the context of our project, the phrases “if
my mobile phone needs charging” and “if my mobile
phone battery is low” have the same intended mean-
ing but it is not possible to obtain the second by
making substitutions for similar words in the first. It
appears that “X needs charging” and “battery (of X)
is low” have roughly similar meanings without their
component words having similar meanings. Further,
this does not appear to be due to either phrase being
non-compositional. As noted by Pearce (2001), it is
not possible to substitute similar words within non-
compositional collocations. In this case, however,
both phrases appear to be compositional. Words
cannot be substituted between the two phrases be-
cause they are composed in different ways.

3 Proposal

Recently, there has been much interest in find-
ing words which are distributionally similar e.g.,
Lin (1998), Lee (1999), Curran and Moens (2002),
Weeds (2003) and Geffet and Dagan (2004). Two
words are said to be distributionally similar if they
appear in similar contexts. For example, the two
words apple and pear are likely to be seen as the
objects of the verbs eat and peel, and this adds to
their distributional similarity. The Distributional
Hypothesis (Harris, 1968) proposes a connection be-
tween distributional similarity and semantic simi-
larity, which is the basis for a large body of work
on automatic thesaurus construction using distribu-
tional similarity methods (Curran and Moens, 2002;
Weeds, 2003; Geffet and Dagan, 2004).

Our proposal is that just as words have distribu-
tional similarity which can be used, with at least
some success, to estimate semantic similarity, so do
larger units of expression. We propose that the unit
of interest is a sub-parse, i.e., a fragment (connected
subgraph) of a parse tree, which can range in size
from a single word to the parse for the entire sen-
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Figure 1: Parse trees for “my mobile phone needs
charging” and “my mobile phone battery is low”

tence. Figure 1 shows the parses for the clauses,
“my mobile phone needs charging,” and “my mobile
phone battery is low” and highlights the fragments
(“needs charging” and “battery is low”) for which we
might be interested in finding similarity.

In our model, we define the features or contexts of
a sub-parse to be the grammatical relations between
any component of the sub-parse and any word out-
side of the sub-parse. In the example above, both
sub-parses would have features based on their gram-
matical relation with the word phone. The level of
granularity at which to consider grammatical rela-
tions remains a matter for investigation. For exam-
ple, it might turn out to be better to distinguish
between all types of dependent or, alternatively, it
might be better to have a single class which covers
all dependents. We also consider the parents of the
sub-parse as features. In the example, “Send me an
email if my mobile phone battery is low,” this would
be that the sub-parse modifies the verb send i.e., it
has the feature, <mod-of, send>.

Having defined these models for the unit of inter-
est, the sub-parse, and for the context of a sub-parse,
we can build up co-occurrence vectors for sub-parses
in the same way as for words. A co-occurrence vec-
tor is a conglomeration (with frequency counts) of
all of the co-occurrences of the target unit found in
a corpus. The similarity between two such vectors
or descriptions can then be found using a standard
distributional similarity measure (see Weeds (2003)).

The use of distributional evidence for larger units
than words is not new. Szpektor et al. (2004) auto-
matically identify anchors in web corpus data. An-
chors are lexical elements that describe the context
of a sentence and if words are found to occur with
the same set of anchors, they are assumed to be
paraphrases. For example, the anchor set {Mozart,
1756} is a known anchor set for verbs with the mean-
ing “born in”. However, this use of distributional

evidence requires both anchors, or contexts, to oc-
cur simultaneously with the target word. This dif-
fers from the standard notion of distributional sim-
ilarity which involves finding similarity between co-
occurrence vectors, where there is no requirement for
two features or contexts to occur simulultaneously.

Our work with distributional similarity is a gen-
eralisation of the approach taken by Lin and Pantel
(2001). These authors apply the distributional sim-
ilarity principle to paths in a parse tree. A path
exists between two words if there are grammatical
relations connecting them in a sentence. For exam-
ple, in the sentence “John found a solution to the
problem,” there is a path between “found” and “so-
lution” because solution is the direct object of found.
Contexts of this path, in this sentence, are then the
grammatical relations <ncsubj, John> and <iobj,
problem> because these are grammatical relations
associated with either end of the path. In their work
on QA, Lin and Pantel restrict the grammatical re-
lations considered to two “slots” at either end of the
path where the word occupying the slot is a noun.
Co-occurrence vectors for paths are then built up us-
ing evidence from multiple occurrences of the paths
in corpus data, for which similarity can then be cal-
culated using a standard metric (e.g., Lin (1998)).
In our work, we extend the notion of distributional
similarity from linear paths to trees. This allows us
to compute distributional similarity for any part of
an expression, of arbitrary length and complexity
(although, in practice, we are still limited by data
sparseness). Further, we do not make any restric-
tions as to the number or types of the grammatical
relation contexts associated with a tree.

4 Empirical Evidence

Practically demonstrating our proposal requires a
source of paraphrases. We first looked at the MSR
paraphrase corpus (Dolan et al., 2004) since it con-
tains a large number of sentences close enough in
meaning to be considered paraphrases. However, in-
spection of the data revealed that the lexical overlap
between the pairs of paraphrasing sentences in this
corpus is very high. The average word overlap (i.e.,
the proportion of exactly identical word forms) cal-
culated over the sentences paired by humans in the
training set is 0.70, and the lowest overlap4 for such
sentences is 0.3. This high word overlap makes this
a poor source of examples for us, since we wish to
study similarity between phrases which do not share
semantically similar words.

4A possible reason for this is that candidate sentences
were first identified automatically.
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Consequently, for our purposes, the Pascal Textual
Entailment Recognition Challenge dataset is a more
suitable source of paraphrase data. Here the average
word overlap between textually entailing sentences is
0.39 and the lowest overlap is 0. This allows us to
easily find pairs of sub-parses which do not share sim-
ilar words. For example, in paraphrase pair id.19, we
can see that “reduce the risk of diseases” entails “has
health benefits”. Similarly in pair id.20, “may keep
your blood glucose from rising too fast” entails “im-
proves blood sugar control,” and in id.570, “charged
in the death of” entails “accused of having killed.”

In this last example there is semantic similarity
between the words used. The word charged is seman-
tically similar to accused. However, it is not possible
to swap the two words in these contexts since we do
not say “charged of having killed.” Further, there is
an obvious semantic connection between the words
death and killed, but being different parts of speech
this would be easily missed by traditional distribu-
tional methods.

Consequently, in order to demonstrate the poten-
tial of our method, we have taken the phrases “reduce
the risk of diseases”, “has health benefits”, “charged
in the death of” and “accused of having killed”, con-
structed corpora for the phrases and their compo-
nents and then computed distributional similarity
between pairs of phrases and their respective com-
ponents. Under our hypotheses, paraphrases will be
more similar than non-paraphrases and there will be
no clear relation between the similarity of phrases as
a whole and the similarity of their components.

We now discuss corpus construction and distribu-
tional similarity calculation in more detail.

4.1 Corpus Construction

In order to compute distributional similarity between
sub-parses, we need to have seen a large number of
occurrences of each sub-parse. Since data sparse-
ness rules out using traditional corpora, such as the
British National Corpus (BNC), we constructed a
corpus for each phrase by mining the web. We also
constructed a similar corpus for each component of
each phrase. For example, for phrase 1, we con-
structed corpora for “reduce the risk of diseases”,
“reduce” and “the risk of diseases”. We do this in or-
der to avoid only have occurrences of the components
in the context of the larger phrase. Each corpus was
constructed by sending the phrase as a quoted string
to Altavista. We took the returned list of URLs (up
to the top 1000 where more than 1000 could be re-
turned), removed duplicates and then downloaded
the associated files. We then searched the files for
the lines containing the relevant string and added

Phrase Types Tokens
reduce the risk of diseases 156 389
reduce 3652 14082
the risk of diseases 135 947
has health benefits 340 884
has 3709 10221
health benefits 143 301
charged in the death of 624 1739
charged in 434 1011
the death of 348 1440
accused of having killed 88 173
accused of 679 1760
having killed 569 1707

Table 1: Number of feature types and tokens ex-
tracted for each Phrase

each of these to the corpus file for that phrase. Each
corpus file was then parsed using the RASP parser
(version 3.β) ready for feature extraction.

4.2 Computing Distributional Similarity

First, a feature extractor is run over each parsed cor-
pus file to extract occurrences of the sub-parse and
their features. The feature extractor reads in a tem-
plate for each phrase in the form of dependency re-
lations over lemmas. It checks each sentence parse
against the template (taking care that the same word
form is indeed the same occurrence of the word in the
sentence). When a match is found, the other gram-
matical relations5 for each word in the sub-parse are
output as features. When the sub-parse is only a
word, the process is simplified to finding grammati-
cal relations containing that word.

The raw feature file is then converted into a co-
occurrence vector by counting the occurrences of
each feature type. Table 1 shows the number of fea-
ture types and tokens extracted for each phrase. This
shows that we have extracted a reasonable number
of features for each phrase, since distributional sim-
ilarity techniques have been shown to work well for
words which occur more than 100 times in a given
corpus (Lin, 1998; Weeds and Weir, 2003).

We then computed the distributional similarity be-
tween each co-occurrence vector using the α-skew
divergence measure (Lee, 1999). The α-skew diver-
gence measure is an approximation to the Kullback-
Leibler (KL) divergence meassure between two dis-
tributions p and q:

D(p||q) =
∑

x

p(x)log
p(x)
q(x)

5We currently retain all of the distinctions between
grammatical relations output by RASP.

10



The α-skew divergence measure is designed to be
used when unreliable maximum likelihood estimates
(MLE) of probabilities would result in the KL diver-
gence being equal to ∞. It is defined as:

distα(q, r) = D(r||α.q + (1− α).r)

where 0 ≤ α ≤ 1. We use α = 0.99, since this
provides a close approximation to the KL divergence
measure. The result is a number greater than or
equal to 0, where 0 indicates that the two distribu-
tions are identical. In other words, a smaller distance
indicates greater similarity.

The reason for choosing this measure is that it
can be used to compute the distance between any
two co-occurrence vectors independent of any infor-
mation about other words. This is in contrast to
many other measures, e.g., Lin (1998), which use the
co-occurrences of features with other words to com-
pute a weighting function such as mutual information
(MI) (Church and Hanks, 1989). Since we only have
corpus data for the target phrases, it is not possible
for us to use such a measure. However, the α-skew
divergence measure has been shown (Weeds, 2003)
to perform comparably with measures which use MI,
particularly for lower frequency target words.

4.3 Results

The results, in terms of α-skew divergence scores be-
tween pairs of phrases, are shown in Table 2. Each
set of three lines shows the similarity score between
a pair of phrases and then between respective pairs
of components. In the first two sets, the phrases
are paraphrases whereas in the second two sets, the
phrases are not.

From the table, there does appear to be some po-
tential in the use of distributional similarity between
sub-parses to identify potential paraphrases. In the
final two examples, the paired phrases are not se-
mantically similar, and as we would expect, their re-
spective distributional similarities are less (i.e., they
are further apart) than in the first two examples.

Further, we can see that there is no clear relation
between the similarity of two phrases and the simi-
larity of respective components. However in 3 out of
4 cases, the similarity between the phrases lies be-
tween that of their components. In every case, the
similarity of the phrases is less than the similarity
of the verbal components. This might be what one
would expect for the second example since the com-
ponents “charged in” and “accused of” are seman-
tically similar. However, in the first example, we
would have expected to see that the similarity be-
tween “reduce the risk of diseases” and “has health

Phrase 1 Phrase 2 Dist.

reduce the risk of diseases has health benefits 5.28

reduce has 4.95
the risk of diseases health benefits 5.58

charged in the death of accused of having killed 5.07

charged in accused of 4.86

the death of having killed 6.16

charged in the death of has health benefits 6.04

charged in has 5.54

the death of health benefits 4.70

reduce the risk of diseases accused of having killed 6.09

reduce accused of 5.77

the risk of diseases having killed 6.31

Table 2: α-skew divergence scores between pairs of
phrases

benefits” to be greater than either pair of compo-
nents, which it is not. The reason for this is not clear
from just these examples. However, possibilities in-
clude the distributional similarity measure used, the
features selected from the corpus data and a combi-
nation of both. It may be that single words tend to
exhibit greater similarity than phrases due to their
greater relative frequencies. As a result, it may be
necessary to factor in the length or frequency of a
sub-parse into distributional similarity calculations
or comparisons thereof.

5 Conclusions and Further Work

In conclusion, it is clear that components of phrases
do not need to be semantically similar for the encom-
passing phrases to be semantically similar. Thus,
it is necessary to develop techniques which estimate
the semantic similarity of two phrases directly rather
than combining similarity scores calculated for pairs
of words.

Our approach is to find the distributional similar-
ity of the sub-parses associated with phrases by ex-
tending general techniques for finding lexical distri-
butional similarity. We have illustrated this method
for examples, showing how data sparseness can be
overcome using the web.

We have shown that finding the distributional sim-
ilarity between phrases, as outlined here, may have
potential in identifying paraphrases. In our exam-
ples, the distributional similarities of paraphrases
was higher than non-paraphrases. However, obvi-
ously, more extensive evaluation of the technique is
required before drawing more definite conclusions.

In this respect, we are currently in the pro-
cess of developing a gold standard set of similar
phrases from the Pascal Textual Entailment Chal-
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lenge dataset. This task is not trivial since, even
though pairs of sentences are already identified as
potential paraphrases, it is still necessary to ex-
tract pairs of phrases which convey roughly the same
meaning. This is because 1) some pairs of sentences
are almost identical in word content and 2) some
pairs of sentences are quite distant in meaning sim-
ilarity. Further, it is also desirable to classify ex-
tracted pairs of paraphrases as to whether they are
lexical, syntactic, semantic or inferential in nature.
Whilst lexical (e.g. “to gather” is similar to “to col-
lect”) and syntactic (e.g. “Cambodian sweatshop”
is equivalent to “sweatshop in Cambodia”) are of in-
terest, our aim is to extend lexical techniques to the
semantic level (e.g. “X won presidential election” is
similar to “X became president”). Once our analysis
is complete, the data will be used to evaluate vari-
ations on the technique proposed herein and also to
compare it empirically to other techniques such as
that of Lin and Pantel (2001).
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Abstract

This paper presents a knowledge-based
method for measuring the semantic-
similarity of texts. While there is a large
body of previous work focused on find-
ing the semantic similarity of concepts
and words, the application of these word-
oriented methods to text similarity has not
been yet explored. In this paper, we in-
troduce a method that combines word-
to-word similarity metrics into a text-to-
text metric, and we show that this method
outperforms the traditional text similarity
metrics based on lexical matching.

1 Introduction

Measures of text similarity have been used for a
long time in applications in natural language pro-
cessing and related areas. One of the earliest ap-
plications of text similarity is perhaps the vectorial
model in information retrieval, where the document
most relevant to an input query is determined by
ranking documents in a collection in reversed or-
der of their similarity to the given query (Salton and
Lesk, 1971). Text similarity has been also used for
relevance feedback and text classification (Rocchio,
1971), word sense disambiguation (Lesk, 1986), and
more recently for extractive summarization (Salton
et al., 1997b), and methods for automatic evaluation
of machine translation (Papineni et al., 2002) or text
summarization (Lin and Hovy, 2003).

The typical approach to finding the similarity be-
tween two text segments is to use a simple lexical

matching method, and produce a similarity score
based on the number of lexical units that occur in
both input segments. Improvements to this simple
method have considered stemming, stop-word re-
moval, part-of-speech tagging, longest subsequence
matching, as well as various weighting and normal-
ization factors (Salton et al., 1997a). While success-
ful to a certain degree, these lexical matching simi-
larity methods fail to identify the semantic similarity
of texts. For instance, there is an obvious similarity
between the text segments I own a dog and I have
an animal, but most of the current text similarity
metrics will fail in identifying any kind of connec-
tion between these texts. The only exception to this
trend is perhaps the latent semantic analysis (LSA)
method (Landauer et al., 1998), which represents
an improvement over earlier attempts to use mea-
sures of semantic similarity for information retrieval
(Voorhees, 1993), (Xu and Croft, 1996). LSA aims
to find similar terms in large text collections, and
measure similarity between texts by including these
additional related words. However, to date LSA has
not been used on a large scale, due to the complex-
ity and computational cost associated with the algo-
rithm, and perhaps also due to the “black-box” ef-
fect that does not allow for any deep insights into
why some terms are selected as similar during the
singular value decomposition process.

In this paper, we explore a knowledge-based
method for measuring the semantic similarity of
texts. While there are several methods previ-
ously proposed for finding the semantic similar-
ity of words, to our knowledge the application of
these word-oriented methods to text similarity has
not been yet explored. We introduce an algorithm
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that combines the word-to-word similarity metrics
into a text-to-text semantic similarity metric, and we
show that this method outperforms the simpler lex-
ical matching similarity approach, as measured in a
paraphrase identification application.

2 Measuring Text Semantic Similarity

Given two input text segments, we want to auto-
matically derive a score that indicates their similar-
ity at semantic level, thus going beyond the simple
lexical matching methods traditionally used for this
task. Although we acknowledge the fact that a com-
prehensive metric of text semantic similarity should
take into account the relations between words, as
well as the role played by the various entities in-
volved in the interactions described by each of the
two texts, we take a first rough cut at this problem
and attempt to model the semantic similarity of texts
as a function of the semantic similarity of the com-
ponent words. We do this by combining metrics of
word-to-word similarity and language models into
a formula that is a potentially good indicator of the
semantic similarity of the two input texts.

2.1 Semantic Similarity of Words

There is a relatively large number of word-to-word
similarity metrics that were previously proposed in
the literature, ranging from distance-oriented mea-
sures computed on semantic networks, to metrics
based on models of distributional similarity learned
from large text collections. From these, we chose to
focus our attention on six different metrics, selected
mainly for their observed performance in natural
language processing applications, e.g. malapropism
detection (Budanitsky and Hirst, 2001) and word
sense disambiguation (Patwardhan et al., 2003), and
for their relatively high computational efficiency.

We conduct our evaluation using the following
word similarity metrics: Leacock & Chodorow,
Lesk, Wu & Palmer, Resnik, Lin, and Jiang & Con-
rath. Note that all these metrics are defined be-
tween concepts, rather than words, but they can be
easily turned into a word-to-word similarity metric
by selecting for any given pair of words those two
meanings that lead to the highest concept-to-concept
similarity. We use the WordNet-based implemen-
tation of these metrics, as available in the Word-
Net::Similarity package (Patwardhan et al., 2003).

We provide below a short description for each of
these six metrics.

The Leacock & Chodorow (Leacock and
Chodorow, 1998) similarity is determined as:

Simlch = − log
length

2 ∗ D
(1)

where length is the length of the shortest path be-
tween two concepts using node-counting, and D is
the maximum depth of the taxonomy.

The Lesk similarity of two concepts is defined as a
function of the overlap between the corresponding
definitions, as provided by a dictionary. It is based
on an algorithm proposed in (Lesk, 1986) as a solu-
tion for word sense disambiguation.

The Wu and Palmer (Wu and Palmer, 1994) simi-
larity metric measures the depth of the two concepts
in the WordNet taxonomy, and the depth of the least
common subsumer (LCS), and combines these fig-
ures into a similarity score:

Simwup =
2 ∗ depth(LCS)

depth(concept1) + depth(concept2)
(2)

The measure introduced by Resnik (Resnik, 1995)
returns the information content (IC) of the LCS of
two concepts:

Simres = IC(LCS) (3)

where IC is defined as:

IC(c) = − log P (c) (4)

and P (c) is the probability of encountering an in-
stance of concept c in a large corpus.

The next measure we use in our experiments is the
metric introduced by Lin (Lin, 1998), which builds
on Resnik’s measure of similarity, and adds a nor-
malization factor consisting of the information con-
tent of the two input concepts:

Simlin =
2 ∗ IC(LCS)

IC(concept1) + IC(concept2)
(5)

Finally, the last similarity metric we consider is
Jiang & Conrath (Jiang and Conrath, 1997), which
returns a score determined by:

Simjnc =
1

IC(concept1) + IC(concept2)− 2 ∗ IC(LCS)
(6)
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2.2 Language Models

In addition to the semantic similarity of words, we
also want to take into account the specificity of
words, so that we can give a higher weight to a se-
mantic matching identified between two very spe-
cific words (e.g. collie and sheepdog), and give less
importance to the similarity score measured between
generic concepts (e.g. go and be). While the speci-
ficity of words is already measured to some extent
by their depth in the semantic hierarchy, we are re-
inforcing this factor with a corpus-based measure of
word specificity, based on distributional information
learned from large corpora.

Language models are frequently used in natural
language processing applications to account for the
distribution of words in language. While word fre-
quency does not always constitute a good measure of
word importance, the distribution of words across an
entire collection can be a good indicator of the speci-
ficity of the words. Terms that occur in a few docu-
ments with high frequency contain a greater amount
of discriminatory ability, while terms that occur in
numerous documents across a collection with a high
frequency have inherently less meaning to a docu-
ment. We determine the specificity of a word us-
ing the inverse document frequency introduced in
(Sparck-Jones, 1972), which is defined as the total
number of documents in the corpus, divided by the
total number of documents that include that word.
In the experiments reported in this paper, we use the
British National Corpus to derive the document fre-
quency counts, but other corpora could be used to
the same effect.

2.3 Semantic Similarity of Texts

Provided a measure of semantic similarity between
words, and an indication of the word specificity, we
combine them into a measure of text semantic sim-
ilarity, by pairing up those words that are found to
be most similar to each other, and weighting their
similarity with the corresponding specificity score.

We define a directional measure of similarity,
which indicates the semantic similarity of a text seg-
ment Ti with respect to a text segment Tj . This def-
inition provides us with the flexibility we need to
handle applications where the directional knowledge
is useful (e.g. entailment), and at the same time it
gives us the means to handle bidirectional similarity
through a simple combination of two unidirectional

metrics.
For a given pair of text segments, we start by cre-

ating sets of open-class words, with a separate set
created for nouns, verbs, adjectives, and adverbs.
In addition, we also create a set for cardinals, since
numbers can also play an important role in the un-
derstanding of a text. Next, we try to determine pairs
of similar words across the sets corresponding to the
same open-class in the two text segments. For nouns
and verbs, we use a measure of semantic similarity
based on WordNet, while for the other word classes
we apply lexical matching1.

For each noun (verb) in the set of nouns (verbs)
belonging to one of the text segments, we try to iden-
tify the noun (verb) in the other text segment that has
the highest semantic similarity (maxSim), accord-
ing to one of the six measures of similarity described
in Section 2.1. If this similarity measure results in a
score greater than 0, then the word is added to the set
of similar words for the corresponding word class
WSpos

2. The remaining word classes: adjectives,
adverbs, and cardinals, are checked for lexical sim-
ilarity with their counter-parts and included in the
corresponding word class set if a match is found.

The similarity between the input text segments Ti

and Tj is then determined using a scoring function
that combines the word-to-word similarities and the
word specificity:

sim(Ti, Tj)Ti
=

∑

pos

(
∑

wk∈{WSpos}

(maxSim(wk) ∗ idfwk
))

∑

wk∈{Tipos
}

idfwk

(7)

This score, which has a value between 0 and 1, is
a measure of the directional similarity, in this case
computed with respect to Ti. The scores from both
directions can be combined into a bidirectional sim-
ilarity using a simple average function:

sim(Ti, Tj) =
sim(Ti, Tj)Ti

+ sim(Ti, Tj)Tj

2
(8)

1The reason behind this decision is the fact that most of the
semantic similarity measures apply only to nouns and verbs, and
there are only one or two relatedness metrics that can be applied
to adjectives and adverbs.

2All similarity scores have a value between 0 and 1. The
similarity threshold can be also set to a value larger than 0,
which would result in tighter measures of similarity.
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Text Segment 1: The jurors were taken into the courtroom in
groups of 40 and asked to fill out a questionnaire.

• SetNN = {juror, courtroom, group, questionnaire}
SetV B = {be, take, ask, fill}
SetRB = {out}
SetCD = {40}

Text Segment 2: About 120 potential jurors were being asked
to complete a lengthy questionnaire.

• SetNN = {juror, questionnaire}
SetV B = {be, ask, complete}
SetJJ = {potential, lengthy}
SetCD = {120}

Figure 1: Two text segments and their corresponding
word class sets

3 A Walk-Through Example

We illustrate the application of the text similarity
measure with an example. Given two text segments,
as shown in Figure 1, we want to determine a score
that reflects their semantic similarity. For illustration
purposes, we restrict our attention to one measure of
word-to-word similarity, the Wu & Palmer metric.

First, the text segments are tokenized, part-of-
speech tagged, and the words are inserted into their
corresponding word class sets. The sets obtained for
the given text segments are illustrated in Figure 1.

Starting with each of the two text segments, and
for each word in its word class sets, we determine
the most similar word from the corresponding set in
the other text segment. As mentioned earlier, we
seek a WordNet-based semantic similarity for nouns
and verbs, and only lexical matching for adjectives,
adverbs, and cardinals. The word semantic similar-
ity scores computed starting with the first text seg-
ment are shown in Table 3.

Text 1 Text 2 maxSim IDF
jurors jurors 1.00 5.80
courtroom jurors 0.30 5.23
questionnaire questionnaire 1.00 3.57
groups questionnaire 0.29 0.85
were were 1.00 0.09
taken asked 1.00 0.28
asked asked 1.00 0.45
fill complete 0.86 1.29
out – 0 0.06
40 – 0 1.39

Table 1: Wu & Palmer word similarity scores for
computing text similarity with respect to text 1

Next, we use equation 7 and determine the seman-
tic similarity of the two text segments with respect
to text 1 as 0.6702, and with respect to text 2 as
0.7202. Finally, the two figures are combined into
a bidirectional measure of similarity, calculated as
0.6952 based on equation 8.

Although there are a few words that occur in both
text segments (e.g. juror, questionnaire), there are
also words that are not identical, but closely related,
e.g. courtroom found similar to juror, or fill which
is related to complete. Unlike traditional similar-
ity measures based on lexical matching, our metric
takes into account the semantic similarity of these
words, resulting in a more precise measure of text
similarity.

4 Evaluation

To test the effectiveness of the text semantic simi-
larity metric, we use this measure to automatically
identify if two text segments are paraphrases of
each other. We use the Microsoft paraphrase cor-
pus (Dolan et al., 2004), consisting of 4,076 training
pairs and 1,725 test pairs, and determine the number
of correctly identified paraphrase pairs in the cor-
pus using the text semantic similarity measure as the
only indicator of paraphrasing. In addition, we also
evaluate the measure using the PASCAL corpus (Da-
gan et al., 2005), consisting of 1,380 test–hypothesis
pairs with a directional entailment (580 development
pairs and 800 test pairs).

For each of the two data sets, we conduct two
evaluations, under two different settings: (1) An un-
supervised setting, where the decision on what con-
stitutes a paraphrase (entailment) is made using a
constant similarity threshold of 0.5 across all exper-
iments; and (2) A supervised setting, where the op-
timal threshold and weights associated with various
similarity metrics are determined through learning
on training data. In this case, we use a voted percep-
tron algorithm (Freund and Schapire, 1998)3.

We evaluate the text similarity metric built on top
of the various word-to-word metrics introduced in
Section 2.1. For comparison, we also compute three
baselines: (1) A random baseline created by ran-
domly choosing a true or false value for each text
pair; (2) A lexical matching baseline, which only

3Classification using this algorithm was determined optimal
empirically through experiments.
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counts the number of matching words between the
two text segments, while still applying the weighting
and normalization factors from equation 7; and (3)
A vectorial similarity baseline, using a cosine sim-
ilarity measure as traditionally used in information
retrieval, with tf.idf term weighting. For compari-
son, we also evaluated the corpus-based similarity
obtained through LSA; however, the results obtained
were below the lexical matching baseline and are not
reported here.

For paraphrase identification, we use the bidirec-
tional similarity measure, and determine the sim-
ilarity with respect to each of the two text seg-
ments in turn, and then combine them into a bidi-
rectional similarity metric. For entailment identifi-
cation, since this is a directional relation, we only
measure the semantic similarity with respect to the
hypothesis (the text that is entailed).

We evaluate the results in terms of accuracy, rep-
resenting the number of correctly identified true or
false classifications in the test data set. We also mea-
sure precision, recall and F-measure, calculated with
respect to the true values in each of the test data sets.

Tables 2 and 3 show the results obtained in the
unsupervised setting, when a text semantic similar-
ity larger than 0.5 was considered to be an indica-
tor of paraphrasing (entailment). We also evaluate a
metric that combines all the similarity measures us-
ing a simple average, with results indicated in the
Combined row.

The results obtained in the supervised setting are
shown in Tables 4 and 5. The optimal combination
of similarity metrics and optimal threshold are now
determined in a learning process performed on the
training set. Under this setting, we also compute an
additional baseline, consisting of the most frequent
label, as determined from the training data.

5 Discussion and Conclusions

For the task of paraphrase recognition, incorporating
semantic information into the text similarity mea-
sure increases the likelihood of recognition signifi-
cantly over the random baseline and over the lexi-
cal matching baseline. In the unsupervised setting,
the best performance is achieved using a method that
combines several similarity metrics into one, for an
overall accuracy of 68.8%. When learning is used to
find the optimal combination of metrics and optimal
threshold, the highest accuracy of 71.5% is obtained

Metric Acc. Prec. Rec. F
Semantic similarity (knowledge-based)

J & C 0.683 0.724 0.846 0.780
L & C 0.680 0.724 0.838 0.777
Lesk 0.680 0.724 0.838 0.777
Lin 0.679 0.717 0.855 0.780
W & P 0.674 0.722 0.831 0.773
Resnik 0.672 0.725 0.815 0.768
Combined 0.688 0.741 0.817 0.777

Baselines
LexMatch 0.661 0.722 0.798 0.758
Vectorial 0.654 0.716 0.795 0.753
Random 0.513 0.683 0.500 0.578

Table 2: Text semantic similarity for paraphrase
identification (unsupervised)

Metric Acc. Prec. Rec. F
Semantic similarity (knowledge-based)

J & C 0.573 0.543 0.908 0.680
L & C 0.569 0.543 0.870 0.669
Lesk 0.568 0.542 0.875 0.669
Resnik 0.565 0.541 0.850 0.662
Lin 0.563 0.538 0.878 0.667
W & P 0.558 0.534 0.895 0.669
Combined 0.583 0.561 0.755 0.644

Baselines
LexMatch 0.545 0.530 0.795 0.636
Vectorial 0.528 0.525 0.588 0.555
Random 0.486 0.486 0.493 0.489

Table 3: Text semantic similarity for entailment
identification (unsupervised)

by combining the similarity metrics and the lexical
matching baseline together.

For the entailment data set, although we do not
explicitly check for entailment, the directional sim-
ilarity computed for textual entailment recognition
does improve over the random and lexical matching
baselines. Once again, the combination of similar-
ity metrics gives the highest accuracy, measured at
58.3%, with a slight improvement observed in the
supervised setting, where the highest accuracy was
measured at 58.9%. Both these figures are compet-
itive with the best results achieved during the PAS-
CAL entailment evaluation (Dagan et al., 2005).

Although our method relies on a bag-of-words ap-
proach, as it turns out the use of measures of seman-
tic similarity improves significantly over the tradi-
tional lexical matching metrics4. We are nonetheless

4The improvement of the combined semantic similarity met-
ric over the simpler lexical matching measure was found to be
statistically significant in all experiments, using a paired t-test
(p < 0.001).
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Metric Acc. Prec. Rec. F
Semantic similarity (knowledge-based)

Lin 0.702 0.706 0.947 0.809
W & P 0.699 0.705 0.941 0.806
L & C 0.699 0.708 0.931 0.804
J & C 0.699 0.707 0.935 0.805
Lesk 0.695 0.702 0.929 0.800
Resnik 0.692 0.705 0.921 0.799
Combined 0.715 0.723 0.925 0.812

Baselines
LexMatch 0.671 0.693 0.908 0.786
Vectorial 0.665 0.665 1.000 0.799
Most frequent 0.665 0.665 1.000 0.799

Table 4: Text semantic similarity for paraphrase
identification (supervised)

Metric Acc. Prec. Rec. F
Semantic similarity (knowledge-based)

L & C 0.583 0.573 0.650 0.609
W & P 0.580 0.570 0.648 0.607
Resnik 0.579 0.572 0.628 0.598
Lin 0.574 0.568 0.620 0.593
J & C 0.575 0.566 0.643 0.602
Lesk 0.573 0.566 0.633 0.597
Combined 0.589 0.579 0.650 0.612

Baselines
LexMatch 0.568 0.573 0.530 0.551
Most frequent 0.500 0.500 1.000 0.667
Vectorial 0.479 0.484 0.645 0.553

Table 5: Text semantic similarity for entailment
identification (supervised)

aware that a bag-of-words approach ignores many of
important relationships in sentence structure, such as
dependencies between words, or roles played by the
various arguments in the sentence. Future work will
consider the investigation of more sophisticated rep-
resentations of sentence structure, such as first order
predicate logic or semantic parse trees, which should
allow for the implementation of more effective mea-
sures of text semantic similarity.
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Abstract 

Generally speaking, statistical machine 
translation systems would be able to attain 
better performance with more training sets. 
Unfortunately, well-organized training sets 
are rarely available in the real world. Con-
sequently, it is necessary to focus on modi-
fying the training set to obtain high 
accuracy for an SMT system. If the SMT 
system trained the translation model, the 
translation pair would have a low probabil-
ity when there are many variations for tar-
get sentences from a single source sentence. 
If we decreased the number of variations 
for the translation pair, we could construct 
a superior translation model. This paper de-
scribes the effects of modification on the 
training corpus when consideration is given 
to synonymous sentence groups. We at-
tempt three types of modification: com-
pression of the training set, replacement of 
source and target sentences with a selected 
sentence from the synonymous sentence 
group, and replacement of the sentence on 
only one side with the selected sentence 
from the synonymous sentence group. As a 
result, we achieve improved performance 
with the replacement of source-side sen-
tences. 

1 Introduction 

Recently, many researchers have focused their in-
terest on statistical machine translation (SMT) sys-
tems, with particular attention given to models and 

decoding algorithms. The quantity of the training 
corpus has received less attention, although of 
course the earlier reports do address the quantity 
issue. In most cases, the larger the training corpus 
becomes, the higher accuracy is achieved. Usually, 
the quantity problem of the training corpus is dis-
cussed in relation to the size of the training corpus 
and system performance; therefore, researchers 
study line graphs that indicate the relationship be-
tween accuracy and training corpus size.  

On the other hand, needless to say, a single sen-
tence in the source language can be used to trans-
late several sentences in the target language. Such 
various possibilities for translation make MT sys-
tem development and evaluation very difficult. 
Consequently, here we employ multiple references 
to evaluate MT systems like BLEU (Papineni et al., 
2002) and NIST (Doddington, 2002). Moreover, 
such variations in translation have a negative effect 
on training in SMT because when several sen-
tences of input-side language are translated into the 
exactly equivalent output-side sentences, the prob-
ability of correct translation decreases due to the 
large number of possible pairs of expressions. 
Therefore, if we can restrain or modify the training 
corpus, the SMT system might achieve high accu-
racy. 

 As an example of modification, different out-
put-side sentences paired with the exactly equiva-
lent input-side sentences are replaced with one 
target sentence. These sentence replacements are 
required for synonymous sentence sets. Kashioka 
(2004) discussed synonymous sets of sentences. 
Here, we employ a method to group them as a way 
of modifying the training corpus for use with SMT. 
This paper focuses on how to control the corpus 
while giving consideration to synonymous sen-
tence groups.  
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2 Target Corpus 

In this paper, we use a multilingual parallel corpus 
called BTEC (Takezawa et al., 2002) for our ex-
periments. BTEC was used in IWSLT (Akiba et al., 
2004). This parallel corpus is a collection of Japa-
nese sentences and their translations into English, 
Korean and Chinese that are often found in phrase 
books for foreign tourists. These parallel sentences 
cover a number of situations (e.g., hotel reserva-
tions, troubleshooting) for Japanese going abroad, 
and most of the sentences are rather short. Since 
the scope of its topics is quite limited, some very 
similar sentences can be found in the corpus, mak-
ing BTEC appropriate for modification with com-
pression or replacement of sentences. We use only 
a part of BTEC for training data in our experiments.  
The training data we employ contain 152,170 
Japanese sentences, with each sentence combined 
with English and Chinese translations. In Japanese, 
each sentence has 8.1 words on average, and the 
maximum sentence length is 150 words. In English, 
each sentence contains an average of 7.4 words, 
with a maximum sentence length of 117 words. In 
Chinese, each sentence has an average of 6.7 
words and maximum length of 122 words. Some 
sentences appear twice or more in the training cor-
pus. In total, our data include 94,268 different 
Japanese sentences, 87,061 different Chinese sen-
tences, and 91,750 different English sentences. 
Therefore, there are some sentence pairs that con-
sist of exactly the same sentence in one language 
but a different sentence in another language, as Fig. 
1 shows. This relationship can help in finding the 
synonymous sentence group.  

The test data contain 510 sentences from differ-
ent training sets in the BTEC. Each source sen-
tence in the test data has 15 target sentences for 
evaluations. For the evaluation, we do not use any 
special process for the grouping process. Conse-
quently, our results can be compared with those of 

other MT systems. 
Figure 1.  Sample sentence pairs 

 

3 Modification Method  

When an SMT system learns the translation model, 
variations in the translated sentences of the pair are 
critical for determining whether the system obtains 
a good model. If the same sentence appears twice 
in the input-side language and these sentences 
form pairs with two different target sentences in 
the output-side language, then broadly speaking 
the translation model defines almost the same 
probability for these two target sentences.   

In our model, the translation system features the 
ability to generate an output sentence with some 
variations; however, for the system to generate the 
most appropriate output sentence, sufficient infor-
mation is required. Thus, it is difficult to prepare a 
sufficiently large training corpus.  

3.1 Synonymous Sentence Group 

Kashioka (2004) reported two steps for making a 
synonymous sentence group. The first is a con-
catenation step, and the second is a decomposition 
step. In this paper, to form a synonymous sentence 
group, we performed only the concatenation step, 
which has a very simple idea. When the expression 
“Exp_A1” in language A is translated into the ex-
pressions “Exp_B1, Exp_BB2, ..., Exp_Bn” in lan-
guage B, that set of expressions form one 
synonymous group. Furthermore, when the sen-
tence “Exp_A2” in language A is translated into the 
sentences “Exp_B1, Exp_Bn+1, ..., Exp_Bm” in lan-
guage B, “Exp_B1, Exp_Bn+1,  ..., Exp_Bm (n < m)” 
form one synonymous group. In this situation, 
“Exp_A1” and “Exp_A2” form a synonymous 
group because both “Exp_A1” and “Exp_A2” have 
a relationship with the translation pairs of 
“Exp_B1.” Thus, “Exp_A1, Exp_A2” in language A 
and “Exp_B1, ..., Exp_Bm” in language B form a 
synonymous group. If other language information 
is available, we can extend this synonymous group 
using information on translation pairs for other 
languages. 

In this paper, we evaluate an EJ/JE system and a 
CJ/JC system, and our target data include three 
languages, i.e., Japanese, English, and Chinese. 
We make synonymous sentence groups in two dif-
ferent environments. One is a group using Japanese 
and English data, and other is a group that uses 
Japanese and Chinese data. 

S1 ⇔ T1 
S2 ⇔ T1 
S1 ⇔ T2 
S3 ⇔ T1 

The JE group contained 72,808 synonymous sentence 
groups, and the JC group contained 83,910 synonymous 
sentence groups as shown in Table 1. 
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 # of Groups # of Sent per Group 
JE 72,808 2.1 
JC 83,910 1.8 

Table 1 Statistics used in BTEC data 

3.2 Modification 

We prepared the three types of modifications for 
training data. 

1. Compress the training corpus based on the 
synonymous sentence group (Fig. 2). 

2. Replace the input and output sides’ sen-
tences with the selected sentence, consider-
ing the synonymous sentence group (Fig. 3). 

3. Replace one side’s sentences with a se-
lected sentence, considering the synony-
mous sentence group (Figs. 4, 5).  

We describe these modifications in more detail 
in the following subsections.  

3.2.1 Modification with Compression 

Here, a training corpus is constructed with several 
groups of synonymous sentences. Then, each 
group keeps only one pair of sentences and the 
other pairs are removed from each group, thereby 
decreasing the total number of sentences and nar-
rowing the variation of expressions. Figure 2 
shows an example of modification in this way. In 
the figure, S1, S2, and S3 indicate the input-side 
sentences while T1 and T2 indicate the output-side 
sentences. The left-hand side box shows a syn-
onymous sentence group in the original training 
corpus, where four sentence pairs construct one 
synonymous sentence group. The right-hand side 
box shows a part of the modified training corpus. 
In this case, we keep the S1 and T1 sentences, and 
this resulting pair comprises a modified training 
corpus.  
The selection of what sentences to keep is an im-
portant issue. In our current experiment, we select 
the most frequent sentence in each side’s language 
from within each group. In Fig. 2, S1 appeared 
twice, while S2 and S3 appeared only once in the 
input-side language. As for the output-side lan-
guage, T1 appeared three times and T2 appeared 
once. Thus, we keep the pair consisting of S1 and 
T1. When attempting to separately select the most 
frequent sentence in each language, we may not 
find suitable pairs in the original training corpus; 

however, we can make a new pair with the ex-
tracted sentences for the modified training corpus. 

 

S1⇔T1 
S2⇔T1 
S1⇔T2 
S3⇔T1 

⇒ S1⇔T1 

Figure 2. Modification sample for compression 

3.2.2 Modification of replacing the sentences 
of both sides 

In the compression stage, the total number of sen-
tences in the modified training corpus is decreased, 
and it is clear that fewer sentences in the training 
corpus leads to diminished accuracy. In order to 
make a comparison between the original training 
corpus and a modified training corpus with the 
same number of sentences, we extract one pair of 
sentences from each group, and each pair appears 
in the modified training corpus in the same number 
of sentences. Figure 3 shows an example of this 
modification. The original training data are the 
same as in Fig. 2. Then we extract S1 and T1 by 
the same process from each side with this group, 
and replacing all of the input-side sentences with 
S1 in this group. The output side follows the same 
process. In this case, the modified training corpus 
consists of four pairs of S1 and T1. 

S1⇔T1 
S2⇔T1 
S1⇔T2 
S3⇔T1 

⇒ 

S1⇔T1 
S1⇔T1 
S1⇔T1 
S1⇔T1 

 Figure 3. Sample modifications for replacement of 
both sentences 

3.2.3 Modification to replace only one side’s 
sentence 

With the previous two modifications, the lan-
guage variations in both sides decrease. Next, we 
propose the third modification, which narrows the 
range of one side’s variations.  

The sentences of one side are replaced with the 
selected sentence from that group. The sentence for 
replacement is selected by following the same 
process used in the previous modifications. As a 
result, two modified training corpora are available 
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as shown in Figs. 4 and 5. Figure 4 illustrates the 
output side’s decreasing variation, while Fig. 5 
shows the input side’s decreasing variation.  

Figure 4. Modification example of replacing the 
output side’s sentence 

Figure 5. Modification example of replacing the 
input side’s sentence 

4 SMT System and Evaluation method 

In this section, we describe the SMT systems used 
in these experiments. The SMT systems’ decoder 
is a graph-based decoder (Ueffing et al., 2002; 
Zhang et al., 2004). The first pass of the decoder 
generates a word-graph, a compact representation 
of alternative translation candidates, using a beam 
search based on the scores of the lexicon and lan-
guage models. In the second pass, an A* search 
traverses the graph. The edges of the word-graph, 
or the phrase translation candidates, are generated 
by the list of word translations obtained from the 
inverted lexicon model. The phrase translations 
extracted from the Viterbi alignments of the train-
ing corpus also constitute the edges. Similarly, the 
edges are also created from dynamically extracted 
phrase translations from the bilingual sentences 
(Watanabe and Sumita, 2003). The decoder used 
the IBM Model 4 with a trigram language model 
and a five-gram part-of-speech language model. 
Training of the IBM model 4 was implemented by 
the GIZA++ package (Och and Ney, 2003). All 
parameters in training and decoding were the same 
for all experiments. Most systems with this training 
can be expected to achieve better accuracy when 
we run the parameter tuning processes. However, 
our purpose is to compare the difference in results 
caused by modifying the training corpus. 

We performed experiments for JE/EJ and JC/CJ 
systems and four types of training corpora: 

1) Original BTEC corpus; 
2) Compressed BTEC corpus (see 3.2.1); 
3) Replace both languages (see 3.2.2); 

4) Replace one side language (see 3.2.3) 
4-1) replacement on the input side 
4-2) replacement on the output side. 

 For the evaluation, we use BLEU, NIST, WER, 
and PER as follows: 

S1⇔T1 
S2⇔T1 
S1⇔T2 
S3⇔T1 

⇒ 

S1⇔T1 
S2⇔T1 
S1⇔T1 
S3⇔T1 

BLEU: A weighted geometric mean of the n-
gram matches between test and reference 
sentences multiplied by a brevity penalty 
that penalizes short translation sentences. 

S1⇔T1 
S2⇔T1 
S1⇔T2 
S3⇔T1 

⇒ 

S1⇔T1 
S1⇔T1 
S1⇔T2 
S1⇔T1 

NIST: An arithmetic mean of the n-gram 
matches between test and reference sen-
tences multiplied by a length factor, which 
again penalizes short translation sentences. 

mWER (Niessen et al., 2000): Multiple refer-
ence word-error rate, which computes the 
edit distance (minimum number of inser-
tions, deletions, and substitutions) between 
test and reference sentences. 

mPER: Multiple reference position-independent 
word-error rate, which computes the edit 
distance without considering the word order. 

5 Experimental Results 

In this section, we show the experimental results 
for the JE/EJ and JC/CJ systems. 

5.1 EJ/JE-system-based JE group 

Tables 2 and 3 show the evaluation results for the 
EJ/JE system.  
EJ BLEU NIST mWER mPER
Original 0.36 3.73 0.55 0.51
Compress 0.47 5.83 0.47 0.44
Replace Both 0.42 5.71 0.50 0.47
Replace J. 0.44 2.98 0.60 0.58
Replace E. 0.48 6.05 0.44 0.41

Table 2. Evaluation results for EJ System 
 
 JE BLEU NIST mWER mPER
Original 0.46 3.96 0.52 0.49 
Compress 0.53 8.53 0.42 0.38 
Replace Both 0.49 8.10 0.46 0.41 
Replace J. 0.54 8.64 0.42 0.38 
Replace E. 0.51 6.10 0.52 0.49 

Table 3. Evaluation results for JE system 
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Modification of the training data is based on the 
synonymous sentence group with the JE pair. 

The EJ system performed at 0.55 in mWER with 
the original data set, and the system replacing the 
Japanese side achieved the best performance of 
0.44 in mWER. The system then gained 0.11 in 
mWER. On the other hand, the system replacing 
the English side lost 0.05 in mWER. The mPER 
score also indicates a similar result. For the BLEU 
and NIST scores, the system replacing the Japa-
nese side also attained the best performance. 
The JE system attained a score of 0.52 in mWER 
with the original data set, while the system with 
English on the replacement side gave the best per-
formance of 0.42 in mWER, a gain of 0.10. On the 
other hand, the system with Japanese on the re-
placement side showed no change in mWER, and 
the case of compression achieved good perform-
ance. The ratios of mWER and mPER are nearly 
the same for replacing Japanese. Thus, in both di-
rections replacement of the input-side language 
derives a positive effect for translation modeling. 

5.2 CJ/JC system-based JC group 

Tables 4 and 5 show the evaluation results for the 
EJ/JE system based on the group with a JC lan-
guage pair. 
CJ BLEU NIST mWER mPER
Original 0.51 6.22 0.41 0.38
Compress 0.52 6.43 0.43 0.40
Replace both 0.53 5.99 0.40 0.37
Replace J. 0.50 5.98 0.41 0.39
Replace C.  0.51 6.22 0.41 0.38
Table 4. Evaluation results for CJ based on the JC 

language pair 
 

JC BLEU NIST mWER mPER
Original 0.56 8.45 0.38 0.34 
Compress 0.55 8.22 0.41 0.36 
Replace both 0.56 8.32 0.39 0.35 
Replace J. 0.56 8.25 0.40 0.36 
Replace C. 0.57 8.33 0.38 0.35 
Table 5. Evaluation results for JC based on the JC 

language pair 
 

The CJ system achieved a score of 0.41 in 
mWER with the original data set, with the other 
cases similar to the original; we could not find a 
large difference among the training corpus modifi-

cations. Furthermore, the JC system performed at 
0.38 in mWER with the original data, although the 
other cases’ results were not as good. These results 
seem unusual considering the EJ/JE system, indi-
cating that they derive from the features of the 
Chinese part of the BTEC corpus.  

6 Discussion  

Our EJ/JE experiment indicated that the system 
with input-side language replacement achieved 
better performance than that with output-side lan-
guage replacement. This is a reasonable result be-
cause the system learns the translation model with 
fewer variations for input-side language.   

In the experiment on the CJ/JC system based on 
the JC group, we did not provide an outline of the 
EJ/JE system due to the features of BTEC. Initially, 
BTEC data were created from pairs of Japanese 
and English sentences in the travel domain. Japa-
nese-English translation pairs have variation as 
shown in Fig. 1. However, when Chinese data was 
translated, BTEC was controlled so that the same 
Japanese sentence has only one Chinese sentence. 
Accordingly, there is no variation in Chinese sen-
tences for the pair with the same Japanese sentence. 
Therefore, the original training data would be simi-
lar to the situation of replacing Chinese. Moreover, 
replacing the Japanese data was almost to the same 
as replacing both sets of data. Considering this fea-
ture of the training corpus, i.e. the results for the 
CJ/JC system based on the group with JC language 
pairs, there are few differences between keeping 
the original data and replacing the Chinese data, or 
between replacing both side’s data and replacing 
only the Japanese data. These results demonstrate 
the correctness of the hypothesis that reducing the 
input side’s language variation makes learning 
models more effective.  

Currently, our modifications only roughly proc-
ess sentence pairs, though the process of making 
groups is very simple. Sometimes a group may 
include sentences or words that have slightly dif-
ferent meanings, such as. fukuro (bag), kamibukuro 
(paper bag), shoppingu baggu (shopping bag), 
tesagebukuro (tote bag), and biniiru bukuro (plas-
tic bag). In this case if we select tesagebukuro 
from the Japanese side and “paper bag” from the 
English side, we have an incorrect word pair in the 
translation model. To handle such a problem, we 
would have to arrange a method to select the sen-
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tences from a group. This problem is discussed in 
Imamura et al. (2003). As one solution to this 
problem, we borrowed the measures of literalness, 
context freedom, and word translation stability in 
the sentence-selection process.  

In some cases, the group includes sentences with 
different meanings, and this problem was men-
tioned in Kashioka (2004). In an attempt to solve 
the problem, he performed a secondary decomposi-
tion step to produce a synonymous group. How-
ever, in the current training corpus, each 
synonymous group before the decomposition step 
is small, so there would not be enough difference 
for modifications after the decomposition step.   

The replacement of a sentence could be called 
paraphrasing. Shimohata et al. (2004) reported a 
paraphrasing effect in MT systems, where if each 
group would have the same meaning, the variation 
in the phrases that appeared in the other groups 
would reduce the probability. Therefore, consider-
ing our results in light of their discussion, if the 
training corpus could be modified with the module 
for paraphrasing in order to control phrases, we 
could achieve better performance.  

7 Conclusion  

This paper described the modification of a training 
set based on a synonymous sentence group for a 
statistical machine translation system in order to 
attain better performance. In an EJ/JE system, we 
confirmed a positive effect by replacing the input-
side language. Because the Chinese data was spe-
cific in our modification, we observed an inconclu-
sive result for the modification in the CJ/JC system 
based on the synonymous sentence group with a JC 
language pair. However, there was still some effect 
on the characteristics of the training corpus. In this 
paper, the modifications of the training set are 
based on the synonymous sentence group, and we 
replace the sentence with rough processing. If we 
paraphrased the training set and controlled the 
phrase pair, we could achieve better performance 
with the same training set. 
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Abstract

We present first results using paraphrase as well as
textual entailment data to test the language univer-
sal constraint posited by Wu’s (1995, 1997) Inver-
sion Transduction Grammar (ITG) hypothesis. In
machine translation and alignment, the ITG Hypoth-
esis provides a strong inductive bias, and has been
shown empirically across numerous language pairs
and corpora to yield both efficiency and accuracy
gains for various language acquisition tasks. Mono-
lingual paraphrase and textual entailment recogni-
tion datasets, however, potentially facilitate closer
tests of certain aspects of the hypothesis than bilin-
gual parallel corpora, which simultaneously exhibit
many irrelevant dimensions of cross-lingual varia-
tion. We investigate this using simple generic Brack-
eting ITGs containing no language-specific linguis-
tic knowledge. Experimental results on the MSR
Paraphrase Corpus show that, even in the absence
of any thesaurus to accommodate lexical variation
between the paraphrases, an uninterpolated aver-
age precision of at least 76% is obtainable from
the Bracketing ITG’s structure matching bias alone.
This is consistent with experimental results on the
Pascal Recognising Textual Entailment Challenge
Corpus, which show surpisingly strong results for a
number of the task subsets.

1 Introduction

TheInversion Transduction Grammaror ITG formalism,
which historically was developed in the context of trans-
lation and alignment, hypothesizes strong expressiveness
restrictions that constrain paraphrases to vary word or-
der only in certain allowable nested permutations of ar-
guments (Wu, 1997). The ITG Hypothesis has been more
extensively studied across different languages, but newly
available paraphrase datasets provide intriguing opportu-

1The author would like to thank the Hong Kong Re-
search Grants Council (RGC) for supporting this research
in part through grants RGC6083/99E, RGC6256/00E, and
DAG03/04.EG09, and Marine Carpuat and Yihai Shen for in-
valuable assistance in preparing the datasets and stoplist.

nities for meaningful analysis of the ITG Hypothesis in a
monolingual setting.

The strong inductive bias imposed by the ITG Hypoth-
esis has been repeatedly shown empirically to yield both
efficiency and accuracy gains for numerous language ac-
quisition tasks, across a variety of language pairs and
tasks. For example, Zens and Ney (2003) show that
ITG constraints yield significantly better alignment cov-
erage than the constraints used in IBM statistical ma-
chine translation models on both German-English (Verb-
mobil corpus) and French-English (Canadian Hansards
corpus). Zhang and Gildea (2004) find that unsuper-
vised alignment using Bracketing ITGs produces signif-
icantly lower Chinese-English alignment error rates than
a syntactically supervised tree-to-string model (Yamada
and Knight, 2001). With regard to translation rather than
alignment accuracy, Zenset al. (2004) show that decod-
ing under ITG constraints yields significantly lower word
error rates and BLEU scores than the IBM constraints.

We are conducting a series of investigations motivated
by the following observation: the empirically demon-
strated suitability of ITG paraphrasing constraints across
languages should hold, if anything, even more strongly
in the monolingual case. The monolingual case allows in
some sense closer testing of various implications of the
ITG hypothesis, without irrelevant dimensions of varia-
tion arising from other cross-lingual phenomena.

Asymmetric textual entailment recognition (RTE)
datasets, in particular the Pascal Recognising Textual En-
tailment Challenge Corpus (Daganet al., 2005), provide
testbeds that abstract over many tasks, including infor-
mation retrieval, comparable documents, reading com-
prehension, question answering, information extraction,
machine translation, and paraphrase acquisition.

At the same time, the emergence of paraphrasing
datasets presents an opportunity for complementary ex-
periments on the task of recognizing symmetric bidirec-
tional entailment rather than asymmetric directional en-
tailment. In particular, for this study we employ the MSR
Paraphrase Corpus (Quirket al., 2004).
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2 Inversion Transduction Grammars

Formally, ITGs can be defined as the restricted subset of
syntax-directed transduction grammars or SDTGs Lewis
and Stearns (1968) where all of the rules are either of
straight or invertedorientation. Ordinary SDTGs allow
any permutation of the symbols on the right-hand side to
be specified when translating from the input language to
the output language. In contrast, ITGs only allow two out
of the possible permutations. If a rule is straight, the or-
der of its right-hand symbols must be the same for both
language. On the other hand, if a rule is inverted, then the
order is left-to-right for the input language and right-to-
left for the output language. Since inversion is permitted
at any level of rule expansion, a derivation may intermix
productions of either orientation within the parse tree.
The ability to compose multiple levels of straight and in-
verted constituents gives ITGs much greater expressive-
ness than might seem at first blush.

A simple example may be useful to fix ideas. Consider
the following pair of parse trees for sentence translations:

[[[The Authority]NP [will [[be accountable]VV [to
[the [[Financial Secretary]NN ]NNN ]NP ]PP ]VP
]VP ]SP .]S

[[[�®Û]NP [RÌ [[5 [[[cu�]NN ]NNN ]NP ]PP
[�	]VV ]VP ]VP ]SP �]S

Even though the order of constituents under the inner
VP is inverted between the languages, an ITG can cap-
ture the common structure of the two sentences. This is
compactly shown by writing the parse tree together for
both sentences with the aid of an〈〉 angle bracket no-
tation marking parse tree nodes that instantiate rules of
inverted orientation:

[[[ The/úAuthority/� ® Û]NP [will/R Ì

〈[be/úaccountable/� 	]VV [to/5 [the/ú
[[Financial/cuSecretary/�]NN ]NNN ]NP ]PP

〉VP ]VP ]SP./�]S

In a weighted or stochastic ITG (SITG), a weight or a
probability is associated with each rewrite rule. Follow-
ing the standard convention, we usea and b to denote
probabilities for syntactic and lexical rules, respectively.

For example, the probability of the rule NN
0.4→ [A N] is

aNN→[A N] = 0.4. The probability of a lexical rule A
0.001→

x/y is bA(x, y) = 0.001. Let W1,W2 be the vocabulary
sizes of the two languages, andN = {A1, . . . , AN} be
the set of nonterminals with indices1, . . . , N .

Wu (1997) also showed that ITGs can be equivalently
be defined in two other ways. First, ITGs can be defined
as the restricted subset of SDTGs where all rules are of
rank 2. Second, ITGs can also be defined as the restricted
subset of SDTGs where all rules are of rank 3.

Polynomial-time algorithms are possible for various
tasks including translation using ITGs, as well as bilin-
gual parsing orbiparsing, where the task is to build the
highest-scored parse tree given an input bi-sentence.

For present purposes we can employ the special case of
Bracketing ITGs, where the grammar employs only one
single, undistinguished “dummy” nonterminal category
for any non-lexical rule. Designating this categoryA, a
Bracketing ITG has the following form (where, as usual,
lexical transductions of the formA → e/f may possibly
be singletons of the formA → e/ε or A → ε/f ).

A → [AA]
A → 〈AA〉
A → ε, ε

A → e1/f1

. . .

A → ei/fj

The simplest class of ITGs,Bracketing ITGs, are
particularly interesting in applications like paraphras-
ing, because they impose ITG constraints in language-
independent fashion, and in the simplest case do not re-
quire any language-specific linguistic grammar or train-
ing. In Bracketing ITGs, the grammar uses only a
single, undifferentiated non-terminal (Wu, 1995). The
key modeling property of Bracketing ITGs that is most
relevant to paraphrase recognition is that they assign
strong preference to candidate paraphrase pairs in which
nested constituent subtrees can be recursively aligned
with a minimum of constituent boundary violations. Un-
like language-specific linguistic approaches, however, the
shape of the trees are driven in unsupervised fashion by
the data. One way to view this is that the trees are
hidden explanatory variables. This not only provides
significantly higher robustness than more highly con-
strained manually constructed grammars, but also makes
the model widely applicable across languages in econom-
ical fashion without a large investment in manually con-
structed resources.

Moreover, for reasons discussed by Wu (1997), ITGs
possess an interesting intrinsic combinatorial property of
permitting roughly up to four arguments of any frame to
be transposed freely, but not more. This matches supris-
ingly closely the preponderance of linguistic verb frame
theories from diverse linguistic traditions that all allow
up to four arguments per frame. Again, this property
emerges naturally from ITGs in language-independent
fashion, without any hardcoded language-specific knowl-
edge. This further suggests that ITGs should do well
at picking out paraphrase pairs where the order of up
to four arguments per frame may vary freely between
the two strings. Conversely, ITGs should do well at re-
jecting pairs where (1) too many words in one sentence
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find no correspondence in the other, (2) frames do not
nest in similar ways in the candidate sentence pair, or
(3) too many arguments must be transposed to achieve an
alignment—all of which would suggest that the sentences
probably express different ideas.

As an illustrative example, in common similarity mod-
els, the following pair of sentences (found in actual data
arising in our experiments below) would receive an inap-
propriately high score, because of the high lexical simi-
larity between the two sentences:

Chinese president Jiang Zemin arrived in Japan
today for a landmark state visit .

T�Ì R 4 t �ý ) )/6¯ { D  ¥)

)�Ìò .
(Jiang Zemin will be the first Chinese national
president to pay a state vist to Japan.)

However, the ITG based model is sensitive enough
to the differences in the constituent structure (reflecting
underlying differences in the predicate argument struc-
ture) so that our experiments show that it assigns a low
score. On the other hand, the experiments also show that
it successfully assigns a high score to other candidate bi-
sentences representing a true Chinese translation of the
same English sentence, as well as a true English transla-
tion of the same Chinese sentence.

We investigate a model for the paraphrase recognition
problem that employ simple generic Bracketing ITGs.
The experimental results show that, even in the absence
of any thesaurus to accommodate lexical variation be-
tween the two strings, the Bracketing ITG’s structure
matching bias alone produces a significant improvement
in average precision.

3 Scoring Method

All words of the vocabulary are included among the lex-
ical transductions, allowing exact word matches between
the two strings of any candidate paraphrase pair.

Each candidate pair of the test set was scored via the
ITG biparsing algorithm, which employs a dynamic pro-
gramming approach as follows.Let the input English sen-
tence bee1, . . . , eT and the corresponding input Chinese
sentence bec1, . . . , cV . As an abbreviation we writees..t

for the sequence of wordses+1, es+2, . . . , et, and simi-
larly for cu..v; also,es..s = ε is the empty string. It is
convenient to use a 4-tuple of the formq = (s, t, u, v)
to identify each node of the parse tree, where the sub-
stringses..t andcu..v both derive from the nodeq. De-
note the nonterminal label onq by `(q). Then for any
nodeq = (s, t, u, v), define

δq(i) = δstuv(i) = max
subtrees ofq

P [subtree ofq, `(q) = i, i
∗⇒ es..t/cu..v]

as the maximum probability of any derivation fromi that
successfully parses bothes..t and cu..v. Then the best
parse of the sentence pair has probabilityδ0,T,0,V (S).

The algorithm computesδ0,T,0,V (S) using the follow-
ing recurrences. Note that we generalizeargmax to the
case where maximization ranges over multiple indices,
by making it vector-valued. Also note that[ ] and〈〉 are
simply constants, written mnemonically. The condition
(S− s)(t−S)+ (U −u)(v−U) 6= 0 is a way to specify
that the substring in one but not both languages may be
split into an empty stringε and the substring itself; this
ensures that the recursion terminates, but permits words
that have no match in the other language to map to anε
instead.

1. Initialization

δt−1,t,v−1,v(i) = bi(et/cv),
1 ≤ t ≤ T
1 ≤ v ≤ V

δt−1,t,v,v(i) = bi(et/ε),
1 ≤ t ≤ T
0 ≤ v ≤ V

δt,t,v−1,v(i) = bi(ε/cv),
0 ≤ t ≤ T
1 ≤ v ≤ V

2.Recursion For alli, s, t, u, v such that

{
1≤i≤N

0≤s<t≤T
0≤u<v≤V

t−s+v−u>2

δstuv(i) = max[δ[ ]
stuv(i), δ〈〉stuv(i)]

θstuv(i) =
{

[ ] if δ
[ ]
stuv(i) ≥ δ

〈〉
stuv(i)

〈〉 otherwise

where

δ
[ ]
stuv(i) = max

1≤j≤N
1≤k≤N
s≤S≤t
u≤U≤v

(S−s)(t−S)+(U−u)(v−U) 6=0

ai→[jk] δsSuU (j) δStUv(k)


ι
[ ]
stuv(i)

κ
[ ]
stuv(i)

σ
[ ]
stuv(i)

υ
[ ]
stuv(i)

 = argmax
1≤j≤N
1≤k≤N
s≤S≤t
u≤U≤v

(S−s)(t−S)+(U−u)(v−U) 6=0

ai→[jk] δsSuU (j) δStUv(k)

δ
〈〉
stuv(i) = max

1≤j≤N
1≤k≤N
s≤S≤t
u≤U≤v

(S−s)(t−S)+(U−u)(v−U) 6=0

ai→〈jk〉 δsSUv(j) δStuU (k)


ι
〈〉
stuv(i)

κ
〈〉
stuv(i)

σ
〈〉
stuv(i)

υ
〈〉
stuv(i)

 = argmax
1≤j≤N
1≤k≤N
s≤S≤t
u≤U≤v

(S−s)(t−S)+(U−u)(v−U) 6=0

ai→〈jk〉 δsSUv(j) δStuU (k)
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3. Reconstruction Initialize by setting the root of the
parse tree toq1 = (0, T, 0, V ) and its nonterminal la-
bel to `(q1) = S. The remaining descendants in the
optimal parse tree are then given recursively for any
q = (s, t, u, v) by:

LEFT(q) =
NIL if t−s+v−u≤2

(s, σ[ ]
q (`(q)), u, υ

[ ]
q (`(q))) if θq(`(q)) = [ ]

(s, σ〈〉q (`(q)), υ〈〉q (`(q))) if θq(`(q)) = 〈〉
RIGHT(q) =

NIL if t−s+v−u≤2

(σ[ ]
q (`(q)), t, υ[ ]

q (`(q)), v) if θq(`(q)) = [ ]
(σ〈〉q (`(q)), t, u, υ

〈〉
q (`(q))) if θq(`(q)) = 〈〉

`(LEFT(q)) = ιθq(`(q))
q (`(q))

`(RIGHT(q)) = κθq(`(q))
q (`(q))

As mentioned earlier, biparsing for ITGs can be ac-
complished efficiently in polynomial time, rather than the
exponential time required for classical SDTGs. The re-
sult in Wu (1997) implies that for the special case of
Bracketing ITGs, the time complexity of the algorithm
is Θ

(
T 3V 3

)
whereT andV are the lengths of the two

sentences. This is a factor ofV 3 more than monolingual
chart parsing, but has turned out to remain quite practical
for corpus analysis, where parsing need not be real-time.

The ITG scoring model can also be seen as a variant
of the approach described by Leuschet al. (2003), which
allows us to forego training to estimate true probabilities;
instead, rules are simply given unit weights. The ITG
scores can be interpreted as a generalization of classi-
cal Levenshtein string edit distance, where inverted block
transpositions are also allowed. Even without probability
estimation, Leuschet al. found excellent correlation with
human judgment of similarity between translated para-
phrases.

4 Experimental Results—Paraphrase
Recognition

Our objective here was to isolate the effect of the ITG
constraint bias. No training was performed with the avail-
able development sets. Rather, the aim was to establish
foundational baseline results, to see in this first round of
paraphrase recognition experiments what results could be
obtained with the simplest versions of the ITG models.

The MSR Paraphrase Corpus test set consists of 1725
candidate paraphrase string pairs, each annotated for se-
mantic equivalence by two or three human collectors.
Within the test set, 66.5% of the examples were annotated
as being semantically equivalent. The corpus was origi-
nally generated via a combination of automatic filtering

methods, making it difficult to make specific claims about
distributional neutrality, due to the arbitrary nature of the
example selection process.

The ITG scoring model produced an uninterpolated
average precision (also known as confidence weighted
score) of 76.1%. This represents an improvement of
roughly 10% over the random baseline. Note that this
improvement can be achieved with no thesaurus or lexi-
cal similarity model, and no parameter training.

5 Experimental Results—Textual
Entailment Recognition

The experimental procedure for the monolingual textual
entailment recognition task is the same as for paraphrase
recognition, except that one string serves as the Text and
the other serves as the Hypothesis.

Results on the textual entailment recognition task are
consistent with the above paraphrase recognition results.
For the PASCAL RTE challenge datasets, across all sub-
sets overall, the model produced a confidence-weighted
score of 54.97% (better than chance at the 0.05 level). All
examples were labeled, so precision, recall, and f-score
are equivalent; the accuracy was 51.25%.

For the RTE task we also investigated a second variant
of the model, in which a list of 172 words from a stoplist
was excluded from the lexical transductions. The moti-
vation for this model was to discount the effect of words
such as “the” or “of” since, more often than not, they
could be irrelevant to the RTE task.

Surprisingly, the stoplisted model produced worse
results. The overall confidence-weighted score was
53.61%, and the accuracy was 50.50%. We discuss the
reasons below in the context of specific subsets.

As one might expect, the Bracketing ITG models per-
formed better on the subsets more closely approximat-
ing the tasks for which Bracketing ITGs were designed:
comparable documents (CD), paraphrasing (PP), and in-
formation extraction (IE). We will discuss some impor-
tant caveats on the machine translation (MT) and reading
comprehension (RC) subsets. The subsets least close to
the Bracketing ITG models are information retrieval (IR)
and question answering (QA).

5.1 Comparable Documents (CD)

The CD task definition can essentially be characterized as
recognition of noisy word-aligned sentence pairs. Among
all subsets, CD is perhaps closest to the noisy word align-
ment task for which Bracketing ITGs were originally de-
veloped, and indeed produced the best results for both
of the Bracketing ITG models. The basic model pro-
duced a confidence-weighted score of 79.88% (accuracy
71.33%), while the stoplisted model produced an essen-
tially unchanged confidence-weighted score of 79.83%
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(accuracy 70.00%).
The results on the RTE Challenge datasets closely re-

flect the larger-scale findings of Wu and Fung (2005),
who demonstrate that an ITG based model yields far
more accurate extraction of parallel sentences from quasi-
comparable non-parallel corpora than previous state-of-
the-art methods. Wu and Fung’s results also use the eval-
uation metric of uninterpolated average precision (i.e.,
confidence-weighted score).

Note also that we believe the results here are artificially
lowered by the absence of any thesaurus, and that signifi-
cantly further improvements would be seen with the addi-
tion of a suitable thesaurus, for reasons discussed below
under the MT subsection.

5.2 Paraphrase Acquisition (PP)

The PP task is also close to the task for which Brack-
eting ITGs were originally developed. For the PP task,
the basic model produced a confidence-weighted score of
57.26% (accuracy 56.00%), while the stoplisted model
produced a lower confidence-weighted score of 51.65%
(accuracy 52.00%). Unlike the CD task, the greater
importance of function words in determining equivalent
meaning between paraphrases appears to cause the degra-
dation in the stoplisted model.

The effect of the absence of a thesaurus is much
stronger for the PP task as opposed to the CD task. In-
spection of the datasets reveals much more lexical vari-
ation between paraphrases, and shows that cases where
lexis does not vary are generally handled accurately by
the Bracketing ITG models. The MT subsection below
discusses why a thesaurus should produce significant im-
provement.

5.3 Information Extraction (IE)

The IE task presents a slight issue of misfit for the
Bracketing ITG models, but yielded good results any-
how. The basic Bracketing ITG model attempts to align
all words/collocations between the two strings. However,
for the IE task in general, only a substring of the Text
should be aligned to the Hypothesis, and the rest should
be disregarded as “noise”. We approximated this by al-
lowing words to be discarded from the Text at little cost,
by using parameters that impose only a small penalty on
null-aligned words from the Text. (As a reasonable first
approximation, this characterization of the IE task ig-
nores the possibility of modals, negation, quotation, and
the like in the Text.)

Despite the slight modeling misfit, the Bracketing ITG
models produced good results for the IE subset. The basic
model produced a confidence-weighted score of 59.92%
(accuracy 55.00%), while the stoplisted model produced
a lower confidence-weighted score of 53.63% (accuracy
51.67%). Again, the lower score of the stoplisted model

appears to arise from the greater importance of function
words in ensuring correct information extraction, as com-
pared with the CD task.

5.4 Machine Translation (MT)

One exception to expectations is the machine translation
subset, a task for which Bracketing ITGs were devel-
oped. The basic model produced a confidence-weighted
score of 34.30% (accuracy 40.00%), while the stoplisted
model produced a comparable confidence-weighted score
of 35.96% (accuracy 39.17%).

However, the performance here on the machine trans-
lation subset cannot be directly interpreted, for two rea-
sons.

First, the task as defined in the RTE Challenge datasets
is not actually crosslingual machine translation, but rather
evaluation of monolingual comparability between an au-
tomatic translation and a gold standard human transla-
tion. This is in fact closer to the problem of defining a
good MT evaluation metric, rather than MT itself. Leusch
et al. (2003 and personal communication) found that
Bracketing ITGs as an MT evaluation metric show ex-
cellent correlation with human judgments.

Second, no translation lexicon or equivalent was used
in our model. Normally in translation models, includ-
ing ITG models, the translation lexicon accommodates
lexical ambiguity, by providing multiple possible lexi-
cal choices for each word or collocation being translated.
Here, there is no second language, so some substitute
mechanism to accommodate lexical ambiguity would be
needed.

The most obvious substitute for a translation lexicon
would be a monolingual thesaurus. This would allow
matching synonomous words or collocations between the
Text and the Hypothesis. Our original thought was to in-
corporate such a thesaurus in collaboration with teams fo-
cusing on creating suitable thesauri, but time limitations
prevented completion of these experiments. Based on our
own prior experiments and also on Leuschet al.’s expe-
riences, we believe this would bring performance on the
MT subset to excellent levels as well.

5.5 Reading Comprehension (RC)

The reading comprehension task is similar to the infor-
mation extraction task. As such, the Bracketing ITG
model could be expected to perform well for the RC sub-
set. However, the basic model produced a confidence-
weighted score of just 49.37% (accuracy 47.14%), and
the stoplisted model produced a comparable confidence-
weighted score of 47.11% (accuracy 45.00%).

The primary reason for the performance gap between
the RC and IE domains appears to be that RC is less
news-oriented, so there is less emphasis on exact lexical
choices such as named entities. This puts more weight on
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the importance of a good thesaurus to recognize lexical
variation. For this reason, we believe the addition of a
thesaurus would bring performance improvements simi-
lar to the case of MT.

5.6 Information Retrieval (IR)

The IR task diverges significantly from the tasks for
which Bracketing ITGs were developed. The basic model
produced a confidence-weighted score of 43.14% (ac-
curacy 46.67%), while the stoplisted model produced a
comparable confidence-weighted score of 44.81% (accu-
racy 47.78%).

Bracketing ITGs seek structurally parallelizable sub-
strings, where there is reason to expect some degree of
generalization between the frames (heads and arguments)
of the two substrings from a lexical semantics standpoint.
In contrast, the IR task relies on unordered keywords, so
the effect of argument-head binding cannot be expected
to be strong.

5.7 Question Answering (QA)

The QA task is extremely free in the sense that ques-
tions can differ significantly from the answers in both
syntactic structure and lexis, and can also require a
significant degree of indirect complex inference us-
ing real-world knowledge. The basic model pro-
duced a confidence-weighted score of 33.20% (accuracy
40.77%), while the stoplisted model produced a signifi-
cantly better confidence-weighted score of 38.26% (ac-
curacy 44.62%).

Aside from adding a thesaurus, to properly model the
QA task, at the very least the Bracketing ITG models
would need to be augmented with somewhat more lin-
guistic rules that include a proper model forwh-words in
the Hypothesis, which otherwise cannot be aligned to the
Text. In the Bracketing ITG models, the stoplist appears
to help by normalizing out the effect of thewh-words.

6 Conclusion

The most serious omission in our experiments with
Bracketing ITG models was the absence of any thesaurus
model, allowing zero lexical variation between the two
strings of a candidate paraphrase pair (or Text and Hy-
pothesis, in the case of textual entailment recognition).
This forced the models to rely entirely on the Bracketing
ITG’s inherent tendency to optimize structural match be-
tween hypothesized nested argument-head substructures.
What we find highly interesting is the perhaps surpris-
ingly large effect obtainable from this structure matching
bias alone, which already produces good results on para-
phrasing as well as a number of the RTE subsets.

We plan to remedy the absence of a thesaurus as the
obvious next step. This can be expected to raise perfor-
mance significantly on all subsets.

Wu and Fung (2005) also discuss how to obtain any
desired tradeoff between precision and recall. This would
be another interesting direction to pursue in the context of
recognizing paraphrases or textual entailment.

Finally, using the development sets to train the param-
eters of the Bracketing ITG model would improve per-
formance. It would only be feasible to tune a few basic
parameters, however, given the small size of the develop-
ment sets.
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Abstract

This paper argues that local textual in-
ferences come in three well-defined vari-
eties (entailments, conventional implica-
tures/presuppositions, and conversational
implicatures) and one less clearly defined
one, generally available world knowledge.
Based on this taxonomy, it discusses some
of the examples in thePASCAL text suite
and shows that these examples do not fall
into any of them. It proposes to enlarge the
test suite with examples that are more di-
rectly related to the inference patterns dis-
cussed.

1 Introduction

The PASCAL initiative on “textual entailment” had
the excellent idea of proposing a competition testing
NLP systems on their ability to understand language
separate from the ability to cope with world knowl-
edge. This is obviously a welcome endeavor:NLP

systems cannot be held responsible for knowledge
of what goes on in the world but noNLP system can
claim to “understand” language if it can’t cope with
textual inferences. The task also shies away from
creative metaphorical or metonymic use of language
and makes the assumption that referential assign-
ments remain constant for entities that are described
in the same way. These all seem good features of the
proposal as it stands.

Looking at the challenge as it was put before the
community, however, we feel that it might be useful
to try to circumscribe more precisely what exactly

should count as linguistic knowledge. In this paper
we make a stab at this in the hope of getting a discus-
sion going. For reasons that will become clear, we
prefer to talk aboutTEXTUAL INFERENCES rather
than about textual entailments when referring to the
general enterprise. We first explicitate what we think
should be covered by the term textual inferences, we
then look at thePASCAL development suite in the
light of our discussion and we conclude with a short
proposal for extensions to the test suite.

Before even starting at this, a point of clarification
needs to be made: the correspondence of a linguis-
tic object to an object in the real world goes beyond
what can be learned from the text itself. When some-
body says or writesThe earth is flator The king of
France is baldbecause (s)he is a liar or ill-informed,
nothing in these linguistic expressions in themselves
alerts us to the fact that they do not correspond to sit-
uations in the real world (we leave texts in which the
author signals consciously or unconsiously that he is
lying or fibbing out of consideration here.) What the
text does is give us information about the stance its
author takes vis-̀a-vis the events or states described.

It is thus useful to distinguish between two ingre-
dients that go into determining the truth value of an
utterance, one is the trustworthiness of the utterer
and the other is the stance of the utterer vis-à-vis
the truth of the content. The latter we will call the
veridicity of the content. When we talk about tex-
tual inferences we are only interested in veridicity
not in the truth which lies beyond what can be in-
ferred from texts. Or, maybe more realistically, we
assume a trustworthy author so that veridical state-
ments are also true.
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2 Varieties of local textual inferences

Under this assumption of trustworthiness, semantics
and pragmatics as practiced by philosophers and lin-
guists can give us some insights that are of practical
relevance. Work done in the last century has led re-
searchers to distinguish between entailments, con-
ventional implicatures and conversational implica-
tures. We describe these three classes of inferences
and illustrate why the distinctions are important for
NLP.

2.1 Entailments

The most uncontroversional textual inferences are
those that can be made on the basis of what is as-
serted in a text. If the author makes the statement
thatTony Hall arrived in Baghdad on Sunday night,
then we can conclude thatTony Hall was in Bagh-
dad on Sunday night(keeping referring expressions
constant, as proposed in thePASCAL task). The sec-
ond sentence is true when the first is true (assum-
ing we are talking about the same Tony Hall, the
same Baghdad and the same Sunday) just by virtue
of what the words mean.

In simple examples such as that in (1)

(1) Bill murdered John.
Bill killed John.

one can go to a resource such as WordNet, look up
murder, discover that it meanskill with some fur-
ther conditions. “Ontologies” or thesauruses typi-
cally order terms in a hierarchy that encodes a re-
lation from less specific at the top of the hierarchy
to more specific at the bottom. In simple clauses
the replacement of a more specific term with a less
specific one, ensures an upward monotonic relation
between these sentences. As is well known this re-
lation is inversed when the sentences are negated.1

(2) Bill didn’t murder John.
does not entailBill didn’t kill John.

but

(3) Bill didn’t kill John.
does entailBill didn’t murder John.

Monotonicity relations also hold when adjectival
modification is introduced as in (4)

1A sentence is downward monotonic iff it remains true when
it is narrowed. A sentence is upward monotonic when it remains
true when it is broadened.

(4) Ames was a clever spy.
entailsAmes was a spy.

Again negation reverses the entailment:
(5) Ames wasn’t a spy.

entailsAmes wasn’t a clever spy.
Quantifiers, easily among the most intensively

studied lexical items, also exhibit upward or down-
ward monotonicity.2 To give just one example:
(6) All companies have to file annual reports.

entailsAll Fortune 500 companies have to file
annual reports.

but
(7) All companies have to file annual reports.

does not entailAll companies have to file an-
nual reports to theSEC.

The fact that there are both upwards monotonic
and downwards monotonic expressions means that
simple matching on an inclusion of relevant mate-
rial cannot work as a technique to detect entailments.
Upward monotone expressions preserve truth by
leaving out material whereas downward monotone
expressions don’t: adding material to them can be
truth preserving.3

Apart from a more specific/less specific relation,
lexical items can establish a part-subpart relation be-
tween the events they describe. If we followed the
first sentence in (1) by
(8) John died.

we would still have a lexical inference. In this case
one in which the event described in the second sen-
tence is a subpart of the event described in the first.

The investigation of entailments leads one to dis-
tinguish several types of lexical items that have pre-
dictable effects on meaning that can be exploited to
discover sentences that are inferentially related (by
real entailments in this case). Other examples are
scope bearing elements (an aspect of meaning that
often leads to ambiguities which are not always eas-
ily perceived) and perception reports.

2A quantifierQ is downward monotonic with respect to its
restrictorφ iff ((Q φ) ψ) remains true when theφ is narrowed,
e.g. fromcompaniesto Fortune 500 companies. A quantifierQ
is upward monotonic with respect to its scopeψ iff ((Q φ) ψ)
remains true whenψ is broadened, e.g. fromhave to file reports
to theSCE to justhave to file reports.

3Dagan and Glickman (2004) explore inferencing by syn-
tactic pattern matching techniques but consider only upward
monotonic expressions. Their proposal ensures loss of recall
on downward monotonic expressions.
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Two types of relations deserve special mention
here because they are pervasive and they are at the
borderline between linguistic and world knowledge:
temporal relations and spatial relations. Whether
knowing that Tuesday follows Monday or that there
are leap years and non-leap years is linguistic knowl-
edge or world knowledge might not be totally clear
but it is clear that one wants this information to be
part of what textual entailment can draw upon. The
consequences in a Eucledian space of the place and
movement of objects are similar. There is a rich set
of entailment relations that builds on these temporal
and spatial notions.

2.2 Conventional Implicatures4

Apart from making assertions, however, an author
will often “conventionally implicate” certain things.
We use here the term conventional implicature for
what has been called by that name or labeled as (se-
mantic) presupposition. Some of us have argued
elsewhere there is no need for a distinction between
these two notions (Karttunen and Peters, 1979) and
that presupposition is a less felicitous term because
it tends to be confused with “old information”.

Traditionally these implications are not consid-
ered to be part of what makes the sentence true, but
the author isCOMMITTED to them and we consider
them part of what textual inferences should be based
on. We take this position because we think it is rea-
sonable, forIE tasks, to assume that material that is
conventionally implicated can be used in the same
way as assertions, for instance, to provide answers
to questions. When somebody saysBill acknowl-
edges that the earth is round, we know something
about the author’s as well as Bill’s beliefs in the mat-
ter, namely that the author is committed to the belief
that the earth is round.

If all conventionally implied material were also
discourse old information, this might not matter very
much as the same information would be available
elsewhere in the text, but often conventionally im-
plied material is new information that is presented
as not being under discussion. Conventional impli-
catures are a rich source of information forIE tasks
because the material presented in them is supposed

4For more on conventional implicatures, see e.g. Karttunen
and Peters (1979) and Potts (2005)

to be non-controversial. In newspapers and other in-
formation sources they are a favorite way to distin-
guish background knowledge, that the reader might
have or not, without confusing it with what is news-
worthy in the report at hand. A very common ex-
ample of this, exploited in thePASCAL test suite, is
the use of appositives. illustrated in the following
example:
(9) The New York Times reported that Hanssen,

who soldFBI secrets to the Russians, could face
the death penalty.
Did Hanssen sellFBI reports to the Russians?
YES

From the perspective ofIE tasks, the way conven-
tional implicatures behave under negation is one rea-
son to pay close attention to them. The following
examples illustrate this:
(10) Kerry realized that Bush was right.

Bush was right.

(11) Kerry didn’t realize that Bush was right.
Bush was right.

Other types of embedded clauses that are conven-
tionally implicated are temporal adverbials (except
those introduced bybeforeor until. Other types of
material that can introduce a conventional implica-
ture are adverbial expressions such asevidentlyand
simple adverbs such asagainor still.

It is important to point out that the syntactic struc-
ture doesn’t guide the interpretation here. Consider
the following contrast:
(12) As the press reported, Ames was a successful

spy.
conventionally implicates that Ames was a success-
ful spy, but
(13) According to the press, Ames was a successful

spy.
does not.

2.3 Conversational Implicatures5

Authors can be held responsible for more than just
assertions and conventional implicatures. Conversa-
tional implicatures are another type of author com-
mitment. A conversational implicature rests on the
assumption that, in absence of evidence to the con-
trary, a collaborative author will say as much as she

5For more on conversational implicatures, see e.g. Grice
(1989) and Horn (2003)
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knows. So if Sue says that she has four children,
we tend to conclude that she has no more than four.
This type of implicature can be destroyed without
any contradiction arising:He not only ate some of
the cake, he ate all of it.Within the context of a tex-
tual inference task such as that defined in thePAS-
CAL initiative, it is clear that inferences based on
conversational implicatures might be wrong:PAS-
CAL doesn’t give the context. In a more developed
type of inference task, a distinction should be made
between this type of inference and the ones we dis-
cussed earlier, but when inferencing is reduced to
one sentence it seems more reasonable to take gen-
eralized conversational implicatures into account as
bona fide cases of inferences (except of course if
they are cancelled in the sentence itself, as in the
example above).

(14) I had the time to read your paper.

conversationally implies that I read your paper. But
it could be followed bybut I decided to go play ten-
nis instead.

(15) Some soldiers were killed.

conversationally impliesNot all soldiers were killed.
But it could be cancelled byIn fact we fear that all
of them are dead.

(16) He certainly has three children.

conversationally impliesHe doesn’t have more than
three childrenbut it could be followed byIn fact he
has five, three daughters and two sons.

Apart from the general conversational implica-
tures, implicatures can also arise by virtue of some-
thing being said or not said in a particular context. If
in a letter of recommendation, one praises the can-
didate’s handwriting without saying anything about
his intellectual abilities, this allows the reader to
draw some conclusions. We assume here that this
type of inference is not part of thePASCAL task, as
too little context is given for it to be reliably calcu-
lated.

One might agree with the analysis of various
sources of author commitment given above but be
of the opinion that it doesn’t matter because, given
enough data, it will come out in the statistical wash.
We doubt, however, that this will happen any time
soon without some help: the semantic distinctions
are rather subtle and knowing about them will help
develop adequate features for statistical training.

It might also be thought that the generalizations
that we need here can be reduced to syntactic dis-
tinctions. We don’t have the space to show in great
detail that this is not the case but some reflection
on and experimentation with the examples given
throughout this paper will convince the reader that
this is not the cases. For instance, if one replaces the
adjectivecleverwith the equally good adjectiveal-
legedin (4) above, the entailment relation between
the sentences doesn’t hold anymore. Substituting
showfor realizein (11) has the same effect.

2.4 Some world knowledge?

In our mind this exhausts the ways in which an au-
thor can be held responsible for her writings on the
basis of text internal elements. Textual inferences
are based on textual material that is either an en-
tailment of what is explicitly asserted, or material
that conventionally or conversationally implied by
the author. These inferences can be made solely on
the basis of the way the meaning of the words and
construction she uses are related to other words and
constructions in the language. But even in a task that
tries to separate out linguistic knowledge from world
knowledge, it is not possible to avoid the latter com-
pletely. There is world knowledge that underlies just
about everything we say or write: the societies we
live in use a common view of time to describe events
and rely on the assumptions of Euclidean geometry,
leading to shared calendars and measurement sys-
tems. It would be impossible to separate these from
linguistic knowledge. Then there is knowledge that
is commonly available and static, e.g. that Baghdad
is in Iraq. It seems pointless to us to exclude the
appeal to such knowledge from the test suite but it
would be good to define it more explicitly.

3 The PASCAL development suite.

We now discuss some of thePASCAL development
set examples in the light of the discussion above and
explain why we think some of them do not belong
in a textual inference task. First a number ofPAS-
CAL examples are based on spelling variants or even
spelling mistakes. While it is clear that coping with
this type of situation is important forNLP applica-
tions we think they do not belong in a textual infer-
ence test bed. We first discuss a couple of examples
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that we think should not have been in the test suite
and then some that do not confirm to our view on
inferencing but which might belong in a textual in-
ference test suite.

3.1 Errors?

A problem arises with an example like the follow-
ing:
(17) A farmer who was in contact with cows suffer-

ing from BSE – the so-called mad cow disease
– has died from what is regarded as the human
form of the disease.
Bovine spongiform encephalopathy is another
name for the “mad cow disease”.
TRUE

If one googlesBSE, one finds that it is an abbre-
viation that can stand for many things, including
the Bombay, Bulgarian, Baku or Bahrain Stock Ex-
change, Breast Self-Examination, and Brain Sur-
face Extractor. To select the right alternative, one
needs the knowledge that “bovine spongiform en-
cephalopathy” is a name of a disease and the other
competing BSE expansions are not.

The authors of thePASCAL test suite don’t seem
to allow for as much world knowledge when they
mark the following relation asFALSE.
(18) “I just hope I don’t become so blissful I be-

come boring” – Nirvana leader Kurt Cobain
said, giving meaning to his “Teen Spirit” coda,
a denial.
“Smells Like Teen Spirit” is a song by Nirvana.
FALSE

Apparently, it isNOT OK to know that the Nirvana
song “Smells like Teen Spirit” is often referred to as
“Teen Spirit”. But why should we then know that
bovine spongiform encephalopathy is a disease?

The test suite also contains examples that can only
be classified as plain errors. A couple of examples
are the following:
(19) Green cards are becoming more difficult to ob-

tain.
Green card is now difficult to receive.
TRUE

Something that is becoming more difficult can still
be easy, if it starts out that way.
(20) Hippos do come into conflict with people quite

often.
Hippopotamus attacks human.
TRUE

For somebody who knows a lot about hippos it might
be reasonable to assume that a conflict is necessarily
an attack but in general there is no inference:conflict
is the less general term andattackthe more specific
one.
(21) A statement said to be from al Qaida claimed

the terror group had killed one American and
kidnapped another in Riyadh.
A U.S. citizen working in Riyadh has been kid-
napped.
TRUE

This seems betray a rather implausible belief in the
claims of al Qaida and while we are assuming that
the author of the text is trustworthy, this assumption
does not extend to the sources he invokes. In this
case especially, the use ofclaimcan be construed as
indication the doubt of the author about the veracity
of what the source says.
(22) Wal-Mart is being sued by a number of its

female employees who claim they were kept
out of jobs in management because they were
women.
Wal-Mart is sued for sexual discrimination.
TRUE

A minute of reflection will make clear that here the
relation between the two sentences involves quite a
bit of specialized legal knowledge and goes beyond
textual inferencing. How issexual discrimination
different fromsexual harassment?
(23) South Korean’s deputy foreign minister says

his country won’t change its plan to send 3000
soldiers to Iraq.
South Korea continues to send troops.
TRUE

We assume that in context the second sentence
means that South Korea continues to plan to send
troops but normallycontinuedoes not meancon-
tinue to planand the first sentence certainly doesn’t
imply that South Korea has already sent troops. Here
the way the test suite has been put together leads
to odd results. A headline is paired up with a full
sentence. Headlines are not meant to be understood
completely out of context and it would be prudent to
use them sparingly in inference tasks of the sort pro-
posed here. We discuss other consequences of the
way the test suite was constructed in the next sub-
section with examples that to our mind need some
kind of accommodation.
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3.2 Not a textual inference as such but . . .

There are a couple of examples such as the following
in the test suite:

(24) The White House failed to act on the domes-
tic threat from al Qaida prior to September 11,
2001.
White House ignored the threat of attack.
TRUE

Here there is no entailment either way and surely
fail to act is not a synonym ofignore. The examples
are due to the way thePASCAL test suite was put to-
gether. It was evidently at least in part developed by
finding snippets of text that refer to the same event
in different news sources; this is a fertile method for
finding inferences but it will lead to the inclusion of
some material that mixes factual description and var-
iousAPPRECIATIONSof the described facts. For in-
stance in (24) above, two different authors described
what the White house did, putting a different spin
on it. While the fact described in both cases was
the same, the appreciations that the two renderings
give, while both negative, are not equivalent. But
although there is no legitimate inference for the sen-
tences as a whole, they both entail that the White
House did not act. Here the test suite is the victim of
its self imposed constraints, namely that the relation
has to be established between two sentences found
in “real” text. We propose to give up this constraint.

Another maybe simpler illustration of the same
problem is (25):

(25) The report catalogues 10 missed opportunities.
The report lists 10 missed opportunities.

Although catalogueand list do not have the same
meaning, they may in some cases be used inter-
changeably because, again, there is a common en-
tailment:

(26) According to the report, there were 10 missed
opportunities.

One can conceive of a thesaurus wherecatalogue
and list would have a low level common hypernym
(in WordNet they don’t) or a statistically inferred
word class that would make the common entailment
explicit, but that relation should not be confused
with an inference between the two sentences in (25).

4 A proposal for some refinements

As the discussion above has shown, the way the test
suite was put together leads sometimes to the in-
clusion of material that should not be there given
the definition of the task. Most of the data that
form the basis ofPASCAL are extracted from differ-
ent newspaper articles about the same event, often
from the same newswire. This means that the infor-
mation packaging is very similar, reducing the con-
structional and lexical range that can be used to ex-
press a same idea. This situation will not pertain in
the more general setting of question answering and
many types of paraphrases or inferences that would
be useful for question answering in general will not
be found or will be very rare inPASCAL-like suites.

We would propose to augment the types of pairs
that one can get through thePASCAL extraction tech-
niques with some that take the type of relations that
we have discussed explicitly into account. It can be
objected that this introduces a new level of artificial-
ity by allowing made-up sentences but the separa-
tion of world knowledge from linguistic knowledge
is in any case artificial. But it is necessary because
we will not be able to solve the inferencing problem
without slicing the task into manageable pieces.
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Abstract

In this work we investigate methods to en-
able the detection of a specific type of tex-
tual entailment (strict entailment), start-
ing from the preliminary assumption that
these relations are often clearly expressed
in texts. Our method is a statistical ap-
proach based on what we calltextual en-
tailment patterns, prototypical sentences
hiding entailment relations among two ac-
tivities. We experimented the proposed
method using the entailment relations of
WordNet as test case and the web as cor-
pus where to estimate the probabilities;
obtained results will be shown.

1 Introduction

Textual entailment has been recently defined as a
common solution for modelling language variability
in different NLP tasks (Glickman and Dagan, 2004).
Roughly, the problem is to recognise if a given tex-
tual expression, thetext (t), entails another expres-
sion, thehypothesis(h). An example is determining
whether or not “Yahoo acquired Overture(t) entails
Yahoo owns Overture(h)”. More formally, the prob-
lem of determining a textual entailment betweent
andh is to find a possibly graded truth value for the
entailment relationt → h.

Since the task involves natural language expres-
sions, textual entailment has a more difficult nature
with respect to logic entailment, as it hides two dif-
ferent problems:paraphrase detectionand what can

be calledstrict entailment detection. Generally, this
task is faced under the simplifying assumption that
the analysed text fragments representfacts (ft for
the ones in the text andfh for those in the hypothe-
sis) in an assertive or negative way.Paraphrase de-
tectionis then needed when the hypothesish carries
a factf that is also in the target textt but is described
with different words, e.g.,Yahoo acquired Overture
vs. Yahoo bought Overture. On the other hand,strict
entailmentemerges when target sentences carry dif-
ferent facts,fh 6= ft. The challenge here is to derive
the truth value of the entailmentft → fh. For exam-
ple, a strict entailment is “Yahoo acquired Overture
→ Yahoo owns Overture”. In fact, it does not de-
pend on the possible paraphrasing between the two
expressions but on an entailment of the twofacts
governed byacquireandown.

Whatever the form of textual entailment is, the
real research challenge consists in finding a rel-
evant number oftextual entailment prototype re-
lations such as “X acquired YentailsX owns Y” or
“X acquired YentailsX bought Y” that can be used
to recognise entailment relations. Methods for ac-
quiring such textual entailment prototype relations
are based on the assumption that specific facts are
often repeated in possibly different linguistic forms.
These forms may be retrieved using theiranchors,
generally nouns or noun phrases completely char-
acterising specific facts. The retrieved text frag-
ments are thus considered alternative expressions
for the same fact. This supposed equivalence is
then exploited to derive textual entailment proto-
type relations. For example, the specific factYahoo
bought Overtureis characterised by the two anchors
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{Yahoo, Overture}, that are used to retrieve in the
corpus text fragments where they co-occur, e.g.“Ya-
hoo purchased Overture (July 2003).”, “Now that
Overture is completely owned by Yahoo!...”. These
retrieved text fragments are then considered good
candidate for paraphrasingX bought Y.

Anchor-based learning methods have been used
to investigate many semantic relations ranging from
very general ones as theisarelation in (Morin, 1999)
to very specific ones as in (Ravichandran and Hovy,
2002) where paraphrases of question-answer pairs
are searched in the web or as in (Szpektor et al.,
2004) where a method to scan the web for searching
textual entailment prototype relations is presented.
These methods are mainly devoted to induce entail-
ment pairs related to the first kind of textual entail-
ment, that is,paraphrasingas their target is mainly
to look for the same “fact” in different textual forms.
Incidentally, these methods can come across strict
entailment relations whenever specific anchors are
used for both a factft and astrictly entailed factfh.

In this work we will investigate specific meth-
ods to induce the second kind of textual entailment
relations, that is,strict entailment. We will focus
on entailment between verbs, due to the fact that
verbs generally govern the meaning of sentences.
The problem we are facing is to look for (or ver-
ify) entailment relations likevt → vh (wherevt is
the text verb andvh the hypothesis verb). Our ap-
proach is based on an intuition: strict entailment re-
lations among verbs are often clearly expressed in
texts. For instance the text fragment“Player wins
$50K in Montana Cash”hides an entailment rela-
tion between two activities, namelyplay andwin. If
someone wins, he has first of all to play, thus,win→
play. The idea exploits the existence of what can be
calledtextual entailment pattern, a prototypical sen-
tence hiding an entailment relation among two activ-
ities. In the abovementioned example the pattern in-
stanceplayer winsubsumes the entailment relation
“win→ play”.

In the following we will firstly describe in Sec.
2 our method to recognise entailment relations be-
tween verbs that uses: (1) the prior linguistic knowl-
edge of thesetextual entailment patternsand (2) sta-
tistical models to assess stability of the implied re-
lations in a corpus. Then, we will experiment our
method by using the WordNet entailment relations

as test cases and the web as corpus where to esti-
mate the probabilities (Sec. 3). Finally we will draw
some conclusions (Sec. 4).

2 The method

Discovering entailment relations within texts im-
plies the understanding of two aspects: firstly, how
these entailment relations are usually expressed and,
secondly, when an entailment relation may be con-
sidered stable and commonly shared. Assessing the
first aspect requires the investigation of which are
the prototypical textual forms that describe entail-
ment relations. We will call themtextual entailment
patterns. These patterns (analysed in Sec. 2.2) will
enable the detection ofpoint-wise entailment asser-
tions, that is, candidate verb pairs that still need a
further step of analysis in order to be considered
true entailment expressions. In fact, some of these
candidates may be not enough stable and commonly
shared in the language to be considered true en-
tailments. To better deal with this second aspect,
methods for statistically analysing large corpora are
needed (see later in Sec. 2.3).

The method we propose may be used in either: (1)
recognisingif entailment holds between two verbs,
or, (2) extractingfrom a corpusC all the implied
entailment relations. Inrecognition, given a verb
pair, the related textual entailment expressions are
derived as instances of thetextual entailment pat-
ternsand, then, the statistical entailment indicators
on a corpusC are computed to evaluate the stability
of the relation. Inextraction, the corpusC should
be scanned to extract textual expressions that are in-
stances of the textual entailment patterns. The re-
sulting pairs are sorted according to the statistical
entailment indicators and only the best ranked are
retained as useful verb entailment pairs.

2.1 An intuition

Our method stems from an observation: verb logical
subjects, as any verb role filler, have to satisfy spe-
cific preconditions as the theory ofselectional re-
strictions suggests. Then, if in a given sentence a
verbv has a specific logical subjectx, its selectional
restrictions imply that the subject has to satisfy some
preconditionsp, that is,v(x) → p(x). This can be
read also as: ifx has the property of doing the action
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v this implies thatx has the propertyp. For example,
if the verb isto eat, the selectional restrictions ofeat
would imply, among other things, that its subject is
ananimal. If the preconditionp is “having the prop-
erty of doing an actiona”, the constraint may imply
that the actionv entails the actiona, that is,v → a.

As for selectional restriction acquisition, the pre-
vious observation can enable the use of corpora as
enormous sources of candidate entailment relations
among verbs. For example“John McEnroe won the
match...”can contribute to the definition of the selec-
tional restrictionwin(x) → human(x) (sinceJohn
McEnroeis ahuman), as well as to the induction (or
verification) of the entailment relation betweenwin
and play, sinceJohn McEnroehas theproperty of
playing. However, as the example shows, classes
relevant for acquiring selectional preferences may
be more explicit than active properties useful to de-
rive entailment relations (i.e., it is easier to derive
that John McEnroeis a human than that he has the
property of playing).

This limitation can be overcome whenagentive
nounssuch asrunnerplay subject roles in some sen-
tences. Agentive nouns usually denote the “doer” or
“performer” of some actiona. This is exactly what
is needed to make clearer the relevant property of
the noun playing the logical subject role, in order to
discover entailment. The actiona will be the one en-
tailed by the verb heading the sentence. For exam-
ple, in “the player wins”, the actionplay evocated
by the agentive nounplayer is entailed bywin.

2.2 Textual entailment patterns

As observed for theisa relations in (Hearst, 1992)
local and simple inter-sentential patterns may carry
relevant semantic relations. As we saw in the pre-
vious section, this also happens for entailment re-
lations. Our aim is thus to search for an initial set
of textual patterns that describe possible linguistic
forms expressing entailment relations between two
verbs(vt, vh). By using these patterns, actual point-
wise assertions of entailment can be detected or ver-
ified in texts. We call these prototypical patternstex-
tual entailment patterns.

The idea described in Sec. 2.1 can be straight-
forwardly applied to generate textual entailment pat-
terns, as it often happens that verbs can undergo an
agentive nominalization (hereafter calledpersonifi-

cation), e.g., play vs. player. Whether or not an
entailment relation between two verbs(vt, vh) holds
according to some writer can be verified looking for
sentences with expressions involving the agentive
nominalization of the hypothesis verbvh. Then, the
procedure to verify if entailment between two verbs
(vt, vh) holds in a point-wise assertion is: whenever
it is possible to personify the hypothesisvh, scan the
corpus to detect the expressions where the personi-
fied hypothesis verb is the subject of a clause gov-
erned by the text verbvt.

Given the two investigated verbs(vt, vh) we will
refer to this first set of textual entailment patterns
aspersonified patternsPpers(vt, vh). This set will
contain the following textual patterns:

Ppers(vt, vh) =
{“pers(vh)|number:sing vt|person:third,tense:present”,
“pers(vh)|number:plur vt|person:nothird,tense:present”,
“pers(vh)|number:sing vt|tense:past”,
“pers(vh)|number:plur vt|tense:past”}

wherepers(v) is the noun deriving from the person-
ification of the verbv and elements such asl|f1,...,fN

are the tokens generated from lemmasl by apply-
ing constraints expressed via the featuresf1, ..., fN .
For example, in the case of the verbsplay andwin,
the related set of textual entailment expressions de-
rived from the patterns will bePpers(win, play)
= { “player wins”, “players win”, “player won”,
“players won” }. In the experiments hereafter de-
scribed, the required verbal inflections (except per-
sonification) have been obtained using the publicly
available morphological tools described in (Minnen
et al., 2001) whilst simple heuristics have been used
to personify verbs1.

As the statistical measures introduced in the fol-
lowing section are those usually used for study-
ing co-occurrences, two more sets of expressions,
Fpers(v) andF(v), are needed to represent the sin-
gle events in the pair. These are defined as:

Fpers(v) = {“pers(v)|number:sing”, “pers(v)|number:plur”}
F(v) = {“v|person:third,tense:present”,

“v|person:nothird,tense:present”, “v|tense:past”}

1Personification, i.e. agentive nominalization, has been ob-
tained adding “-er” to the verb root taking into account possible
special cases such as verbs ending in “-y”. A form is retained
as a correct personification if it is in WordNet.
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2.3 Measures to estimate the entailment
strength

The above textual entailment patterns definepoint-
wise entailment assertions. In fact, if pattern in-
stances are found in texts, the only conclusion that
may be drawn is that someone (the author of the
text) sustains the related entailment pairs. A sen-
tence like“ Painter drawson old techniques but cre-
ates only decorative objects.”suggests thatpainting
entailsdrawing. However, it may happen that these
correctly detected entailments are accidental, that is,
the detected relation is only valid for that given text.
For example, the text fragment“When apainter dis-
coversthis hidden treasure, other people are imme-
diately struck by its beauty.”if taken in insulation
suggests thatpaintingentailsdiscovering, but this is
questionable. Furthermore, it may also happen that
patterns detect wrong cases due to ambiguous ex-
pressions like“ Painter drawsinspiration from for-
est, field” where the sense of the verbdraw is not
the one expected.

In order to get rid of these wrong verb pairs, an
assessment of point-wise entailment assertions over
a corpus is needed to understand how much the de-
rived entailment relations are shared and commonly
agreed. This validation activity can be obtained by
both analysing large textual collections and applying
statistical measures relevant for the task.

Before introducing the statistical entailment indi-
cators, some definitions are necessary. Given a cor-
pusC containing samples, we will refer to the abso-
lute frequency of a textual expressiont in the corpus
C with fC(t). The definition is easily extended to a
set of expressionsT as follows:

fC(T ) =
∑
t∈T

fC(t)

Given a pairvt andvh we may thus define the fol-
lowing entailment strength indicatorsS(vt, vh), re-
lated to more general statistical measures.

The first relevance indicator,Sf (vt, vh), is related
to the probability of the textual entailment pattern
as it is. This probability may be represented by the
frequency, as the fixed corpusC makes constant the
total number of pairs:

Sf (vt, vh) = log10(fC(Ppers(vt, vh)))

where logarithm is used to contrast the effect of the
Zipf’s law. This measure is often positively used in
terminology extraction (e.g., (Daille, 1994)).

Secondly, another measureSmi(vt, vh) related to
point-wise mutual information (Fano, 1961) may
be also used. Given the possibility of estimating
the probabilities through maximum-likelihood prin-
ciple, the definition is straightforward:

Smi(vt, vh) = log10
p(Ppers(vt, vh))

p(Fpers(vt))p(F(vh))

wherep(x) = fC(x)/fC(.). The aim of this mea-
sure is to indicate the relatedness between two el-
ements composing a pair. Mutual information has
been positively used in many NLP tasks such as col-
location analysis (Church and Hanks, 1989), termi-
nology extraction (Damerau, 1993), and word sense
disambiguation (Brown et al., 1991).

3 Experimental Evaluation

As many other corpus linguistic approaches, our en-
tailment detection model relies partially on some lin-
guistic prior knowledge (the expected structure of
the searched collocations, i.e., thetextual entailment
patterns) and partially on some probability distribu-
tion estimation. Only a positive combination of both
these two ingredients can give good results when ap-
plying (and evaluating) the model.

The aim of the experimental evaluation is then to
understand, on the one side, if the proposedtextual
entailment patternsare useful to detect entailment
between verbs and, on the other, if a statistical mea-
sure is preferable with respect to the other. We will
here evaluate the capability of our method torecog-
niseentailment between given pairs of verbs.

We carried out the experiments using the web as
the corpusC where to estimate our two textual en-
tailment measures (Sf andSmi) and GoogleTM as
a count estimator. The findings described in (Keller
and Lapata, 2003) seem to suggest that count estima-
tions we need in the present study overSubject-Verb
bigrams are highly correlated to corpus counts.

As test bed we used existing resources: a non triv-
ial set of controlled verb entailment pairs is in fact
contained in WordNet (Miller, 1995). There, the en-
tailment relation is a semantic relation defined at the
synset level, standing in the verb subhierarchy. Each
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Figure 1: ROC curves

pair of synsets(St, Sh) is an oriented entailment re-
lation betweenSt and Sh. WordNet contains 415
entailed synsets. These entailment relations are con-
sequently stated also at the lexical level. The pair
(St, Sh) naturally implies thatvt entailsvh for each
possiblevt ∈ St andvh ∈ Sh. It is then possible
to derive from the 415 entailment synset a test set of
2,250 verb pairs. As the proposed model is appli-
cable only when hypotheses can be personified, the
number of the pairs relevant for the experiment is
thus reduced to 856. This set is hereafter called the
True Set(TS).

As theTrue Setis our starting point for the eval-
uation, it is not possible to produce a natural distri-
bution in the verb pair space between entailed and
not-entailed elements. Then, precision, recall, and
f-measure are not applicable. The only solution is
to use a ROC (Green and Swets, 1996) curve mix-
ing sensitityandspecificity. What we then need is a
Control Set(CS) of verb pairs that in principle are
not in entailment relation. TheControl Sethas been
randomly built on the basis of theTrue Set: given
the set of all the hypothesis verbsH and the set of
all the text verbsT of theTrue Set, control pairs are
obtained randomly extracting one element fromH
and one element fromT . A pair is considered a con-
trol pair if it is not in theTrue Set. For comparative
purposes theControl Sethas the same cardinality
of the True Set. However, even if the intersection

between theTrue Setand theControl Setis empty,
we are not completely sure that theControl Setdoes
not contains any pair where the entailment relation
holds. What we may assume is that this last set at
least contains a smaller number of positive pairs.

Sensitivity, i.e. the probability of having positive
answers for positive pairs, andspecificity, i.e. the
probability of having negative answers for negative
pairs, are then defined as:

Sensitivity(t) = p((vh, vt) ∈ TS|S(vh, vt) > t)
Specificity(t) = p((vh, vt) ∈ CS|S(vh, vt) < t)

wherep((vh, vt) ∈ TS|S(vh, vt) > t) is the prob-
ability of a candidate pair(vh, vt) to belong toTS
if the test is positive, i.e. the valueS(vh, vt) of the
entailment detection measure is greater thant, while
p((vh, vt) ∈ CS|S(vh, vt) < t) is the probability
of belonging toCS if the test is negative. The ROC
curve (Sensitivity vs. 1 − Specificity) naturally
follows (see Fig. 1).

Results are encouraging as textual entailment pat-
terns show a positive correlation with the entailment
relation. Both ROC curves, the one related to the fre-
quency indicatorSf (f in figure) and the one related
to the mutual informationSMI (MI in figure), are
above theBaseline curve. Moreover, both curves
are above the second baseline (Baseline2) applica-
ble when it is really possible to use the indicators. In
fact, textual entailment patterns have a non-zero fre-
quency only for61.4% of the elements in theTrue
Set. This is true also for48.1% of the elements in the
Control Set. The presence-absence in the corpus is
then already an indicator for the entailment relation
of verb pairs, but the application of the two indica-
tors can help in deciding among elements that have
a non-zero frequency in the corpus. Finally, in this
case, mutual information appears to be a better indi-
cator for the entailment relation with respect to the
frequency.

4 Conclusions

We have defined a method to recognise and extract
entailment relations between verb pairs based on
what we calltextual entailment pattern. In this work
we defined a first kernel oftextual entailment pat-
ternsbased on subject-verb relations. Potentials of
the method are still high as different kinds of textual
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entailment patterns may be defined or discovered
investigating relations between sentences and sub-
sentences as done in (Lapata and Lascarides, 2004)
for temporal relations or between near sentences as
done in (Basili et al., 2003) for cause-effect relations
between domain events. Some interesting and sim-
ple inter-sentential patters are defined in (Chklovski
and Pantel, 2004). Moreover, with respect to anchor-
based approaches, the method we presented here
offers a different point of view on the problem of
acquiring textual entailment relation prototypes, as
textual entailment patterns do not depend on the rep-
etition of “similar” facts. This practically indepen-
dent view may open the possibility to experiment
co-training algorithms (Blum and Mitchell, 1998)
also in this area. Finally, the approach proposed can
be useful to define better probability estimations in
probabilistic entailment detection methods such as
the one described in (Glickman et al., 2005).
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Abstract 

This paper proposes a general probabilis-

tic setting that formalizes a probabilistic 

notion of textual entailment.  We further 

describe a particular preliminary model 

for lexical-level entailment, based on 

document cooccurrence probabilities, 

which follows the general setting. The 

model was evaluated on two application 

independent datasets, suggesting the rele-

vance of such probabilistic approaches for 

entailment modeling.  

1 Introduction 

Many Natural Language Processing (NLP) 

applications need to recognize when the meaning 

of one text can be expressed by, or inferred from, 

another text. Information Retrieval (IR), Question 

Answering (QA), Information Extraction (IE), text 

summarization and Machine Translation (MT) 

evaluation are examples of applications that need 

to assess this semantic relationship between text 

segments. The Textual Entailment Recognition 

task (Dagan et al., 2005) has recently been pro-

posed as an application independent framework for 

modeling such inferences.  

Within the textual entailment framework, a text 

t is said to entail a textual hypothesis h if the truth 

of h can be inferred from t. Textual entailment cap-

tures generically a broad range of inferences that 

are relevant for multiple applications. For example, 

a QA system has to identify texts that entail a hy-

pothesized answer. Given the question "Does John 

Speak French?", a text that includes the sentence 

"John is a fluent French speaker" entails the sug-

gested answer "John speaks French." In many 

cases, though, entailment inference is uncertain 

and has a probabilistic nature. For example, a text 

that includes the sentence "John was born in 

France." does not strictly entail the above answer. 

Yet, it is clear that it does increase substantially the 

likelihood that the hypothesized answer is true.  

The uncertain nature of textual entailment calls 

for its explicit modeling in probabilistic terms. We 

therefore propose a general generative probabilistic 

setting for textual entailment, which allows a clear 

formulation of concrete probabilistic models for 

this task. We suggest that the proposed setting may 

provide a unifying framework for modeling uncer-

tain semantic inferences from texts.   

An important sub task of textual entailment, 

which we term lexical entailment, is recognizing if 

the lexical concepts in a hypothesis h are entailed 

from a given text t, even if the relations which hold 

between these concepts may not be entailed from t. 

This is typically a necessary, but not sufficient, 

condition for textual entailment. For example, in 

order to infer from a text the hypothesis "Chrysler 

stock rose," it is a necessary that the concepts of 

Chrysler, stock and rise must be inferred from the 

text. However, for proper entailment it is further 

needed that the right relations hold between these 

concepts. In this paper we demonstrate the rele-

vance of the general probabilistic setting for mod-

eling lexical entailment, by devising a preliminary 

model that is based on document co-occurrence 

probabilities in a bag of words representation.  

Although our proposed lexical system is rela-

tively simple, as it doesn’t rely on syntactic or 

other deeper analysis, it nevertheless was among 

the top ranking systems in the first Recognising 

Textual Entailment (RTE) Challenge (Glickman et 

al., 2005a). The model was evaluated also on an 

additional dataset, where it compares favorably 

with a state-of-the-art heuristic score. These results 

suggest that the proposed probabilistic framework 

is a promising basis for devising improved models 

that incorporate richer information.  
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2 Probabilistic Textual Entailment 

2.1 Motivation 

A common definition of entailment in formal se-

mantics (Chierchia. and McConnell-Ginet, 1990) 

specifies that a text t entails another text h (hy-

pothesis, in our terminology) if h is true in every 

circumstance (possible world) in which t is true. 

For example, in examples 1 and 3 from Table 1 

we’d assume humans to agree that the hypothesis 

is necessarily true in any circumstance for which 

the text is true. In such intuitive cases, textual en-

tailment may be perceived as being certain, or, tak-

ing a probabilistic perspective, as having a 

probability of 1. 

In many other cases, though, entailment infer-

ence is uncertain and has a probabilistic nature. In 

example 2, the text doesn’t contain enough infor-

mation to infer the hypothesis’ truth. And in exam-

ple 4, the meaning of the word hometown is 

ambiguous and therefore one cannot infer for cer-

tain that the hypothesis is true. In both of these 

cases there are conceivable circumstances for 

which the text is true and the hypothesis false. Yet, 

it is clear that in both examples, the text does in-

crease substantially the likelihood of the correct-

ness of the hypothesis, which naturally extends the 

classical notion of certain entailment. Given the 

text, we expect the probability that the hypothesis 

is indeed true to be relatively high, and signifi-

cantly higher than its probability of being true 

without reading the text. Aiming to model applica-

tion needs, we suggest that the probability of the 

hypothesis being true given the text reflects an ap-

propriate confidence score for the correctness of a 

particular textual inference. In the next sub-

sections we propose a concrete probabilistic setting 

that formalizes the notion of truth probabilities in 

such cases.  

2.2 A Probabilistic Setting 

Let T denote a space of possible texts, and t∈T a 

specific text. Let H denote the set of all possible 

hypotheses. A hypothesis h∈H is a propositional 

statement which can be assigned a truth value. For 

now it is assumed that h is represented as a textual 

statement, but in principle it could also be ex-

pressed as a formula in some propositional lan-

guage.  

A semantic state of affairs is captured by a 

mapping from H to {0=false, 1=true}, denoted by 

w: H → {0, 1} (called here possible world, follow-

ing common terminology). A possible world w 

represents a concrete set of truth value assignments 

for all possible propositions. Accordingly, W de-

notes the set of all possible worlds. 

2.2.1 A Generative Model 

We assume a probabilistic generative model for 

texts and possible worlds. In particular, we assume 

that texts are generated along with a concrete state 

of affairs, represented by a possible world. Thus, 

whenever the source generates a text t, it generates 

also corresponding hidden truth assignments that 

constitute a possible world w. 

The probability distribution of the source, over 

all possible texts and truth assignments T × W, is 

assumed to reflect inferences that are based on the 

generated texts. That is, we assume that the distri-

bution of truth assignments is not bound to reflect 

the state of affairs in a particular "real" world, but 

only the inferences about propositions' truth which 

are related to the text. In particular, the probability 

for generating a true hypothesis h that is not related 

at all to the corresponding text is determined by 

some prior probability P(h). For example, h="Paris 

is the capital of France" might have a prior smaller 

than 1 and might well be false when the generated 

text is not related at all to Paris or France. In fact, 

we may as well assume that the notion of textual 

entailment is relevant only for hypotheses for 

which P(h) < 1, as otherwise (i.e. for tautologies) 

there is no need to consider texts that would sup-

port h's truth. On the other hand, we assume that 

the probability of h being true (generated within w) 

would be higher than the prior when the corre-

sponding t does contribute information that sup-

ports h's truth. 

example text hypothesis 

1 John is a French Speaker 

2 John was born in France 
John speaks French  

3 Harry's birthplace is Iowa 

4 Harry is returning to his Iowa hometown  
Harry was born in Iowa 

Table 1: example sentence pairs  
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We define two types of events over the prob-

ability space for T × W: 

I) For a hypothesis h, we denote as Trh the random 

variable whose value is the truth value assigned to 

h in a given world. Correspondingly, Trh=1 is the 

event of h being assigned a truth value of 1 (true). 

II) For a text t, we use t itself to denote also the 

event that the generated text is t (as usual, it is 

clear from the context whether t denotes the text or 

the corresponding event).  

2.3 Probabilistic textual entailment 

definition 

We say that a text t probabilistically entails a hy-

pothesis h (denoted as t ⇒ h) if t increases the like-

lihood of h being true, that is, if P(Trh = 1| t) > 

P(Trh  = 1)
 
or equivalently if the pointwise mutual 

information, I(Trh=1,t), is greater then 0. Once 

knowing that t⇒h, P(Trh=1| t) serves as a probabil-

istic confidence value for h being true given t. 

Application settings would typically require 

that P(Trh = 1| t) obtains a high value; otherwise, 

the text would not be considered sufficiently rele-

vant to support h's truth (e.g. a supporting text in 

QA or IE should entail the extracted information 

with high confidence). Finally, we ignore here the 

case in which t contributes negative information 

about h, leaving this relevant case for further in-

vestigation. 

2.4 Model Properties 

It is interesting to notice the following properties 

and implications of our model: 

A) Textual entailment is defined as a relationship 

between texts and propositions whose representa-

tion is typically based on text as well, unlike logi-

cal entailment which is a relationship between 

propositions only. Accordingly, textual entail-

ment confidence is conditioned on the actual gen-

eration of a text, rather than its truth. For 

illustration, we would expect that the text “His 

father was born in Italy” would logically entail 

the hypothesis “He was born in Italy” with high 

probability – since most people who’s father was 

born in Italy were also born there. However we 

expect that the text would actually not probabilis-

tically textually entail the hypothesis since most 

people for whom it is specifically reported that 

their father was born in Italy were not born in 

Italy.
1
 

B) We assign probabilities to propositions (hy-

potheses) in a similar manner to certain probabil-

istic reasoning approaches (e.g. Bacchus, 1990; 

Halpern, 1990). However, we also assume a gen-

erative model of text, similar to probabilistic lan-

guage and machine translation models, which 

supplies the needed conditional probability distri-

bution. Furthermore, since our conditioning is on 

texts rather than propositions we do not assume 

any specific logic representation language for text 

meaning, and only assume that textual hypotheses 

can be assigned truth values.     

C) Our framework does not distinguish between 

textual entailment inferences that are based on 

knowledge of language semantics (such as mur-

dering ⇒ killing) and inferences based on domain 

or world knowledge (such as live in Paris ⇒ live 

in France). Both are needed in applications and it 

is not clear at this stage where and how to put 

such a borderline. 

D) An important feature of the proposed frame-

work is that for a given text many hypotheses are 

likely to be true. Consequently, for a given text t 

and hypothesis h, ∑hP(Trh=1|t) does not sum to 1.  

This differs from typical generative settings for 

IR and MT (Ponte and croft, 1998; Brown et al., 

1993), where all conditioned events are disjoint 

by construction.  In the proposed model, it is 

rather the case that P(Trh=1|t) + P(Trh=0|t) = 1, as 

we are interested in the probability that a single 

particular hypothesis is true (or false). 

E) An implemented model that corresponds to our 

probabilistic setting is expected to produce an 

estimate for P(Trh = 1| t). This estimate is ex-

pected to reflect all probabilistic aspects involved 

in the modeling, including inherent uncertainty of 

the entailment inference itself (as in example 2 of 

Table 1), possible uncertainty  regarding the cor-

rect disambiguation of the text (example 4), as 

well as probabilistic estimates that stem from the 

particular model structure.  

3 A Lexical Entailment Model 

We suggest that the proposed setting above pro-

vides the necessary grounding for probabilistic 

                                                           
1 This seems to be the case, when analyzing the results of en-

tering the above text in a web search engine.     
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modeling of textual entailment. Since modeling the 

full extent of the textual entailment problem is 

clearly a long term research goal, in this paper we 

rather focus on the above mentioned sub-task of 

lexical entailment - identifying when the lexical 

elements of a textual hypothesis h are inferred 

from a given text t.  

To model lexical entailment we first assume that 

the meanings of the individual content words in a 

hypothesis can be assigned truth values. One pos-

sible interpretation for such truth values is that 

lexical concepts are assigned existential meanings. 

For example, for a given text t, Trbook=1 if it can be 

inferred in t’s state of affairs that a book exists. 

Our model does not depend on any such particular 

interpretation, though, as we only assume that truth 

values can be assigned for lexical items but do not 

explicitly annotate or evaluate this sub-task.  

Given this setting, a hypothesis is assumed to be 

true if and only if all its lexical components are 

true as well. This captures our target perspective of 

lexical entailment, while not modeling here other 

entailment aspects. When estimating the entailment 

probability we assume that the truth probability of 

a term u in a hypothesis h is independent of the 

truth of the other terms in h, obtaining:  

P(Trh = 1| t) = Πu∈hP(Tru=1|t) 

P(Trh = 1) = Πu∈hP(Tru=1) 
(1) 

In order to estimate P(Tru=1|v1, …, vn) for a 

given word u and text t={v1, …, vn}, we further 

assume that the majority of the probability mass 

comes from a specific entailing word in t: 

)|1(max)|1( vutvu TTrtTr =Ρ==Ρ
∈  (2) 

where Tv denotes the event that a generated text 

contains the word v. This corresponds to expecting 

that each word in h will be entailed from a specific 

word in t (rather than from the accumulative con-

text of t as a whole
2
). Alternatively, one can view 

(2) as inducing an alignment between terms in the 

h to the terms in the t, somewhat similar to align-

ment models in statistical MT (Brown et al., 1993).  

Thus we propose estimating the entailment 

probability based on lexical entailment probabili-

ties from (1) and (2) as follows: 

∏∈ ∈
=Ρ==Ρ

hu vutvh TTrtTr )|1(max)|1(  (3) 

                                                           
2 Such a model is proposed in (Glickman et al., 2005b)  

3.1 Estimating Lexical Entailment 

Probabilities   

We perform unsupervised empirical estimation of 

the lexical entailment probabilities, P(Tru=1|Tv), 

based on word co-occurrence frequencies in a cor-

pus. Following our proposed probabilistic model 

(cf. Section  2.2.1), we assume that the domain 

corpus is a sample generated by a language source. 

Each document represents a generated text and a 

(hidden) possible world. Given that the possible 

world of the text is not observed we do not know 

the truth assignments of hypotheses for the ob-

served texts. We therefore further make the sim-

plest assumption that all hypotheses stated 

verbatim in a document are true and all others are 

false and hence P(Tru=1|Tv) = P(Tu |Tv). This simple 

co-occurrence probability, which we denote as 

lexical entailment probability – lep(u,v), is easily 

estimated from the corpus based on maximum like-

lihood counts:  

v

vu

vu
n

n
TTrvulep

,
)|1(),( ≈=Ρ=  (4) 

where nv is the number of documents containing 

word v and nu,v is the number of documents con-

taining both u and v.  

Given our definition of the textual entailment 

relationship (cf. Section  2.3) for a given word v we 

only consider for entailment words u for which 

P(Tru=1|Tv)> P(Tru=1) or based on our estimations, 

for which nu,v/nu > nv/N (N is total number of 

documents in the corpus).  

We denote as tep the textual entailment probability 

estimation as derived from (3) and (4) above: 

∏ ∈ ∈=
hu tv vulephttep ),(max),(  (5) 

3.2 Baseline model 

As a baseline model for comparison, we use a 

score developed within the context of text summa-

rization. (Monz and de Rijke, 2001) propose mod-

eling the directional entailment between two texts 

t1, t2 via the following score:  

∑

∑

∈

∩∈
=

2

21

)(

)(

),(
)(

21

tw

ttw

widf

widf

ttentscore  (6) 

where idf(w) = log(N/nw), N is total number of 

documents in corpus and nw is number of docu-
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ments containing word w.  A practically equivalent 

measure was independently proposed in the con-

text of QA by (Saggion et al., 2004)
3
. This baseline 

measure captures word overlap, considering only 

words that appear in both texts and weighs them 

based on their inverse document frequency. 

4 The RTE challenge dataset 

The RTE dataset (Dagan et al., 2005) consists 

of sentence pairs annotated for entailment. Fo this 

dataset we used word cooccurrence frequencies 

obtained from a web search engine. The details of 

this experiment are described in Glickman et al., 

2005a. The resulting accuracy on the test set was 

59% and the resulting confidence weighted score 

was 0.57. Both are statistically significantly better 

than chance at the 0.01 level. The baseline model 

(6) from Section  3.2, which takes into account only 

terms appearing in both the text and hypothesis, 

achieved an accuracy of only 56%. Although our 

proposed lexical system is relatively simple, as it 

doesn’t rely on syntactic or other deeper analysis, 

it nevertheless was among the top ranking systems 

in the RTE Challenge. 

5 RCV1 dataset  

In addition to the RTE dataset we were interested 

in evaluating the model on a more representative 

set of texts and hypotheses that better corresponds 

to applicative settings. We focused on the informa-

tion seeking setting, common in applications such 

as QA and IR, in which a hypothesis is given and it 

is necessary to identify texts that entail it.  

An annotator was asked to choose 60 hypothe-

ses based on sentences from the first few docu-

ments in the Reuters Corpus Volume 1 (Rose et al., 

2002). The annotator was instructed to choose sen-

tential hypotheses such that their truth could easily 

be evaluated. We further required that the hypothe-

ses convey a reasonable information need in such a 

way that they might correspond to potential ques-

tions, semantic queries or IE relations. Table 2 

shows a few of the hypotheses.  

In order to create a set of candidate entailing 

texts for the given set of test hypotheses, we fol-

lowed the common practice of WordNet based ex-

                                                           
3 (Saggion et al., 2004) actually proposed the above score with 

no normalizing denominator. However for a given hypothesis 

it results with the same ranking of candidate entailing texts. 

pansion (Nie and Brisebois, 1996; Yang and Chua, 

2002). Using WordNet, we expanded the hypothe-

ses’ terms with morphological alternations and 

semantically related words
4
.  

For each hypothesis stop words were removed 

and all content words were expanded as described 

above. Boolean Search included a conjunction of 

the disjunction of the term’s expansions and was 

performed at the paragraph level over the full 

Reuters corpus, as common in IR for QA. Since we 

wanted to focus our research on semantic variabil-

ity we excluded from the result set paragraphs that 

contain all original words of the hypothesis or their 

morphological derivations. The resulting dataset 

consists of 50 hypotheses and over a million re-

trieved paragraphs (10 hypotheses had only exact 

matches). The number of paragraphs retrieved per 

hypothesis range from 1 to 400,000.
5
  

5.1 Evaluation 

The model’s entailment probability, tep, was com-

pared to the following two baseline models. The 

first, denoted as base, is the naïve baseline in 

which all retrieved texts are presumed to entail the 

hypothesis with equal confidence. This baseline 

corresponds to systems which perform blind ex-

pansion with no weighting. The second baseline, 

entscore, is the entailment score (6) from  3.2.  

The top 20 best results for all methods were 

given to judges to be annotated for entailment. 

Judges were asked to annotate an example as true 

if given the text they can infer with high confi-

dence that the hypothesis is true (similar to the 

guidelines published for the RTE Challenge data-

set). Accordingly, they were instructed to annotate 

the example as false if either they believe the hy-

pothesis is false given the text or if the text is unre-

lated to the hypothesis. In total there were 1683 

text-hypothesis pairs, which were randomly di-

vided between two judges. In order to measure 

agreement, we had 200 of the pairs annotated by 

both judges, yielding a moderate agreement (a 

Kappa of 0.6). 

                                                           
4 The following WordNet relations were used: Synonyms, see 

also, similar to, hypernyms/hyponyms, meronyms/holonyms, 

pertainyms, attribute, entailment, cause and domain 
5 The dataset is available at:  

http://ir-srv.cs.biu.ac.il:64080/emsee05_dataset.zip 
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5.2 Results 

 base entscore tep 

precision 0.464 0.568 0.647 

cws 0.396 0.509 0.575 

Table 2: Results 

Table 2 includes the results of macro averaging the 

precision at top-20 and the average confidence 

weighted score (cws) achieved for the 50 hypothe-

ses. Applying Wilcoxon Signed-Rank Test, our 

model performs significantly better (at the 0.01 

level) than entscore and base for both precision and 

cws. Analyzing the results showed that many of 

the mistakes were not due to wrong expansion but 

rather to a lack of a deeper analysis of the text and 

hypothesis (e.g. example 3 in Table 2). Indeed this 

is a common problem with lexical models. Incor-

porating additional linguistic levels into the prob-

abilistic entailment model, such as syntactic 

matching, co-reference resolution and word sense 

disambiguation, becomes a challenging target for 

future research. 

6 Conclusions 

This paper proposes a generative probabilistic set-

ting that formalizes the notion of probabilistic tex-

tual entailment, which is based on the conditional 

probability that a hypothesis is true given the text. 

This probabilistic setting provided the necessary 

grounding for a concrete probabilistic model of 

lexical entailment that is based on document co-

occurrence statistics in a bag of words representa-

tion.  Although the illustrated lexical system is 

relatively simple, as it doesn’t rely on syntactic or 

other deeper analysis, it nevertheless achieved en-

couraging results. The results suggest that such a 

probabilistic framework is a promising basis for 

improved implementations incorporating deeper 

types of knowledge and a common test-bed for 

more sophisticated models.   
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Abstract 

We describe our efforts to generate a 
large (100,000 instance) corpus of textual 
entailment pairs from the lead paragraph 
and headline of news articles.  We manu-
ally inspected a small set of news stories 
in order to locate the most productive 
source of entailments, then built an anno-
tation interface for rapid manual evalua-
tion of further exemplars. With this 
training data we built an SVM-based 
document classifier, which we used for 
corpus refinement purposes—we believe 
that roughly three-quarters of the resulting 
corpus are genuine entailment pairs.  We 
also discuss the difficulties inherent in 
manual entailment judgment, and suggest 
ways to ameliorate some of these. 

1 Introduction 

MITRE has a long-standing interest in robust text 
understanding, and, like many, we believe that 
adequate progress in such an endeavor requires a 
well-designed evaluation methodology.  We have 
explored in great depth the use of human reading 
comprehension exams for this purpose (Hirschman  
et al., 1999, Wellner et al., 2005) as well as TREC-
style question answering (Burger, 2004). 

In this context, the recent Pascal RTE evaluation 
(Recognizing Textual Entailment, Dagan et al., 
2005) captured our interest.  The goal of RTE is to 
assess systems’ abilities at judging semantic en-
tailment with respect to a pair of sentences, e.g.: 

• Fred spilled wine on the carpet. 
• The rug was wet. 
In RTE parlance, the antecedent sentence is 

known as the text, while the consequent sentence is 
known as the hypothesis.  Simply put, the chal-
lenge for an RTE system is to judge whether the 
text entails the hypothesis.  Judgments are Boo-
lean, and the primary evaluation metric is simple 
accuracy, although there were other, secondary 
metrics used in the evaluation. 

The RTE organizers provided 567 exemplar sen-
tence pairs.  This is adequate for system develop-
ment, but not for the application of large-scale 
statistical models.  In particular, we wished to cast 
the problem as one of statistical alignment as used 
in machine translation.  MT systems typically use 
millions of sentence pairs, and so we decided to 
find or generate a much larger corpus.  This paper 
describes our efforts along these lines, as well as 
some observations about the problems of annotat-
ing entailment data.  In Section 2 we describe our 
initial search for an entailment corpus.  Section 3 
briefly describes an annotation interface we de-
vised, as well as our efforts to refine our corpus.  
Section 4 explains many of the issues and prob-
lems inherent in manual annotation of entailment 
data. 

2 Finding Entailment Data 

In our study of the Pascal RTE development cor-
pus, we found that a considerable majority of the 
TRUE pairs exhibit a stronger relationship than 
entailment; namely, the hypothesis is a paraphrase 
of a subset of the text.  For instance, given the text 
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John murdered Bill yesterday, the hypothesis Bill 
is dead is an entailment, while the hypothesis Bill 
was killed by John exhibits the stronger partial 
paraphrase relationship to the text.  We found that 
94% (131/140) of the TRUE pairs in the Pascal 
RTE dev2 corpus were these sorts of paraphrases. 

In our search for an entailment corpus, we ob-
served that the headline of a news article is often a 
partial paraphrase of the lead paragraph, much like 
the RTE data, or is sometimes a genuine entail-
ment.  We thus deduced that headlines and their 
corresponding lead paragraphs might provide a 
readily available source of training data.  As an 
initial test of this hypothesis, we manually in-
spected over 200 news stories from 11 different 
sources.  We found a great deal of variety in head-
line formats, and ultimately found the Xinhua 
News Agency English Service articles from the 
Gigaword corpus (Graff, 2003) to be the richest 
source, though somewhat limited in subject do-
main.  We describe here our data collection and 
analysis process. 

Because our goal was to automatically generate 
an extremely large corpus of exemplars, we fo-
cused on large data sources.  We first examined 
111 news stories culled from MiTAP (Damianos et 
al., 2003), which collects over one million articles 
per month from approximately 75 different 
sources.  By first counting the number of articles 
typically collected for each source, we selected a 
mixture of sources that each had more than 10,000 
articles for our sample period of one and half 
months.  As discussed further below, part way 
through our investigation it became clear that we 
needed to include more native English sources, so 
the Christian Science Monitor articles were added, 

though they fell below our arbitrary 10K mark. 
Figure 1 summarizes the MiTAP news sources ex-
amined. 

For each lead paragraph/headline pair, a human 
rendered a judgment of yes, no, or maybe as to 
whether the lead paragraph entailed the headline, 
where maybe meant that the headline was very 
close to being an entailment or paraphrase.  This is 
likely equivalent to the notion of “more or less se-
mantically equivalent” used in the Microsoft Re-
search Paraphrase Corpus (Dolan et al., 2005).  
The purpose of maybe in this case was that we 
thought that many of the near-miss pairs would 
make adequate training data for statistical algo-
rithms, in spite of being less than perfect. 

There were many types of news articles in the 
MiTAP data that did not yield good headline/lead 
paragraph pairs for our purposes.  Many would be 
difficult to filter out using automated heuristics.  
Two frequent examples of this were opinion-ed 
itorial pieces and daily Wall Street summaries.  
Others would be more amenable to automatic 
elimination, including obituaries and collections of 
news snippets like the Washington Post’s “World 
in Brief”.  Articles consisting of personal narra-
tives never yielded good headlines, but these could 
easily be eliminated by recognizing first person 
pronouns in the lead paragraph.  Figure 2 shows 
the judgments for all the MiTAP articles examined, 
where the Filtered row excludes these easily elimi-
nated article types. 

As Figure 2 shows, the MiTAP data did not 
yield a high percentage of good pairs.  In addition, 
whether due to poor machine translation or English 
dialectal differences, our evaluator found it diffi-
cult to understand some of the text from sources 
that were not English-primary.  A certain amount 
of ill-formed text was acceptable, since the Pascal 
RTE challenge included training and test data 
drawn from MT scenarios, but we did not wish our 
data to be too dominated by such sources.  Thus, 
we selected additional native-English articles to 
add to our sample set. 

Despite the overall poor yield from this data, it 

Source 
No. articles 
examined 

No. articles 
in 1.5 mos. 

miami-herald (US) 19 94,278 
washington-post (US) 18 13,813 
cs-monitor (US) 11 7,102 
all-africa 18 68,521 
dawn (Pakistan) 17 46,839 
gulf-daily-news 10 26,837 
national-post (Canada) 18 14,124 

Figure 1: MiTAP News Sources Examined 

 Yes No Maybe Total 
All 
Pairs 

54 (49%) 39 (35%) 18 (16%) 111 

Filtered 54 (53%) 33 (33%) 14 (14%) 101 
Figure 2: MiTAP Corpus Results 

Source Yes No Maybe Total 
APW 8 (31% ) 12 (46%) 6 (23%) 26 
AFE  14 (56%) 4 (16%) 7 (28%) 25 
NYT 8 (31%) 17 (65%) 1 (4%) 26 
XIE 22 (85%) 4 (15%)  0 (0%) 26 
Total 52 (50%) 37 (36%) 14 (14%) 103 

Figure 3: Gigaword Corpus Results 
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was apparent that some news sources tended to be 
more fruitful than others.  For example, 13 out of 
18 of the Washington Post articles yielded good 
pairs, as opposed to only 1 of the 11 Christian Sci-
ence Monitor articles. 

This generalization was likewise true in the sec-
ond corpus we examined, the Gigaword newswire 
corpus (Graff, 2003).  Gigaword contains over 4 
million documents from four news sources:  
• Agence France Press English Service (AFE) 
• Associated Press Worldstream English Service 

(APW) 
• The New York Times Newswire Service 

(NYT) 
• The Xinhua News Agency English Service 

(XIE) 
For each source, Gigaword articles are classified 
into several types, including newswire advisories, 
etc.  We restricted our investigations to actual 
news stories.  As Figure 3 shows, overall results 
were much the same as the MiTAP articles, but 
85% of the XIE articles yielded adequate pairs. 

Based on these preliminary results we decided to 
focus further manual investigations on the XIE 
articles from Gigaword.  We also decided to ex-
pend some effort on an annotation tool that would 
allow us to proceed more quickly than the early 
annotation experiments described above. 

3 Refining the Data 

MITRE has developed a series of annotation tools 
for a variety of linguistic phenomena (Day et al, 
1997; Day et al, 2004), but these are primarily de-
signed for fine-grained tasks such as named entity 
and syntactic annotation.  For our headline corpus, 
we wanted the ability to rapidly annotate at a docu-
ment level from a small set of categories.  Further, 
we wanted the interface to easily support 
distributed annotation efforts. 

The resulting annotation interface is shown in 
Figure 4.  It is web-based, and annotations and 
other document information are stored in an SQL 
database.  The document to be evaluated is dis-
played in the user’s chosen browser, with the XML 

 
Figure 4: Entailment Tagging Interface 
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document zoning tags visible so that the user can 
easily identify the headline and lead paragraph. At 
the top of the document are three buttons from 
which to select a yes/no/maybe judgment.  The 
user can also add a comment before moving to the 
next document. Typically several documents can 
be judged per minute. The client-server architec-
ture supports multiple annotations of the same 
document by different annotators—accordingly, it 
has a mode enabling reconciliation of inter-
annotator disagreements.  All further annotation 
efforts discussed below were carried out with this 
tool. 

Using the tool, we tagged approximately 900 
randomly chosen Gigaword documents, including 
520 XIE documents.  From this, we estimate that 
70% of the XIE headlines in Gigaword are entailed 
by the corresponding lead paragraph.  (This is 
lower than the rough estimate described in Section 
2, but that was based on a very small sample.)  We 
decided to explore ways to refine the data in order 
to arrive at a smaller, but less noisy subcorpus. We 
observed that different subgenres within the news-
paper corpus evinced the lead-entails-headline 
quality to different degrees.  For example, articles 
about sports or entertainment often had whimsical 
(non-entailed) headlines, while articles about poli-
tics or business more frequently had the headline 
quality we sought. 

Accordingly, we decided to treat the data re-
finement process as a text classification problem, 
one of finding the mix of genres or topics that 
would most likely possess the lead-entails-headline 
quality.  We used SVM-light (Joachims, 2002) as a 
document classifier, training it on the initial set of 
annotated articles.  (Note that these text classifica-
tion experiments made use of the entire article, not 
just the lead and headline.)  We experimented with 
a variety of feature representations and SVM pa-
rameters, but found the best performance with a 
Boolean bag-of-words representation, and a simple 
linear kernel.  Leave-one-out estimates indicate 
that SVM-light could identify documents with the 
requisite entailment quality with 77% accuracy. 

We performed one round of active learning 
(Tong & Koller, 2000), in which we used SVM-
light to classify a large subset of the unannotated 
corpus, and then selected a 100-document subset 
about which the classifier was least certain.  The 
rationale is that annotating these uncertain docu-
ments will be more informative to further learning 

runs than a randomly selected subset.  In the case 
of large-margin classifiers like SVMs, the natural 
choice is to select the instances closest to the mar-
gin.  These were then annotated, and added back to 
the training data for the next learning run.  How-
ever, leave-one-out estimates indicated that the 
classifier benefited little from these new instances. 

As described above, we estimate that the base 
rate of the headline entailment property in the XIE 
portion of Gigaword is 70%.  Our hypothesis in 
training the SVM was that we could identify a 
smaller but less noisy subset.  In order to evaluate 
this, we ran the trained SVM on all 679,000 of the 
unannotated XIE documents, and selected the 
100,000 “best” instances—that is, the documents 
most likely (according to the SVM) to evince the 
headline quality.  We selected a random subset of 
these best documents, and annotated them to 
evaluate our hypothesis.  74% of these possessed 
the lead-entails-headline property, a difference of 
4% absolute over the XIE base rate.  We used the 
lead-headline pairs  from this 100,000-best subset 
to train our MT-alignment-based system for the 
RTE evaluation (Bayer et al., 2005).  This system 
was one of the best performers in the evaluation, 
which we ascribe to our large training corpus 

Later examination showed that the 4% “im-
provement” in purity is not statistically significant.  
We intend to perform further experiments in data 
refinement, but this may prove unnecessary.  Per-
haps the base rate of the entailment phenomenon in 
the XIE documents is sufficient to train an effec-
tive alignment-based entailment system.  In this 
case, all of the XIE documents could be used, per-
haps resulting in a more robust, and even better 
performing system. 

4 Judging Headline Entailments 

In the process of generating the training data, we 
doubly-judged an additional 300 XIE documents to 
measure inter-judge reliability.  As in the pilot 
phase described above, each pair was labeled as 
yes, no, or maybe. In addition, the judges were 
given a comment field to record their reasoning 
and misgivings.  The judging was performed in 
two steps, first on a set of 100 documents and then 
on a set of 200.  One of the judges was already 
well versed in the RTE task, and had performed the 
earlier pilot investigations.  Prior to judging the 
first set, the second judge was given a brief verbal 
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overview of the task.  After the first 100 docu-
ments had been doubly-judged, the more experi-
enced judge then reviewed the differences and 
drafted a set of guidelines.  The guidelines pro-
vided a synopsis of the official RTE guidelines, 
plus a few rules unique to headlines.  For example, 
one rule specified what to do when partial entail-
ment only held if the lead were combined with lo-
cation or date information from the dateline. The 
two evaluators then judged the second set.  The 
results for both sets are shown in Figure 5. 

As these results show, the guidelines had only a 
small effect on the strict measure of agreement. 
Three problem areas existed: 

(1) Raw, messy data.  The Gigaword corpus was 
automatically collected and zoned.  Thus, the head-
lines in particular contained a number of irregulari-
ties that made it difficult to judge their 
appropriateness.  Such irregularities included trun-
cations, phrases lacking any proposition, pre-
pended alerts like URGENT:, and bylines and date 
lines miszoned into the headline. 

(2)  Disagreement on what constitutes synon-
ymy.   Our judges found they had irreconcilable 
differences about differences in meaning.  For ex-
ample, in the following pair, the judges disagreed 
about whether safe operation in the lead paragraph 
meant the same thing as, and thus entailed, oper-
ates smoothly in the headline: 
• Shanghai's Hongqiao Airport Operates Smoothly 
• As of Saturday, Shanghai's Hongqiao Airport 

has performed safe operation for some 2,600 
consecutive days, setting a record in the country. 

(3) Disagreement on the amount of world 
knowledge permitted.  Figure 5 shows that if 
maybe is counted as equivalent to yes, the agree-
ment level improves significantly.  This is likely 
because there were two important aspects of the 
RTE definition of entailment that were not im-
parted to the second judge until the written guide-
lines:  that one can assume “common human 
understanding of language and some common 
background knowledge.”  However, our judges did 

not always agree on what counts as “common,” 
which accounts for much of the high overlap be-
tween yes and maybe.  Nevertheless, our 90% 
agreement compares favorably to the 83% agree-
ment rate reported by Dolan et al. (2005) for their 
judgments on “more or less semantically equiva-
lent” pairs. Our 78% strict agreement compares 
favorably to the 80% agreement achieved by Da-
gan et al. (2005), given that our data was messier 
than the pairs crafted for the RTE challenge. 

Like Dagan et al. (2005), we did not force reso-
lution on all disagreements.  Disagreements over 
synonymy and common knowledge result in irrec-
oncilable differences, because it is neither possible 
nor desirable to use guidelines to force a shared 
understanding of an utterance.  Thus, for the first 
set of data 15 (15%) of the pairs were left unrecon-
ciled.  In the second set, 42 (21%) were left un-
reconciled.  Eleven (6%) of the irreconcilable pairs 
in the second set were due to confusion stemming 
from the telegraphic nature of headlines, which led 
to misunderstandings about how to judge truncated 
headlines (Chinese President Vows to Open New 
Chapters With) vs. headlines lacking propositions 
(subject headings like Mandela’s Speech) vs. well-
formed but terse headlines (Crackdown on Auto-
Mafia in Bulgaria).    

Despite the high number of irreconcilable pairs, 
one encouraging sign was evident from the com-
ment field.  The judges’ comments revealed that on 
pairs where they disagreed on how to label the 
pair, they often agreed on what the problem was. 

Our experience in generating a training corpus, 
particularly the number of irreconcilable cases we 
encountered, raises an important issue, namely, the 
feasibility of semantic equivalence tasks.  We sug-
gest that the optimum method for empirically 
modeling semantic equivalence is to capture the 
variation in human judgments.  Three judges 
would evaluate each pair, so that there would al-
ways be a tie breaker.  After reconciling for dis-
agreements arising from human error, each distinct 
judgment would become part of the data set.  We 
also recommend that where there is genuine dis-
agreement, the questionable portions of each pair 
be annotated in some way to capture the source of 
the problem, going one step further than the com-
ment field we found beneficial in our annotation 
interface.  The three judgments would result in a 
four way classification of pairs: 

Condition Set 1 
(100 docs) 

Set 2 
(200 docs) 

strict match 75.00% 77.50% 
maybe = yes 79.00% 90.00% 
maybe = no 84.00% 81.00% 
maybe = * 88.00% 94.00% 

Figure 5: Agreement for Two XIE Data Sets 
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TTT = TRUE 
TTF = Likely TRUE, but possibly FALSE 
TFF = Likely FALSE, but possibly TRUE 
FFF = FALSE 
System developers could choose to train on all 

the data, or limit themselves to the TTT/FFF cases.  
For evaluation purposes, the systems’ results on 
the TTF/TFF pairs could be evaluated in light of 
the human variation, providing a more realistic 
measure of the complexity of the task. 

5 Conclusion  

Given the number of natural language processing 
applications that require the ability to recognize 
semantic equivalence and entailment, there is an 
obvious need for both robust evaluation method-
ologies and adequate development and test data. 
We’ve described here our work in generating sup-
plemental training data for the recent Pascal RTE 
evaluation, with which we produced a competitive 
system.  Some news corpora provide a rich source 
of exemplars, and an automatic document classifier 
can be used to reduce the noisiness of the data.  
There are lingering difficulties in achieving high 
inter-judge agreement in determining paraphrase 
and entailment, and we believe the best way to 
cope with this is to allow the data to reflect the 
variance that exists in cross-human judgments. 
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Abstract

In this paper we define two intermediate
models of textual entailment, which corre-
spond to lexical and lexical-syntactic lev-
els of representation. We manually anno-
tated a sample from the RTE dataset ac-
cording to each model, compared the out-
come for the two models, and explored
how well they approximate the notion of
entailment. We show that the lexical-
syntactic model outperforms the lexical
model, mainly due to a much lower rate
of false-positives, but both models fail to
achieve high recall. Our analysis also
shows thatparaphrasesstand out as a
dominant contributor to the entailment
task. We suggest that our models and an-
notation methods can serve as an evalua-
tion scheme for entailment at these levels.

1 Introduction

Textual entailment has been proposed recently as
a generic framework for modeling semantic vari-
ability in many Natural Language Processing ap-
plications, such as Question Answering, Informa-
tion Extraction, Information Retrieval and Docu-
ment Summarization. The textual entailment rela-
tionship holds between two text fragments, termed
text and hypothesis, if the truth of the hypothesis can
be inferred from the text.

Identifying entailment is a complex task that in-
corporates many levels of linguistic knowledge and

inference. The complexity of modeling entail-
ment was demonstrated in the first PASCAL Chal-
lenge Workshop on Recognizing Textual Entailment
(RTE) (Dagan et al., 2005). Systems that partici-
pated in the challenge used various combinations of
NLP components in order to perform entailment in-
ferences. These components can largely be classi-
fied as operating at the lexical, syntactic and seman-
tic levels (see Table 1 in (Dagan et al., 2005)). How-
ever, only little research was done to analyze the
contribution of each inference level, and on the con-
tribution of individual inference mechanisms within
each level.

This paper suggests that decomposing the com-
plex task of entailment into subtasks, and analyz-
ing the contribution of individual NLP components
for these subtasks would make a step towards bet-
ter understanding of the problem, and for pursuing
better entailment engines. We set three goals in this
paper. First, we consider two modeling levels that
employ only part of the inference mechanisms, but
perform perfectly at each level. We explore how
well these models approximate the notion of entail-
ment, and analyze the differences between the out-
come of the different levels. Second, for each of the
presented levels, we evaluate the distribution (and
contribution) of each of the inference mechanisms
typically associated with that level. Finally, we sug-
gest that the definitions of entailment at different
levels of inference, as proposed in this paper, can
serve as guidelines for manual annotation of a “gold
standard” for evaluating systems that operate at a
particular level. Altogether, we set forth a possible
methodology for annotation and analysis of entail-
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ment datasets.
We introduce two levels of entailment:Lexical

and Lexical-Syntactic. We propose these levels as
intermediate stages towards a complete entailment
model. We define an entailment model for each
level and manually evaluate its performance over a
sample from the RTE test-set. We focus on these
two levels as they correspond to well-studied NLP
tasks, for which robust tools and resources exist,
e.g. parsers, part of speech taggers and lexicons. At
each level we included inference types that represent
common practice in the field. More advanced pro-
cessing levels which involve logical/semantic infer-
ence are less mature and were left beyond the scope
of this paper.

We found that the main difference between the
lexical and lexical-syntactic levels is that the lexical-
syntactic level corrects many false-positive infer-
ences done at the lexical level, while introducing
only a few false-positives of its own. As for iden-
tifying positive cases (recall), both systems exhibit
similar performance, and were found to be comple-
mentary. Neither of the levels was able to iden-
tify more than half of the positive cases, which
emphasizes the need for deeper levels of analysis.
Among the different inference components,para-
phrasesstand out as a dominant contributor to the
entailment task, while synonyms and derivational
transformations were found to be the most frequent
at the lexical level.

Using our definitions of entailment models as
guidelines for manual annotation resulted in a high
level of agreement between two annotators, suggest-
ing that the proposed models are well-defined.

Our study follows on previous work (Vander-
wende et al., 2005), which analyzed the RTE Chal-
lenge test-set to find the percentage of cases in
which syntactic analysis alone (with optional use
of thesaurus for the lexical level) suffices to decide
whether or not entailment holds. Our study extends
this work by considering a broader range of infer-
ence levels and inference mechanisms and providing
a more detailed view. A fundamental difference be-
tween the two works is that while Vanderwende et al.
did not make judgements on cases where additional
knowledge was required beyond syntax, our entail-
ment models were evaluated over all of the cases,
including those that require higher levels of infer-

ence. This allows us to view the entailment model at
each level as an idealizedsystemapproximating full
entailment, and to evaluate its overall success.

The rest of the paper is organized as follows: sec-
tion 2 provides definitions for the two entailment
levels; section 3 describes the annotation experiment
we performed, its results and analysis; section 4 con-
cludes and presents planned future work.

2 Definition of Entailment Levels

In this section we present definitions for two en-
tailment models that correspond to theLexical and
Lexical-Syntacticlevels. For each level we de-
scribe the available inference mechanisms. Table 1
presents several examples from the RTE test-set to-
gether with annotation of entailment at the different
levels.

2.1 The Lexical entailment level

At the lexical level we assume that the textT and
hypothesisH are represented by a bag of (possibly
multi-word) terms, ignoring function words. At this
level we define that entailment holds betweenT and
H if every termh in H can be matched by a corre-
sponding entailing termt in T . t is considered as en-
tailing h if eitherh andt share the same lemma and
part of speech, ort can be matched withh through a
sequence of lexical transformations of the types de-
scribed below.

Morphological derivations This inference mech-
anism considers two terms as equivalent if one can
be obtained from the other by some morphologi-
cal derivation. Examples include nominalizations
(e.g. ‘acquisition⇔ acquire’), pertainyms (e.g.
‘Afghanistan⇔ Afghan’), or nominal derivations
like ‘terrorist⇔ terror’.

Ontological relations This inference mechanism
refers to ontological relations between terms. A
term is inferred from another term if a chain of valid
ontological relations between the two terms exists
(Andreevskaia et al., 2005). In our experiment we
regarded the following three ontological relations
as providing entailment inferences: (1) ‘synonyms’
(e.g. ‘free⇔ release’ in example 1361, Table 1);
(2) ‘hypernym’ (e.g. ‘produce⇒ make’) and (3)
’meronym-holonym’ (e.g. ‘executive⇒ company’).
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No. Text Hypothesis Task Ent. Lex.
Ent.

Syn.
Ent.

322 Turnout for the historic vote for the first
time since the EU took in 10 new mem-
bers in May has hit a record low of
45.3%.

New members joined the
EU.

IR true false true

1361 A Filipino hostage in Iraq was released.A Filipino hostage was
freed in Iraq.

CD true true true

1584 Although a Roscommon man by birth,
born in Rooskey in 1932, Albert “The
Slasher” Reynolds will forever be a
Longford man by association.

Albert Reynolds was born
in Co. Roscommon.

QA true true true

1911 The SPD got just 21.5% of the vote
in the European Parliament elections,
while the conservative opposition par-
ties polled 44.5%.

The SPD is defeated by
the opposition parties.

IE true false false

2127 Coyote shot after biting girl in Vanier
Park.

Girl shot in park. IR false true false

Table 1: Examples of text-hypothesis pairs, taken from the PASCAL RTE test-set. Each line includes the
example number at the RTE test-set, the text and hypothesis, the task within the test-set, whether entailment
holds between the text and hypothesis (Ent.), whether Lexical entailment holds (Lex. Ent.) and whether
Lexical-Syntactic entailment holds (Syn. Ent.).

Lexical World knowledge This inference mech-
anism refers to world knowledge reflected at the
lexical level, by which the meaning of one term
can be inferred from the other. It includes both
knowledge about named entities, such as ‘Tal-
iban ⇒ organization’ and ‘Roscommon⇔ Co.
Roscommon’ (example 1584 in Table 1), and other
lexical relations between words, such as WordNet’s
relations ‘cause’ (e.g. ‘kill⇒ die’) and ‘entail’ (e.g.
‘snore⇒ sleep’).

2.2 The Lexical-syntactic entailment level

At the lexical-syntactic level we assume that the
text and the hypothesis are represented by the set of
syntactic dependency relations of their dependency
parse. At this level we ignore determiners and aux-
iliary verbs, but do include relations involving other
function words. We define that entailment holds be-
tweenT and H if the relations withinH can be
“covered” by the relations inT . In the trivial case,
lexical-syntactic entailment holds if all the relations
composingH appear verbatim inT (while addi-

tional relations withinT are allowed). Otherwise,
such coverage can be obtained by a sequence of
transformations applied to the relations inT , which
should yield all the relations inH.

One type of such transformations are the lexical
transformations, which replace corresponding lexi-
cal items, as described in sub-section 2.1. When ap-
plying morphological derivations it is assumed that
the syntactic structure is appropriately adjusted. For
example, “Mexico produces oil” can be mapped to
“oil production by Mexico” (the NOMLEX resource
(Macleod et al., 1998) provides a good example for
systematic specification of such transformations).

Additional types of transformations at this level
are specified below.

Syntactic transformations This inference mech-
anism refers to transformations between syntactic
structures that involve the same lexical elements and
preserve the meaning of the relationships between
them (as analyzed in (Vanderwende et al., 2005)).
Typical transformations include passive-active and
apposition (e.g. ‘An Wang, a native of Shanghai⇔
An Wang is a native of Shanghai’).
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Entailment paraphrases This inference mecha-
nism refers to transformations that modify the syn-
tactic structure of a text fragment as well as some
of its lexical elements, while holding an entailment
relationship between the original text and the trans-
formed one. Such transformations are typically de-
noted as ‘paraphrases’ in the literature, where a
wealth of methods for their automatic acquisition
were proposed (Lin and Pantel, 2001; Shinyama et
al., 2002; Barzilay and Lee, 2003; Szpektor et al.,
2004). Following the same spirit, we focus here on
transformations that are local in nature, which, ac-
cording to the literature, may be amenable for large
scale acquisition. Examples include: ‘X is Y man
by birth→ X was born in Y’ (example 1584 in Ta-
ble 1), ‘X take in Y⇔ Y join X’ 1 and ‘X is holy
book of Y⇒ Y follow X’ 2.

Co-reference Co-references provide equivalence
relations between different terms in the text and
thus induce transformations that replace one term
in a text with any of its co-referenced terms. For
example, the sentence “Italy and Germany have
each played twice, and they haven’t beaten anybody
yet.”3 entails “Neither Italy nor Germany have
won yet”, involving the co-reference transformation
‘they⇒ Italy and Germany’.

Example 1584 in Table 1 demonstrates the
need to combine different inference mechanisms
to achieve lexical-syntactic entailment, requiring
world-knowledge, paraphrases and syntactic trans-
formations.

3 Empirical Analysis

In this section we present the experiment that we
conducted in order to analyze the two entailment
levels, which are presented in section 2, in terms of
relative performance and correlation with the notion
of textual entailment.

3.1 Data and annotation procedure

The RTE test-set4 contains 800 Text-Hypothesis
pairs (usually single sentences), which are typical

1Example no 322 in the PASCAL RTE test-set.
2Example no 1575 in the PASCAL RTE test-set.
3Example no 298 in the PASCAL RTE test-set.
4The complete RTE dataset can be obtained at

http://www.pascal-network.org/Challenges/RTE/Datasets/

to various NLP applications. Each pair is annotated
with a boolean value, indicating whether the hypoth-
esis is entailed by the text or not, and the test-set
is balanced in terms of positive and negative cases.
We shall henceforth refer to this annotation as the
gold standard. We constructed a sample of 240 pairs
from four different tasks in the test-set, which corre-
spond to the main applications that may benefit from
entailment: information extraction (IE), information
retrieval (IR), question answering (QA), and compa-
rable documents (CD). We randomly picked 60 pairs
from each task, and in total 118 of the cases were
positive and 122 were negative.

In our experiment, two of the authors annotated,
for each of the two levels, whether or not entailment
can be established in each of the 240 pairs. The an-
notators agreed on 89.6% of the cases at the lexical
level, and 88.8% of the cases at the lexical-syntactic
level, with Kappa statistics of 0.78 and 0.73, re-
spectively, corresponding to ‘substantial agreement’
(Landis and Koch, 1977). This relatively high level
of agreement suggests that the notion of lexical and
lexical-syntactic entailment we propose are indeed
well-defined.

Finally, in order to establish statistics from the an-
notations, the annotators discussed all the examples
they disagreed on and produced a final joint deci-
sion.

3.2 Evaluating the different levels of entailment

L LS
True positive (118) 52 59
False positive (122) 36 10

Recall 44% 50%
Precision 59% 86%
F1 0.5 0.63
Accuracy 58% 71%

Table 2: Results per level of entailment.

Table 2 summarizes the results obtained from our
annotated dataset for both lexical (L) and lexical-
syntactic (LS) levels. Taking a “system”-oriented
perspective, the annotations at each level can be
viewed as the classifications made by an idealized
system that includes a perfect implementation of the
inference mechanisms in that level. The first two
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rows show for each level how the cases, which were
recognized as positive by this level (i.e. the entail-
ment holds), are distributed between “true positive”
(i.e. positive according to the gold standard) and
“false positive” (negative according to the gold stan-
dard). The total number of positive and negative
pairs in the dataset is reported in parentheses. The
rest of the table details recall, precision,F1 and ac-
curacy.

The distribution of the examples in the RTE test-
set cannot be considered representative of a real-
world distribution (especially because of the con-
trolled balance between positive and negative exam-
ples). Thus, our statistics are not appropriate for
accurate prediction of application performance. In-
stead, we analyze how well these simplified models
of entailment succeed in approximating “real” en-
tailment, and how they compare with each other.

The proportion between true and false positive
cases at the lexical level indicates that the correla-
tion between lexical match and entailment is quite
low, reflected in the low precision achieved by this
level (only 59%). This result can be partly attributed
to the idiosyncracies of the RTE test-set: as reported
in (Dagan et al., 2005), samples with high lexical
match were found to be biased towards the negative
side. Interestingly, our measured accuracy correlates
well with the performance of systems at the PAS-
CAL RTE Workshop, where the highest reported ac-
curacy of a lexical system is 0.586 (Dagan et al.,
2005).

As one can expect, adding syntax considerably re-
duces the number of false positives - from 36 to only
10. Surprisingly, at the same time the number of true
positive cases grows from 52 to 59, and correspond-
ingly, precision rise to 86%. Interestingly, neither
the lexical nor the lexical-syntactic level are able to
cover more than half of the positive cases (e.g. ex-
ample 1911 in Table 1).

In order to better understand the differences be-
tween the two levels, we next analyze the overlap
between them, presented in Table 3. Looking at
Table 3(a), which contains only the positive cases,
we see that many examples were recognized only by
one of the levels. This interesting phenomenon can
be explained on the one hand by lexical matches that
could not be validated in the syntactic level, and on
the other hand by the use of paraphrases, which are

Lexical-Syntactic
H⇒ T H ; T

Lexical
H⇒ T 38 14
H ; T 21 45

(a) positive examples

Lexical-Syntactic
H⇒ T H ; T

Lexical
H⇒ T 7 29
H ; T 3 83

(b) negative examples

Table 3: Correlation between the entailment lev-
els. (a) includes only the positive examples from
the RTE dataset sample, and (b) includes only the
negative examples.

introduced only in the lexical-syntactic level. (e.g.
example 322 in Table 1).

This relatively symmetric situation changes as we
move to the negative cases, as shown in Table 3(b).
By adding syntactic constraints, the lexical-syntactic
level was able to fix 29 false positive errors, misclas-
sified at the lexical level (as demonstrated in exam-
ple 2127, Table 1), while introducing only 3 new
false-positive errors. This exemplifies the impor-
tance of syntactic matching for precision.

3.3 The contribution of various inference
mechanisms

Inference Mechanism f 4R %

Synonym 19 14.4% 16.1%
Morphological 16 10.1% 13.5%
Lexical World knowledge 12 8.4% 10.1%
Hypernym 7 4.2% 5.9%
Mernoym 1 0.8% 0.8%

Entailment Paraphrases 37 26.2% 31.3%
Syntactic transformations 22 16.9% 18.6%
Coreference 10 5.0% 8.4%

Table 4: The frequency (f ), contribution to recall
(4R) and percentage (%), within the gold standard
positive examples, of the various inference mecha-
nisms at each level, ordered by their significance.
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In order to get a sense of the contribution of the
various components at each level, statistics on the in-
ference mechanisms that contributed to the coverage
of the hypothesis by the text (either full or partial)
were recorded by one annotator. Only the positive
cases in the gold standard were considered.

For each inference mechanism we measured its
frequency, its contribution to the recall of the related
level and the percentage of cases in which it is re-
quired for establishing entailment. The latter also
takes into account cases where only partial cover-
age could be achieved, and thus indicates the signif-
icance of each inference mechanism for any entail-
ment system, regardless of the models presented in
this paper. The results are summarized in Table 4.

From Table 4 it stands that paraphrases are the
most notable contributors to recall. This result in-
dicates the importance of paraphrases to the en-
tailment task and the need for large-scale para-
phrase collections. Syntactic transformations are
also shown to contribute considerably, indicating the
need for collections of syntactic transformations as
well. In that perspective, we propose our annota-
tion framework as means for evaluating collections
of paraphrases or syntactic transformations in terms
of recall.

Finally, we note that the co-reference moderate
contribution can be partly attributed to the idiosyn-
cracies of the RTE test-set: the annotators were
guided to replace anaphors with the appropriate ref-
erence, as reported in (Dagan et al., 2005).

4 Conclusions

In this paper we presented the definition of two en-
tailment models, Lexical and Lexical-Syntactic, and
analyzed their performance manually. Our experi-
ment shows that the lexical-syntactic level outper-
forms the lexical level in all measured aspects. Fur-
thermore, paraphrases and syntactic transformations
emerged as the main contributors to recall. These
results suggest that a lexical-syntactic framework
is a promising step towards a complete entailment
model.

Beyond these empirical findings we suggest that
the presented methodology can be used generically
to annotate and analyze entailment datasets.

In future work, it would be interesting to analyze

higher levels of entailment, such as logical inference
and deep semantic understanding of the text.
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