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Introduction

This volume contains the papers accepted for presentation at the ACL-SIGLEX 2005 Workshop on
Deep Lexical Acquisition, held at the University of Michigan, Ann Arbor, USA, on the 30th of June,
2005.

This workshop is supported by SIGLEX, the Special Interest Group on the Lexicon of the Association
for Computational Linguistics (http://www.clres.com/siglex.html ). Its goal is to bring
together researchers interested in different facets of the automatic acquisition of deep lexical
information, e.g. in the areas of computational grammars, computational lexicography, machine
translation, information retrieval, question-answering, and text mining.

Deep lexical resources include lexicons for linguistically-precise grammars, template sets for
information extraction systems, and ontologies for word sense disambiguation. Such resources
are critical for enhancing the performance of systems and for improving their portability between
domains. Most deep lexical resources in current use have been developed manually by lexicographers
at considerable cost, and yet have limited coverage and require labour-intensive porting to new
tasks. Automatic lexical acquisition is a more promising and cost-effective approach to take, and
is increasingly viable given recent advances in NLP and machine learning technology, and corpus
availability. However, a number of important challenges still need addressing before benefits can
be reaped in practical language engineering, such as the (multilingual) acquisition of deep lexical
information from corpora and the implementation of accurate, large-scale, portable acquisition
techniques.

In the call for papers we solicited papers describing aspects of deep lexical acquisition including:

• Automatic acquisition of deep lexical information: subcategorization, diathesis alternations,
selectional preferences, lexical/semantic classes, qualia structure, lexical ontologies, semantic
roles, word senses, etc.

• Methods for supervised, unsupervised and weakly supervised deep lexical acquisition: machine
learning, statistical, example- or rule-based, hybrid etc.

• Large-scale, cross-domain, domain-specific and portable deep lexical acquisition

• Extending and refining existing lexical resources with automatically acquired information

• Evaluation of deep lexical acquisition

• Application of deep lexical acquisition to NLP applications (e.g. machine translation, information
extraction, language generation, question-answering)

• Multilingual deep lexical acquisition

Of the 22 papers submitted, the programme committee selected 11 papers for publication, representative
of the state of the art in this subject today. Each full-length submission was independently reviewed
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by three members of the program committee, who then collectively faced the difficult task of selecting
a subset of papers for publication from a very strong field. The accepted papers include proposals for
automatic annotation and extension of deep lexical resources, and methods for automatically acquiring
deep lexical information. Languages targeted in the papers include English, Chinese, Japanese and
Catalan.

We would like to thank all the authors who submitted papers, as well as the members of the program
committee for the time and effort they contributed in reviewing the papers, and Chris Brew for
complementing the workshop expertly with his invited talk. Our thanks go also to the organisers of the
main conference, the publication chairs (Jason Eisner and Philipp Köhn) and the conference workshop
committee (Mark Dras, Mary Harper, Dan Klein, Mirella Lapata and Shuly Wintner).

Timothy Baldwin, Anna Korhonen, Aline Villavicencio
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Abstract 

This paper reports on a study of semantic 
role tagging in Chinese in the absence of a 
parser.  We tackle the task by identifying 
the relevant headwords in a sentence as a 
first step to partially locate the corre-
sponding constituents to be labelled.  We 
also explore the effect of data homogene-
ity by experimenting with a textbook cor-
pus and a news corpus, representing 
simple data and complex data respectively.  
Results suggest that while the headword 
location method remains to be improved, 
the homogeneity between the training and 
testing data is important especially in 
view of the characteristic syntax-
semantics interface in Chinese.  We also 
plan to explore some class-based tech-
niques for the task with reference to exist-
ing semantic lexicons, and to modify the 
method and augment the feature set with 
more linguistic input. 

1 Introduction 

As the development of language resources pro-
gresses from POS-tagged corpora to syntactically 
annotated treebanks, the inclusion of semantic in-
formation such as predicate-argument relations 
becomes indispensable.  The expansion of the Penn 
Treebank into a Proposition Bank (Kingsbury and 
Palmer, 2002) is a typical move in this direction.  
Lexical resources also need to be enhanced with 
semantic information (e.g. Fellbaum et al., 2001).  
The ability to identify semantic role relations cor-

rectly is essential to many applications such as in-
formation extraction and machine translation; and 
making available resources with this kind of in-
formation would in turn facilitate the development 
of such applications. 

Large-scale production of annotated resources 
is often labour intensive, and thus calls for auto-
matic labelling to streamline the process.  The task 
is essentially done in two phases, namely recognis-
ing the constituents bearing some semantic rela-
tionship to the target verb in a sentence, and then 
labelling them with the corresponding semantic 
roles. 

In their seminal proposal, Gildea and Jurafsky 
(2002) approached the task using various features 
such as headword, phrase type, and parse tree path.  
While such features have remained the basic and 
essential features in subsequent research, parsed 
sentences are nevertheless required, for extracting 
the path features during training and providing the 
argument boundaries during testing.  The parse 
information is deemed important for the perform-
ance of role labelling (Gildea and Palmer, 2002; 
Gildea and Hockenmaier, 2003). 

More precisely, parse information is rather 
more critical for the identification of boundaries of 
candidate constituents than for the extraction of 
training data.  Its limited function in training, for 
instance, is reflected in the low coverage reported 
(e.g. You and Chen, 2004).  As full parses are not 
always accessible, many thus resort to shallow syn-
tactic information from simple chunking, even 
though results often turn out to be less satisfactory 
than with full parses. 

This limitation is even more pertinent for the 
application of semantic role labelling to languages 
which do not have sophisticated parsing resources.  
In the case of Chinese, for example, there is con-
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siderable variability in its syntax-semantics inter-
face; and when one comes to more nested and 
complex sentences such as those from news arti-
cles, it becomes more difficult to capture the sen-
tence structures by typical examples. 

Thus in the current study, we approach the 
problem in Chinese in the absence of parse infor-
mation, and attempt to identify the headwords in 
the relevant constituents in a sentence to be tagged 
as a first step.  In addition, we will explore the ef-
fect of training on different datasets, simple or 
complex, to shed light on the relative importance 
of parse information for indicating constituent 
boundaries in semantic role labelling. 

In Section 2, related work will be reviewed.  In 
Section 3, the data used in the current study will be 
introduced.  Our proposed method will be ex-
plained in Section 4, and the experiment reported 
in Section 5.  Results and future work will be dis-
cussed in Section 6, followed by conclusions in 
Section 7. 

 

2 Related Work 

The definition of semantic roles falls on a contin-
uum from abstract ones to very specific ones.  
Gildea and Jurafsky (2002), for instance, used a set 
of roles defined according to the FrameNet model 
(Baker et al., 1998), thus corresponding to the 
frame elements in individual frames under a par-
ticular domain to which a given verb belongs.  
Lexical entries (in fact not limited to verbs, in the 
case of FrameNet) falling under the same frame 
will share the same set of roles.  Gildea and Palmer 
(2002) defined roles with respect to individual 
predicates in the PropBank, without explicit nam-
ing.  To date PropBank and FrameNet are the two 
main resources in English for training semantic 
role labelling systems, as in the CoNLL-2004 
shared task (Carreras and Màrquez, 2004) and 
SENSEVAL-3 (Litkowski, 2004). 

The theoretical treatment of semantic roles is 
also varied in Chinese.  In practice, for example, 
the semantic roles in the Sinica Treebank mark not 
only verbal arguments but also modifier-head rela-
tions (You and Chen, 2004).  In our present study, 
we go for a set of more abstract semantic roles 
similar to the thematic roles for English used in 
VerbNet (Kipper et al., 2002).  These roles are 
generalisable to most Chinese verbs and are not 

dependent on particular predicates.  They will be 
further introduced in Section 3. 

Approaches in automatic semantic role label-
ling are mostly statistical, typically making use of 
a number of features extracted from parsed training 
sentences.  In Gildea and Jurafsky (2002), the fea-
tures studied include phrase type (pt), governing 
category (gov), parse tree path (path), position of 
constituent with respect to the target predicate (po-
sition), voice (voice), and headword (h).  The la-
belling of a constituent then depends on its 
likelihood to fill each possible role r given the fea-
tures and the target predicate t, as in the following, 
for example: 

 
),,,,,|( tvoicepositiongovpthrP    

 
Subsequent studies exploited a variety of im-

plementation of the learning component.  Trans-
formation-based approaches were also used (e.g. 
see Carreras and Màrquez (2004) for an overview 
of systems participating in the CoNLL shared task).  
Swier and Stevenson (2004) innovated with an un-
supervised approach to the problem, using a boot-
strapping algorithm, and achieved 87% accuracy. 

While the estimation of the probabilities could 
be relatively straightforward, the trick often lies in 
locating the candidate constituents to be labelled.  
A parser of some kind is needed.  Gildea and 
Palmer (2002) compared the effects of full parsing 
and shallow chunking; and found that when con-
stituent boundaries are known, both automatic 
parses and gold standard parses resulted in about 
80% accuracy for subsequent automatic role tag-
ging, but when boundaries are unknown, results 
with automatic parses dropped to 57% precision 
and 50% recall.  With chunking only, performance 
further degraded to below 30%.  Problems mostly 
arise from arguments which correspond to more 
than one chunk, and the misplacement of core ar-
guments.  Sun and Jurafsky (2004) also reported a 
drop in F-score with automatic syntactic parses 
compared to perfect parses for role labelling in 
Chinese, despite the comparatively good results of 
their parser (i.e. the Collins parser ported to Chi-
nese).  The necessity of parse information is also 
reflected from recent evaluation exercises.  For 
instance, most systems in SENSEVAL-3 used a 
parser to obtain full syntactic parses for the sen-
tences, whereas systems participating in the 
CoNLL task were restricted to use only shallow 
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syntactic information.  Results reported in the for-
mer tend to be higher.  Although the dataset may 
be a factor affecting the labelling performance, it 
nevertheless reinforces the usefulness of full syn-
tactic information. 

According to Carreras and Màrquez (2004), for 
English, the state-of-the-art results reach an F1 
measure of slightly over 83 using gold standard 
parse trees and about 77 with real parsing results.  
Those based on shallow syntactic information is 
about 60. 

In this work, we study the problem in Chinese, 
treating it as a headword identification and label-
ling task in the absence of parse information, and 
examine how the nature of the dataset could affect 
the role tagging performance. 

3 The Data 

3.1 Materials 

In this study, we used two datasets: sentences from 
primary school textbooks were taken as examples 
for simple data, while sentences from a large cor-
pus of newspaper texts were taken as complex ex-
amples. 

Two sets of primary school Chinese textbooks 
popularly used in Hong Kong were taken for refer-
ence.  The two publishers were Keys Press and 
Modern Education Research Society Ltd.  Texts 
for Primary One to Six were digitised, segmented 
into words, and annotated with parts-of-speech 
(POS).  This results in a text collection of about 
165K character tokens and upon segmentation 
about 109K word tokens (about 15K word types).  
There were about 2,500 transitive verb types, with 
frequency ranging from 1 to 926. 

The complex examples were taken from a sub-
set of the LIVAC synchronous corpus1 (Tsou et al., 
2000; Kwong and Tsou, 2003).   The subcorpus 
consists of newspaper texts from Hong Kong, in-
cluding local news, international news, financial 
news, sports news, and entertainment news, col-
lected in 1997-98.  The texts were segmented into 
words and POS-tagged, resulting in about 1.8M 
character tokens and upon segmentation about 1M 
word tokens (about 47K word types).  There were 
about 7,400 transitive verb types, with frequency 
ranging from 1 to just over 6,300. 

                                                           

                                                          

1 http://www.livac.org 

3.2 Training and Testing Data 

For the current study, a set of 41 transitive verbs 
common to the two corpora (hereafter referred to 
as textbook corpus and news corpus), with fre-
quency over 10 and over 50 respectively, was 
sampled.   

Sentences in the corpora containing the sam-
pled verbs were extracted.  Constituents corre-
sponding to semantic roles with respect to the 
target verbs were annotated by a trained human 
annotator and the annotation was verified by an-
other.  In this study, we worked with a set of 11 
predicate-independent abstract semantic roles.  
According to the Dictionary of Verbs in Contem-
porary Chinese (Xiandai Hanyu Dongci Dacidian, 
現代漢語動詞大詞典 – Lin et al., 1994), our se-
mantic roles include the necessary arguments for 
most verbs such as agent and patient, or goal and 
location in some cases; and some optional argu-
ments realised by adjuncts, such as quantity, in-
strument, and source.  Some examples of semantic 
roles with respect to a given predicate are shown in 
Figure 1. 

Altogether 980 sentences covering 41 verb 
types in the textbook corpus were annotated, re-
sulting in 1,974 marked semantic roles (constitu-
ents); and 2,122 sentences covering 41 verb types 
in the news corpus were annotated, resulting in 
4,933 marked constituents2. 

The role labelling system was trained on 90% 
of the sample sentences from the textbook corpus 
and the news corpus separately; and tested on the 
remaining 10% of both corpora.   

4 Automatic Role Labelling 

The automatic labelling was based on the statistical 
approach in Gildea and Jurafsky (2002).  In Sec-
tion 4.1, we will briefly mention the features used 
in the training process.  Then in Sections 4.2 and 
4.3, we will explain our approach for locating 
headwords in candidate constituents associated 
with semantic roles, in the absence of parse infor-
mation. 

 
2 These figures only refer to the samples used in the current 
study.  In fact over 35,000 sentences in the LIVAC corpus 
have been semantically annotated, covering about 1,500 verb 
types and about 80,000 constituents were marked. 
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4.1 Training 

In this study, our probability model was based 
mostly on parse-independent features extracted 
from the training sentences, namely: 
 
Headword (head): The headword from each con-
stituent marked with a semantic role was identified.  
For example, in the second sentence in Figure 1, 
學校 (school) is the headword in the constituent 
corresponding to the agent of the verb 舉行 (hold), 
and 比賽 (contest) is the headword of the noun 
phrase corresponding to the patient. 
 
Position (posit): This feature shows whether the 
constituent being labelled appears before or after 
the target verb.  In the first example in Figure 1, 
the experiencer and time appear on the left of the 
target, while the theme is on its right. 
 
POS of headword (HPos): Without features pro-
vided by the parse, such as phrase type or parse 

tree path, the POS of the headword of the labelled 
constituent could provide limited syntactic infor-
mation. 
 
Preposition (prep): Certain semantic roles like 
time and location are often realised by preposi-
tional phrases, so the preposition introducing the 
relevant constituents would be an informative fea-
ture. 
 

Hence for automatic labelling, given the target 
verb t, the candidate constituent, and the above 
features, the role r which has the highest probabil-
ity for P(r | head, posit, HPos, prep, t) will be as-
signed to that constituent.  In this study, however, 
we are also testing with the unknown boundary 
condition where candidate constituents are not 
available in advance.  To start with, we attempt to 
partially locate them by identifying their head-
words first, as explained in the following sections.  

 
 

 
Figure 1  Examples of semantic roles with respect to a given predicate 

 
 

4.2 Locating Candidate Headwords 

In the absence of parse information, and with con-
stituent boundaries unknown, we attempt to par-
tially locate the candidate constituents by 
identifying their corresponding headwords first.  

Sentences in our test data were segmented into 
words and POS-tagged.  We thus divide the recog-
nition process into two steps, locating the head-
word of a candidate constituent first, and then 
expanding from the headword to determine its 
boundaries. 

Student 

下 星期 學校 舉行 講 故事 比賽 

Next week school hold tell story contest 

Time Agent Target Patient 

Example: (Next week, the school will hold a story-telling contest.) 

同學 們 作文 常常 感到 沒 可 

(-pl) write essay always feel (neg) anything 

Experiencer Target Theme 

Example: (Students always feel there is nothing to write about for their essays.) 

時   ，

time 

什麼 寫 

can 

Time 

write 
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Basically, if we consider every word in the 
same sentence with the target verb (both to its left 
and to its right) a potential headword for a candi-
date constituent, what we need to do is to find out 
the most probable words in the sentence to match 
against individual semantic roles.  We start with a 
feature set with more specific distributions, and 
back off to feature sets with less specific distribu-
tions3.  Hence in each round we look for 

 

)|(maxarg setfeaturerP
r

 

 
for every candidate word.  Ties are resolved by 
giving priority to the word nearest to the target 
verb in the sentence. 

Figure 2 shows an example illustrating the pro-
cedures for locating candidate headwords.  The 
target verb is 發現 (discover).  In the first round, 
using features head, posit, HPos, and t, 時候 (time) 
and 問題 (problem) were identified as Time and 
Patient respectively.  In the fourth subsequent 
round, backing off with features posit and HPos, 
我們 (we) was identified as a possible Agent.  In 
this round a few other words were identified as 
potential Patients.  However, they would not be 
considered since Patient was already located in a 
previous round.  So in the end the headwords iden-
tified for the test sentence are 我們 for Agent, 問
題 for Patient and 時候 for Time. 

4.3 Constituent Boundary 

Upon the identification of headwords for potential 
constituents, the next step is to expand from these 
headwords for constituent boundaries.  Although 
we are not doing this step in the current study, it 
can potentially be done via some finite state tech-
niques, or better still, with shallow syntactic proc-
essing like simple chunking if available. 

                                                           
3 In this experiment, we back off in the following order: 
P(r|head, posit, HPos, prep t), P(r|head, posit, t), P(r | head, t), 
P(r | HPos, posit, t), P(r | HPos, t).  However, the prep feature 
becomes obsolete when constituent boundaries are unknown. 

5 The Experiment 

5.1 Testing 

The system was trained on the textbook corpus and 
the news corpus separately, and tested on both cor-
pora (the data is homogeneous if the system is 
trained and tested on materials from the same 
source).  The testing was done under the “known 
constituent” condition and “unknown constituent” 
condition.  The former essentially corresponds to 
the known-boundary condition in related studies; 
whereas in the unknown-constituent condition, 
which we will call “headword location” condition 
hereafter, we tested our method of locating candi-
date headwords as explained above in Section 4.2.  
In this study, every noun, verb, adjective, pronoun, 
classifier, and number within the test sentence con-
taining the target verb was considered a potential 
headword for a candidate constituent correspond-
ing to some semantic role.  The performance was 
measured in terms of the precision (defined as the 
percentage of correct outputs among all outputs), 
recall (defined as the percentage of correct outputs 
among expected outputs), and F1 score which is the 
harmonic mean of precision and recall. 

5.2 Results 

The results are shown in Tables 1 and 2, for train-
ing on homogeneous dataset and different dataset 
respectively, and testing under the known constitu-
ent condition and the headword location condition. 

When trained on homogeneous data, the results 
were good on both datasets under the known con-
stituent condition, with an F1 score of about 90.  
This is comparable or even better to the results re-
ported in related studies for known boundary con-
dition.  The difference is that we did not use any 
parse information in the training, not even phrase 
type.  When trained on a different dataset, however, 
the accuracy was maintained for textbook data, but 
it decreased for news data, for the known constitu-
ent condition. 

For the headword location condition, the per-
formance in general was expectedly inferior to that 
for the known constituent condition.  Moreover, 
this degradation seemed to be quite consistent in 
most cases, regardless of the nature of the training 
set.  In fact, despite the effect of training set on 
news data, as mentioned above, the degradation 
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Sentence: 
溫習的時候，我們發現了許多平時沒有想到，或是未能解決的問題，於是就去問爸爸

During revision, we discover a lot o
。 

f problems which we have not thought of or cannot be 
solved, then we go and ask father. 

Candidate  Round 1       … Round 4    Final Result 
eadwords 

n) 

H
 
溫習 (revisio    Patient
時候 (time)  Time            ----       Time 
我們 (we)    Agent       Agent 

k)    Patient
平時 (normally) 
想到 (thin
能 (can) 
解決 (solve)    Patient
問題 (problem)  Patient    ----       Patient 
去 (go)     Patient
問 (ask)     Patient

from known constituent to headword location is 
nevertheless the least fo

爸爸 (father)    Patient

r news data when trained 
on 

remature at this stage, given the considerable dif-

 

 
 

Figure 2  Example illustrating the procedures for locating candidate headwords 
  

 
Tex ata News a 

different materials.   
Hence the effect of training data is only obvious 

in the news corpus.  In other words, both sets of 
training data work similarly well with textbook test 
data, but the performance on news test data is 
worse when trained on textbook data.  This is un-
derstandable as the textbook data contain fewer 
examples and the sentence structures are usually 
much simpler than those in newspapers.  Hence the 
system tends to miss many secondary roles like 
location and time, which are not sufficiently repre-
sented in the textbook corpus.  The conclusion that 
training on news data gives better result might be 

ference in the corpus size of the two datasets.  
Nevertheless, the deterioration of results on text-
book sentences, even when trained on news data, is 
simply reinforcing the importance of data homoge-
neity, if nothing else.  More on data homogeneity 
will be discussed in the next section. 

p

In addition, the surprisingly low precision under 
the headword location condition is attributable to a 
technical inadequacy in the way we break ties.  In 
this study we only make an effort to eliminate mul-
tiple tagging of the same role to the same target 
verb in a sentence on either side of the target verb, 
but not if they appear on both sides of the target 
verb.  This should certainly be dealt with in future 
experiments. 

 

 

 
 

 tbook D Dat
 P  Precisionrecision Recall F1 Recall F1

Known Constituent 93.85 87.50 90.56 90.49 87.70 89.07 
Headword Location 46.12 61.98 52.89 38.52 52.25 44.35 

 
Table 1  Results for Training on Homogeneous Datasets 
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Tex ata News a  tbook D Dat

 P  Precisionrecision Recall F1 Recall F1

Known Constituent 91.85 88.02 89.86 80.30 66.80 72.93 
Headword Location 38.87 57.29 46.32 37.89 42.01 39.84 

 
Table 2  Results for Training on Different Datasets 
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6.1 Role of Parse Information 

According to Carreras and Màrquez (2004), the 
state-of-the-art results for semantic role labelling 
systems based on shallow syntactic information is 
about 15 lower than those with access to gold stan-
dard parse trees, i.e., around 60.  With homogene-
ous training and testing data, our experimental 
results for the headword location condition, with 
no syntactic information available at all, give an F1 
score of 52.89 and 44.35 respectively for textbook 
data and news data.  Such results are in line with 
and comparable to those reported for the unknown 
boundary condition with automatic parses in 
Gildea and Palmer (2002), for instance.  Moreover, 
when they used simple chunks instead of full 
parses, the performance resulted in a drop to below 
50% precision and 35% recall with relaxed scoring,

ce their conclusion on the necessity of a parser. 
The more degradation in performance observed 

in the news data is nevertheless within expectation, 
and it suggests that simple and complex data seem 
to have varied dependence on parse information.  
We will further dis
data homogeneity. 

6.2 Data Homogeneity 

The usefulness of parse information for semantic 
role labelling is especially interesting in the case of 
Chinese, given the flexibility in its syntax-
semantics interface (e.g. the object after 吃 ‘eat’ 
could refer to the patient as in 吃蘋果 ‘eat apple’, 
location as in 吃食堂 ‘eat cantee

年 ‘eat three years’, etc.).   
  As reflected from the results, the nature of 

training data is obviously more important for the 
news data than the textbook data; and the main 
reason might be the failure of the simple training 

data to capture the many complex structures of the 
news sentences, as we suggested earlier.  The rela-
tive flexibility in the syntax-semantics interface of 
Chinese is particularly salient; hence when a sen-
tence gets more complicated, there might be more 
intervening constituents an

uld be useful to help identify the relevant ones 
in semantic role labelling. 

With respect to the data used in the experiment, 
we tried to explore the complexity in terms of the 
average sentence length and number of semantic 
role patterns exhibited.  For the news data, the av-
erage sentence length is around 59.7 characters 
(syllables), and the number of semantic role pat-
terns varies from 4 (e.g. 打算 ‘to plan’) to as many 
as 25 (e.g. 進行 ‘to proceed with some action’), 
with an average of 9.5 patterns per verb.  On the 
other hand, the textbook data give an average sen-
tence length of around 39.7 characters, and the 
number of semantic role patterns only varies from 
1 (e.g. 決定 ‘to decide’) to 11 (e.g. 舉行 ‘to hold 
some event’), with an average of 5.1 patterns per 
verb.  Interestingly, the 

ymorphous in news texts, only shows 5 differ-
ent patterns in textbooks. 

Thus the nature of the dataset for semantic role 
labelling is worth further investigation.  T
of the method and t
from ore linguistic a

6.3 Future Work 

In terms of future development, apart from improv-
ing the handling of ties in our method, as men-
tioned above, we plan to expand our work in 
several respects.  The major part would be on the 
generalization to unseen headwords and unseen 
predicates.  As is with other related studies, the 
examples available for training for each target verb 
are very limited; and the availability of training 
data is also insufficient in the sense that we cannot 
expect them to cover all target verb types.  Hence 
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it is very important to be able to generalize the 
process to unseen words and predicates.  To this 
end we will experiment with a semantic lexicon 
like Tongyici Cilin (同義詞詞林, a Chinese the-
sau

re of 
Chinese, we intend to improve our method and 

re linguistic consideration. 

 

 

 semantic lexicons, 
and to modify the method and augment the feature 
set with more linguistic input. 

This work is supported by Competitive Earmarked 
Research Grants (CERG) of the Research Grants 
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Gi D. and Palmer, M. (2002)  The Necessity of 

Gi kenmaier, J. (2003)  Identifying Se-

Kw
r Part-of-speech 

Tagging. In Proceedings of the Research Note Ses-
sion of the 10th Conference of the European Chapter 

rus) in both training and testing, which we ex-
pect to improve the overall performance. 

Another area of interest is to look at the behav-
iour of near-synonymous predicates in the tagging 
process.  Many predicates may be unseen in the 
training data, but while the probability estimation 
could be generalized from near-synonyms as sug-
gested by a semantic lexicon, whether the similar-
ity and subtle differences between near-synonyms 
with respect to the argument structure and the cor-
responding syntactic realisation could be distin-
guished would also be worth studying.  Related to 
this is the possibility of augmenting the feature set.  
Xue and Palmer (2004), for instance, looked into 
new features such as syntactic frame, lexicalized 
constituent type, etc., and found that enriching the 
feature set improved the labelling performance.  In 
particular, given the importance of data homogene-
ity as observed from the experimental results, and 
the challenges posed by the characteristic natu

feature set with mo

7 Conclusion 

The study reported in this paper has thus tackled 
semantic role labelling in Chinese in the absence of 
parse information, by attempting to locate the cor-
responding headwords first.  We experimented 
with both simple and complex data, and have ex-
plored the effect of training on different datasets. 
Using only parse-independent features, our results 
under the known boundary condition are compara-
ble to those reported in related studies.  The head-
word location method can be further improved. 
More importantly, we have observed the impor-
tance of data homogeneity, which is especially sa-
lient given the relative flexibility of Chinese in its 
syntax-semantics interface.  As a next step, we 
plan to explore some class-based techniques for the 
task with reference to existing
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Abstract

Recently, many researches in natural lan-
guage learning have considered the repre-
sentation of complex linguistic phenom-
ena by means of structural kernels. In
particular, tree kernels have been used to
represent verbal subcategorization frame
(SCF) information for predicate argument
classification. As the SCF is a relevant
clue to learn the relation between syn-
tax and semantic, the classification algo-
rithm accuracy was remarkable enhanced.
In this article, we extend such work by
studying the impact of the SCF tree kernel
on both PropBank and FrameNet seman-
tic roles. The experiments with Support
Vector Machines (SVMs) confirm a strong
link between the SCF and the semantics of
the verbal predicates as well as the bene-
fit of using kernels in diverse and complex
test conditions, e.g. classification of un-
seen verbs.

1 Introduction

Some theories of verb meaning are based on syn-
tactic properties, e.g. the alternations of verb argu-
ments (Levin, 1993). In turn, Verb Subcategoriza-
tion Frame (SCF) characterizes different syntactic
alternations, thus, it plays a central role in the link-
ing theory between verb semantics and their syntac-
tic structures.

Figure 1 shows the parse tree for the sentence
"John rented a room in Boston" along
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a   room 

PP 

IN N 
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Arg. 1 

Figure 1:A predicate argument structure in a parse-tree rep-

resentation.

with the semantic shallow information embodied by
the verbal predicateto rentand its three arguments:
Arg0, Arg1 and ArgM. The SCF of such verb, i.e.
NP-PP, provides a synthesis of the predicate argu-
ment structure.

Currently, the systems which aim to derive se-
mantic shallow information from texts recognize the
SCF of a target verb and represent it as a flat feature
(e.g. (Xue and Palmer, 2004; Pradhan et al., 2004))
in the learning algorithm. To achieve this goal, a lex-
icon which describes the SCFs for each verb, is re-
quired. Such a resource is difficult to find especially
for specific domains, thus, several methods to auto-
matically extract SCF have been proposed (Korho-
nen, 2003). In (Moschitti, 2004), an alternative to
the SCF extraction was proposed, i.e. the SCF ker-
nel (SK). The subcategorization frame of verbs was
implicitly represented by means of the syntactic sub-
trees which include the predicate with its arguments.
The similarity between such syntactic structures was
evaluated by means of convolution kernels.

Convolution kernels are machine learning ap-
proaches which aim to describe structured data in
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terms of its substructures. The similarity between
two structures is carried out by kernel functions
which determine the number of common substruc-
tures without evaluating the overall substructure
space. Thus, if we associate two SCFs with two
subtrees, we can measure their similarity with such
functions applied to the two trees. This approach
determines a more syntactically motivated verb par-
tition than the traditional method based on flat SCF
representations (e.g. theNP-PP of Figure 1). The
subtrees associated with SCF group the verbs which
have similar syntactic realizations, in turn, accord-
ing to Levin’s theories, this would suggest that they
are semantically related.

A preliminary study on the benefit of such ker-
nels was measured on the classification accuracy of
semantic arguments in (Moschitti, 2004). In such
work, the improvement on the PropBank arguments
(Kingsbury and Palmer, 2002) classification sug-
gests thatSK adds information to the prediction
of semantic structures. On the contrary, the perfor-
mance decrease on the FrameNet data classification
shows the limit of such approach, i.e. when the syn-
tactic structures are shared among several semantic
rolesSK seems to be useless.

In this article, we use Support Vector Machines
(SVMs) to deeply analyze the role ofSK in the au-
tomatic predicate argument classification. The ma-
jor novelty of the article relates to the extensive ex-
perimentation carried out on the PropBank (Kings-
bury and Palmer, 2002) and FrameNet (Fillmore,
1982) corpora with diverse levels of task complex-
ity, e.g. test instances of unseen predicates (typi-
cal of free-text processing). The results show that:
(1) once a structural representation of a linguistic
object, e.g. SCF, is available we can use convolu-
tion kernels to study its connections with another
linguistic phenomenon, e.g. the semantic predicate
arguments. (2) The tree kernels automatically derive
the features (structures) which support also a sort of
back-off estimation in case of unseen verbs. (3) The
structural features are in general robust in all testing
conditions.

The remainder of this article is organized as fol-
lows: Section 2 defines the Predicate Argument Ex-
traction problem and the standard solution to solve
it. In Section 3 we present our kernels whereas
in Section 4 we show comparative results among

SVMs using standard features and the proposed ker-
nels. Finally, Section 5 summarizes the conclusions.

2 Parsing of Semantic Roles and Semantic
Arguments

There are two main resources that relate to predicate
argument structures: PropBank (PB) and FrameNet
(FN). PB is a 300,000 word corpus annotated with
predicative information on top of the Penn Treebank
2 Wall Street Journal texts. For any given pred-
icate, the expected arguments are labeled sequen-
tially from Arg 0 to Arg 9, ArgA and ArgM. The
Figure 1 shows an example of the PB predicate an-
notation. Predicates in PB are only embodied by
verbs whereas most of the times Arg 0 is thesubject,
Arg 1 is thedirect objectand ArgM may indicatelo-
cations, as in our example.

FrameNet also describes predicate/argument
structures but for this purpose it uses richer se-
mantic structures called frames. These latter are
schematic representations of situations involving
various participants, properties and roles, in which
a word may be typically used. Frame elements or
semantic roles are arguments of target words that
can be verbs or nouns or adjectives. In FrameNet,
the argument names are local to the target frames.
For example, assuming thatattachis the target word
andAttachingis the target frame, a typical sentence
annotation is the following.

[Agent They ] attach Tgt [Item themselves ]
[Connector with their mouthparts ] and then

release a digestive enzyme secretion which

eats into the skin .

Several machine learning approaches for argu-
ment identification and classification have been de-
veloped, e.g. (Gildea and Jurasfky, 2002; Gildea and
Palmer, ; Gildea and Hockenmaier, 2003; Pradhan et
al., 2004). Their common characteristic is the adop-
tion of feature spaces that model predicate-argument
structures in a flat feature representation. In the next
section we present the common parse tree-based ap-
proach to this problem.

2.1 Predicate Argument Extraction

Given a sentence in natural language, all the predi-
cates associated with the verbs have to be identified
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along with their arguments. This problem can be
divided into two subtasks: (a) the detection of the
target argument boundaries, i.e. all its compound-
ing words, and (b) the classification of the argument
type, e.g.Arg0 or ArgM in PropBank orAgentand
Goal in FrameNet.

The standard approach to learn both the detection
and the classification of predicate arguments is sum-
marized by the following steps:

1. Given a sentence from thetraining-set, gener-
ate a full syntactic parse-tree;

2. let P andA be the set of predicates and the
set of parse-tree nodes (i.e. the potential argu-
ments), respectively;

3. for each pair<p, a> ∈ P ×A:

• extract the feature representation set,Fp,a;

• if the subtree rooted ina covers exactly
the words of one argument ofp, put Fp,a

in T+ (positive examples), otherwise put
it in T− (negative examples).

For instance, in Figure 1, for each combination of
the predicaterent with the nodesN, S, VP, V, NP,
PP, D or IN the instancesFrent,a are generated. In
case the nodea exactly covers ”Paul”, ”a room” or
”in Boston”, it will be a positive instance otherwise
it will be a negative one, e.g.Frent,IN .

TheT+ andT− sets can be re-organized as posi-
tiveT+

argi
and negativeT−argi

examples for each argu-
menti. In this way, an individual ONE-vs-ALL clas-
sifier for each argumenti can be trained. We adopted
this solution as it is simple and effective (Pradhan et
al., 2004). In the classification phase, given a sen-
tence of thetest-set, all its Fp,a are generated and
classified by each individual classifierCi. As a final
decision, we select the argument associated with the
maximum value among the scores provided by the
individual classifiers.

2.2 Standard feature space

The discovery of relevant features is, as usual, a
complex task, nevertheless, there is a common con-
sensus on the basic features that should be adopted.
These standard features, firstly proposed in (Gildea
and Jurasfky, 2002), refer to a flat information de-
rived from parse trees, i.e.Phrase Type, Predicate

Word, Head Word, Governing Category, Position
andVoice. For example, thePhrase Typeindicates
the syntactic type of the phrase labeled as a predi-
cate argument, e.g. NP forArg1 in Figure 1. The
Parse Tree Pathcontains the path in the parse tree
between the predicate and the argument phrase, ex-
pressed as a sequence of non-terminal labels linked
by direction (up or down) symbols, e.g.V ↑ VP ↓
NPfor Arg1 in Figure 1. ThePredicate Wordis the
surface form of the verbal predicate, e.g.rent for all
arguments.

In the next section we describe the SVM approach
and the basic kernel theory for the predicate argu-
ment classification.

2.3 Learning with Support Vector Machines

Given a vector space in<n and a set of positive and
negative points, SVMs classify vectors according to
a separating hyperplane,H(~x) = ~w × ~x + b = 0,
where ~w ∈ <n andb ∈ < are learned by applying
theStructural Risk Minimization principle(Vapnik,
1995).

To apply the SVM algorithm to Predicate Argu-
ment Classification, we need a functionφ : F → <n

to map our features spaceF = {f1, .., f|F|} and our
predicate/argument pair representation,Fp,a = Fz,
into<n, such that:

Fz → φ(Fz) = (φ1(Fz), .., φn(Fz))

From the kernel theory we have that:

H(~x) =
( ∑

i=1..l

αi~xi

)
· ~x + b =

∑

i=1..l

αi~xi · ~x + b =
∑

i=1..l

αiφ(Fi) · φ(Fz) + b.

where,Fi ∀i ∈ {1, .., l} are the training instances
and the productKT (Fi, Fz) =<φ(Fi) · φ(Fz)> is
the kernel function associated with the mappingφ.

The simplest mapping that we can apply is
φ(Fz) = ~z = (z1, ..., zn) wherezi = 1 if fi ∈ Fz

andzi = 0 otherwise, i.e. the characteristic vector
of the setFz with respect toF . If we choose the
scalar product as a kernel function we obtain the lin-
ear kernelKL(Fx, Fz) = ~x · ~z.

Another function that has shown high ac-
curacy for the predicate argument classification
(Pradhan et al., 2004) is the polynomial kernel:
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Figure 3:All 10 valid fragments of the SCFS associated with

the arguments ofFtook of Figure 2.

KPoly(Fx, Fz) = (c + ~x · ~z)d, wherec is a constant
andd is the degree of the polynom.

The interesting property is that we do not need to
evaluate theφ function to compute the above vector;
only theK(~x, ~z) values are required. This allows
us to define efficient classifiers in a huge (possible
infinite) feature set, provided that the kernel is pro-
cessed in an efficient way. In the next section, we
introduce the convolution kernel that we used to rep-
resent subcategorization structures.

3 Subcategorization Frame Kernel (SK)

The convolution kernel that we have experimented
was devised in (Moschitti, 2004) and is character-
ized by two aspects: the semantic space of the sub-
categorization structures and the kernel function that
measure their similarities.

3.1 Subcategorization Frame Structure (SCFS)

We consider the predicate argument structures an-
notated in PropBank or FrameNet as our semantic
space. As we assume that semantic structures are
correlated to syntactic structures, we used a ker-
nel that selects semantic information according to
the syntactic structure of a predicate. The subparse
tree which describes the subcategorization frame of

the target verbal predicate defines the target Sub-
categorization Frame Structure (SCFS). For exam-
ple, Figure 2 shows the parse tree of the sentence
"John took the book and read its title" to-
gether with two SCFS structures,Ftook and Fread

associated with the two predicatestookandread, re-
spectively. Note that SCFS includes also the external
argument (i.e. the subject) although some linguistic
theories do not consider it being part of the SCFs.

Once the semantic representation is defined, we
need to design a tree kernel function to estimate the
similarity between our objects.

3.2 The tree kernel function

The main idea of tree kernels is to model a
K(T1, T2) function which computes the number of
the common substructures between two treesT1 and
T2. For example, Figure 3 shows all the fragments
of the argument structureFtook (see Figure 2) which
will be matched against the fragment of another
SCFS.

Given the set of fragments{f1, f2, ..} = F ex-
tracted from all SCFSs of the training set, we define
the indicator functionIi(n) which is equal 1 if the
targetfi is rooted at noden and 0 otherwise. It fol-
lows that:

K(T1, T2) =
∑

n1∈NT1

∑

n2∈NT2

∆(n1, n2) (1)

where NT1 and NT2 are the sets of theT1’s
and T2’s nodes, respectively and∆(n1, n2) =∑|F|

i=1 Ii(n1)Ii(n2). This latter is equal to the num-
ber of common fragments rooted in then1 andn2

nodes. We can compute∆ as follows:

1. if the productions atn1 and n2 are different
then∆(n1, n2) = 0;

2. if the productions atn1 andn2 are the same,
andn1 andn2 have only leaf children (i.e. they
are pre-terminals symbols) then∆(n1, n2) =
1;

3. if the productions atn1 andn2 are the same,
andn1 andn2 are not pre-terminals then

∆(n1, n2) =
nc(n1)∏

j=1

(1 + ∆(cj
n1

, cj
n2

)) (2)

whereσ ∈ {0, 1}, nc(n1) is the number of the chil-
dren ofn1 and cj

n is the j-th child of the noden.
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Note that, as the productions are the samenc(n1) =
nc(n2).

The above kernel has the drawback of assigning
higher weights to larger structures1. To overcome
this problem we can scale the relative importance of
the tree fragments using a parameterλ in the con-
ditions 2 and 3 as follows:∆(nx, nz) = λ and

∆(nx, nz) = λ
∏nc(nx)

j=1 (σ + ∆(cj
n1

, cj
n2

)).
The set of fragments that belongs to SCFs are

derived by human annotators according to seman-
tic considerations, thus they generate a semantic
subcategorization frame kernel (SK). We also
note that SK estimates the similarity between
two SCFSs by counting the number of fragments
that are in common. For example, in Figure 2,
KT (φ(Ftook), φ(Fread)) is quite high (i.e. 6 out 10
substructures) as the two verbs have the same syn-
tactic realization.

In other words the fragments encode semantic in-
formation which is measured bySK. This provides
the argument classifiers with important clues about
the possible set of arguments suited for a target ver-
bal predicate. To support this hypothesis the next
section presents the experiments on the predicate ar-
gument type of FrameNet and ProbBank.

4 The Experiments

A clustering algorithm which usesSK would group
together verbs that show a similar syntactic struc-
ture. To study the properties of such clusters we ex-
perimentedSK in combination with the traditional
kernel used for the predicate argument classification.
As the polynomial kernel with degree3 was shown
to be the most accurate for the argument classifica-
tion (Pradhan et al., 2004; Moschitti, 2004) we use
it to build two kernel combinations:

• Poly + SK: KPoly

|KPoly| + γ KT
|KT | , i.e. the sum be-

tween the normalized polynomial kernel (see
Section 2.3) and the normalizedSK2.

• Poly × SK: KPoly×KT

|KPoly |×|KT | , i.e. the normal-
ized product between the polynomial kernel

1With a similar aim and to have a similarity score between 0
and 1, we also apply the normalization in the kernel space, i.e.
K′(T1, T2) = K(T1,T2)√

K(T1,T1)×K(T2,T2)
.

2To normalize a kernelK(~x, ~z) we can divide it by√
K(~x, ~x)×K(~z, ~z).

andSK.

For the experiments we adopted two corpora
PropBank (PB) and FrameNet (FN). PB, avail-
able at www.cis.upenn.edu/ ∼ace , is used along
with the Penn TreeBank 2 (www.cis.upenn.edu

/ ∼treebank ) (Marcus et al., 1993). This corpus
contains about 53,700 sentences and a fixed split be-
tween training and testing which has been used in
other researches, e.g. (Pradhan et al., 2004; Gildea
and Palmer, ). In this split, Sections from 02 to 21
are used for training, section 23 for testing and sec-
tions 1 and 22 as development set. We considered all
12 arguments fromArg0toArg9, ArgAandArgM for
a total of 123,918 and 7,426 arguments in the train-
ing and test sets, respectively. It is worth noting that
in the experiments we used the gold standard parsing
from the Penn TreeBank, thus our kernel structures
are derived with high precision.

The second corpus was obtained by extract-
ing from FrameNet (www.icsi.berkeley.edu/

∼framenet/ ) all 24,558 sentences from 40 frames
of the Senseval 3 (http://www.senseval.org ) Au-
tomatic Labeling of Semantic Role task. We con-
sidered 18 of the most frequent roles for a total of
37,948 arguments3. Only verbs are selected to be
predicates in our evaluations. Moreover, as there is
no fixed split between training and testing, we ran-
domly selected 30% of the sentences for testing and
30% for validation-set, respectively. Both training
and testing sentences were processed using Collins’
parser (Collins, 1997) to generate parse-tree auto-
matically. This means that our shallow semantic
parser for FrameNet is fully automated.

4.1 The Classification set-up

The evaluations were carried out with the SVM-
light-TK software (Moschitti, 2004) available at
http://ai-nlp.info.uniroma2.it/moschitti/

which encodes the tree kernels in the SVM-light
software (Joachims, 1999).

The classification performance was measured us-
ing the F1 measure4 for the individual arguments
and the accuracy for the final multi-class classifier.
This latter choice allows us to compare the results

3We mapped together roles having the same name
4F1 assigns equal importance to PrecisionP and RecallR,

i.e. F1 = 2P×R
P+R

.
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with previous literature works, e.g. (Gildea and
Jurasfky, 2002; Pradhan et al., 2004; Gildea and
Palmer, ).

For the evaluation of SVMs, we used the default
regularization parameter (e.g.,C = 1 for normal-
ized kernels) and we tried a few cost-factor values
(i.e., j ∈ {1, 2, 3, 5, 7, 10, 100}) to adjust the rate
between Precision and Recall. We chose the pa-
rameters by evaluating the SVMs using theKPoly

kernel (degree = 3) over thevalidation-set. Both λ
(see Section 3.2) andγ parameters were evaluated
in a similar way by maximizing the performance of
SVM usingPoly+SK. We found that the best values
were 0.4 and 0.3, respectively.

4.2 Comparative results

To study the impact of the subcategorization frame
kernel we experimented the three modelsPoly,
Poly + SK andPoly × SK on different training
conditions.

First, we run the above models using all the verbal
predicates available in the training and test sets. Ta-
bles 1 and 2 report theF1 measure and the global
accuracy for PB and FN, respectively. Column 2
shows the accuracy ofPoly (90.5%) which is sub-
stantially equal to the accuracy obtained in (Prad-
han et al., 2004) on the same training and test sets
with the same SVM model. Columns 3 and 4
show that the kernel combinationsPoly + SK and
Poly × SK remarkably improvePoly accuracy,
i.e. 2.7% (93.2% vs. 90.5%) whereas on FN only
Poly + SK produces a small accuracy increase, i.e.
0.7% (86.2% vs. 85.5%).

This outcome is lower since the FN classification
requires dealing with a higher variability of its se-
mantic roles. For example, in ProbBank most of the
time, the PBArg0 andArg1 corresponds to thelog-
ical subjectand logical direct object, respectively.
On the contrary, the FNCauseandAgentroles are
often both associated with thelogical subjectand
share similar syntactic realizations, making SCFS
less effective to distinguish between them. More-
over, the training data available for FrameNet is
smaller than that used for PropBank, thus, the tree
kernel may not have enough examples to generalize,
correctly.

Second, we carried out other experiments using
a subset of the total verbs for training and another

Args All Verbs Disjoint Verbs
Poly +SK ×SK Poly +SK ×SK

Arg0 90.8 94.6 94.7 86.8 90.9 91.1
Arg1 91.1 92.9 94.1 81.7 86.8 88.3
Arg2 80.0 77.4 82.0 49.9 49.5 47.6
Arg3 57.9 56.2 56.4 20.3 22.9 20.6
Arg4 70.5 69.6 71.1 0 0 0
ArgM 95.4 96.1 96.3 90.3 93.4 93.7
Acc. 90.5 92.4 93.2 82.1 86.3 86.9

Table 1:Kernel accuracies on PropBank.

Role All Verbs Disjoint Verbs
Poly +SK ×SK Poly +SK ×SK

agent 91.7 94.4 94.0 82.5 84.8 84.7
cause 57.4 60.6 56.4 29.1 28.1 26.9
degree 77.1 77.2 60.9 40.6 44.6 22.6
depict. 85.8 86.2 85.9 73.6 74.0 71.2
instrum. 67.1 69.1 64.6 13.3 13.0 12.8
manner 80.5 79.7 77.7 74.8 74.3 72.3
Acc. 85.5 86.2 85.0 72.8 74.6 74.2

Table 2:Kernel accuracies on 18 FrameNet semantic roles.

disjoint subset for testing. In these conditions, the
impact ofSK is amplified: on PB,SK ×Poly out-
performsPolyby 4.8% (86.9% vs. 82.1%), whereas,
on FN,SK increasesPoly of about 2%, i.e. 74.6%
vs. 72.8%. These results suggest that (a) when test-
set verbs are not observed during training, the clas-
sification task is harder, e.g. 82.1% vs. 90.5% on
PB and (b) the syntactic structures of the verbs, i.e.
the SCFSs, allow the SVMs to better generalize on
unseen verbs.

To verify that the kernel representation is supe-
rior to the traditional representation we carried out
an experiment using a flat feature representation of
the SCFs, i.e. we used the syntactic frame feature
described (Xue and Palmer, 2004) in place ofSK.
The result as well as other literature findings, e.g.
(Pradhan et al., 2004) show an improvement on PB
of about 0.7% only. Evidently flat features cannot
derive the same information of a convolution kernel.

Finally, to study how the verb complexity impacts
on the usefulness ofSK, we carried out additional
experiments with different verb sets. One dimension
of complexity is the frequency of the verbs in the
target corpus. Infrequent verbs are associated with
predicate argument structures poorly represented in
the training set thus they are more difficult to clas-
sify. Another dimension of the verb complexity is
the number of different SCFs that they show in dif-
ferent contexts. Intuitively, the higher is the number
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Figure 4:The impact of SCF on the classification accuracy of the semantic arguments and semantic roles according to the verb
complexity.

of verb’s SCF types the more difficult is the classifi-
cation of its arguments.

Figure 4.a, reports the accuracy along with the
trend line plot ofPoly andSK + Poly according
to subsets of different verb frequency. For example,
the label 1-5 refers to the class of verbal predicates
whose frequency ranges from 1 to 5. The associated
accuracy is evaluated on the portions of the training
and test-sets which contain only the verbs in such
class. We note thatSK improvesPoly for any verb
frequency. Such improvement decreases when the
frequency becomes very high, i.e. when there are
many training instances that can suggest the correct
classification. A similar behavior is shown in Figure
4.b where theF1 measure for Arg0 of PB is reported.

Figures 4.c and 4.d illustrate the accuracy and the
F1 measure for all arguments and Arg0 of PB ac-
cording to the number of SCF types, respectively.
We observe that the Semantic Kernel does not pro-
duce any improvement on the verbs which are syn-
tactically expressed by only one type of SCF. As the
number of SCF types increases (> 1) Poly + SK
outperformsPoly for any verb class, i.e. when the

verb isenoughcomplexSK always produces use-
ful information independently of the number of the
training set instances. On the one hand, a high num-
ber of verb instances reduces the complexity of the
classification task. On the other hand, as the num-
ber of verb type increases the complexity of the task
increases as well.

A similar behavior can be noted on the FN data
(Figure 4.e) even if the not so strict correlation be-
tween syntax and semantics preventsSK to produce
high improvements. Figure 4.f shows the impact of
SK on theAgentrole. We note that, theF1 increases
more than the global accuracy (Figure 4.e) as the
Agentmost of the time corresponds to Arg0. This is
confirmed by the Table 2 which shows an improve-
ment for theAgentof up to 2% whenSK is used
along with the polynomial kernel.

5 Conclusive Remarks

In this article, we used Support Vector Machines
(SVMs) to deeply analyze the role of the subcat-
egorization frame kernel (SK) in the automatic
predicate argument classification of PropBank and

16



FrameNet corpora. To study theSK ’s verb clas-
sification properties we have combined it with the
polynomial kernel on standard flat features.

We run the SVMs on diverse levels of task com-
plexity. The results show that: (1) in generalSK
remarkably improves the classification accuracy. (2)
When there are no training instances of the test-
set verbs the improvement ofSK is almost double.
This suggests that tree kernels automatically derive
features which support also a sort of back-off esti-
mation in case of unseen verbs. (3) In all complexity
conditions the structural features are in general very
robust, maintaining a high improvement over the ba-
sic accuracy. (4) The semantic role classification in
FrameNet is affected with more noisy data as it is
based on the output of a statistical parser. As a con-
sequence the improvement is lower. Anyway, the
systematic superiority ofSK suggests that it is less
sensible to parsing errors than other models. This
opens promising direction for a more weakly super-
vised application of the statistical semantic tagging
supported bySK.

In summary, the extensive experimentation has
shown that theSK provides information robust with
respect to the complexity of the task, i.e. verbs with
richer syntactic structures and sparse training data.

An important observation on the use of tree ker-
nels has been pointed out in (Cumby and Roth,
2003). Both computational efficiency and classifi-
cation accuracy can often be superior if we select
the most informative tree fragments and carry out
the learning in the feature space. Nevertheless, the
case studied in this paper is well suited for using ker-
nels as: (1) it is difficult to guess which fragment
from an SCF should be retained and which should
be discarded, (2) it may be the case that all frag-
ments are useful as SCFs are small structures and all
theirs substructures may serve as different back-off
levels and (3) small structures do not heavily penal-
ize efficiency.

Future research may be addressed to (a) the use
of SK kernel to explicitly generate verb clusters and
(b) the use of convolution kernels to study other lin-
guistic phenomena: we can use tree kernels to in-
vestigate which syntactic features are suited for an
unknown phenomenon.
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Abstract 

We developed a novel classification of 
concept attributes and two supervised 
classifiers using this classification to iden-
tify concept attributes from candidate at-
tributes extracted from the Web. Our 
binary (attribute / non-attribute) classifier 
achieves an accuracy of 81.82% whereas 
our 5-way classifier achieves 80.35%. 

1 Introduction 

The assumption that concept attributes and, more 
in general, features1 are an important aspect of 
conceptual representation is widespread in all dis-
ciplines involved with conceptual representations, 
from Artificial Intelligence / Knowledge Represen-
tation (starting with at least (Woods, 1975) and 
down to (Baader et al, 2003)), Linguistics (e.g., in 
the theories of the lexicon based on typed feature 
structures and/or Pustejovsky’s Generative Lexi-
con theory: (Pustejovsky 1995)) and Psychology 
(Murphy 2002, Vinson et al 2003).  This being the 
case, it is surprising how little attention has been 
devoted to this aspect of lexical representation in 
work on large-scale lexical semantics in Computa-
tional Linguistics. The most extensive resource at 

                                                           
1 The term attribute is used informally here to indicate the 
type of relational information about concepts that is expressed 
using so-called roles in Description Logics (Baader et al, 
2003)—i.e., excluding IS-A style information (that cars are 
vehicles, for instance).  It is meant to be a more restrictive 
term than the term feature, often used to indicate any property 
of concepts, particularly in Psychology. We are carrying out a 
systematic analysis of the sets of features used in work such as 
(Vinson et al, 2003) (see Discussion).  

our disposal, WordNet (Fellbaum, 1998) contains 
very little information that would be considered as 
being about ‘attributes’—only information about  
parts, not about qualities such as height, or even to 
the values of such attributes in the adjective net-
work—and this information is still very sparse. On 
the other hand, the only work on the extraction of 
lexical semantic relations we are aware of has con-
centrated on the type of relations found in Word-
Net: hyponymy (Hearst, 1998; Caraballo, 1999) 
and meronymy (Berland and Charniak, 1999; Poe-
sio et al, 2002).2 

The work discussed here could be perhaps best 
described as an example of empirical ontology: 
using linguistics and philosophical ideas to im-
prove the results of empirical work on lexical / on-
tology acquisition, and vice versa, using findings 
from empirical analysis to question some of the 
assumptions of theoretical work on ontology and 
the lexicon. Specifically, we discuss work on the 
acquisition of (nominal) concept attributes whose 
goal is twofold: on the one hand, to clarify the no-
tion of ‘attribute’ and its role in lexical semantics, 
if any; on the other, to develop methods to acquire 
such information automatically (e.g., to supple-
ment WordNet).  

The structure of the paper is as follows. After a 
short review of relevant literature on extracting 
semantic relations and on attributes in the lexicon, 
we discuss our classification of attributes, followed 
by the features we used to classify them. We then 
discuss our training methods and the results we 
achieved.  

                                                           
2 In work on the acquisition of lexical information about verbs 
there has been some work on the acquisition of thematic roles, 
(e.g., Merlo and Stevenson, 2001). 
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2 Background 
2.1 Using Patterns to Extract Semantic Rela-

tions 

The work discussed here belongs to a line of re-
search attempting to acquire information about 
lexical and other semantic relations other than 
similarity / synonymy by identifying syntactic 
constructions that are often (but not always!) used 
to express such relations. The earliest work of this 
type we are aware of is the work by Hearst (1998) 
on acquiring information about hyponymy (= IS-A 
links) by searching for instances of patterns such as  

NP {, NP}* or other NP 
(as in, e.g., bruises …. broken bones and other 
INJURIES).   A similar approach was used by Ber-
land and Charniak (1999) and Poesio et al (2002) 
to extract information about part-of relations using 
patterns such as 

the N of the N is …. 
(as in the wheel of the CAR is) and by Girju and 
Moldovan (2002) and Sanchez-Graillet and Poesio 
(2004) to extract causal relations. In previous work 
(Almuhareb and Poesio, 2004) we used this same 
approach to extract attributes, using the pattern  

“the * of the C [is|was]” 

(suggested by, e.g., (Woods, 1975) as a test for 
‘attributehood’) to search for attributes of concept 
C in the Web, using the Google API. Although the 
information extracted this way proved a useful ad-
dition to our lexical representations from a cluster-
ing perspective, from the point of view of lexicon 
building this approach results in too many false 
positives, as very few syntactic constructions are 
used to express exclusively one type of semantic 
relation. For example, the ‘attributes’ of deer ex-
tracted using the text pattern above include “the 
majority of the deer,” “the lake of the deer,” and 
“the picture of the deer.” Girju and Moldovan 
(2002) addressed the problem of false positives for 
causal relations by developing WordNet-based fil-
ters to remove unlikely candidates. In this work, 
we developed a semantic filter for attributes based 
on a linguistic theory of attributes which does not 
rely on WordNet except as a source of morpho-
logical information (see below). 

2.2 Two Theories of Attributes 

The earliest attempt to classify attributes and other 
properties of substances we are aware of goes back 

to Aristotle, e.g., in Categories,3 but our classifica-
tion of attributes was inspired primarily by the 
work of Pustejovsky (1995) and Guarino (e.g., 
(1992)). According to Pustejovsky’s Generative 
Lexicon theory (1995), an integral part of a lexical 
entry is its Qualia Structure, which consists of 
four ‘roles’:4 the Formal Role, specifying what 
type of object it is: e.g., in the case of a book, that 
it has a shape, a color, etc.; the Constitutive Role, 
specifying the stuff and parts that it consists of 
(e.g., in the case of a book,  that it is made of pa-
per, it has chapters and an index, etc.); the Telic 
Role, specifying the purpose of the object (e.g., in 
the case of a book, reading);  and the Agentive 
Role, specifying how the object was created (e.g., 
in the case of a book, by writing).   

Guarino (1992) argues that there are two types 
of attributes: relational and non-relational. Rela-
tional attributes include qualities such as color and 
position, and relational social roles such as son 
and spouse. Non-relational attributes include parts 
such as wheel and engine. Activities are not 
viewed as attributes in Guarino’s classification. 

3 Attribute Extraction and Classification 

The goal of this work is to identify genuine attrib-
utes by classifying candidate attributes collected 
using text patterns as discussed in (Almuhareb and 
Poesio, 2004) according to a scheme inspired by 
those proposed by Guarino and Pustejovsky.  

The scheme we used to classify the training 
data in the experiment discussed below consists of 
six categories:   

• Qualities: Analogous to Guarino’s qualities 
and Pustejovsky’s formal ‘role’. (E.g., “the 
color of the car”.) 

• Parts: Related to Guarino’s non-relational 
attributes and Pustejovsky’s constitutive 
‘roles’. (E.g., “the hood of the car”). 

• Related-Objects: A new category intro-
duced to cover the numerous physical ob-
jects which are ‘related’ to an object but are 
not part of it—e.g., “the track of the deer”. 

                                                           
3 E.g., http://plato.stanford.edu/entries/substance. Thanks to 
one of the referees for drawing our attention to this. 
4 ‘Facets’ would be perhaps a more appropriate term to avoid 
confusions with the use of the term ‘role’ in Knowledge Rep-
resentation. 
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• Activities: These include both the types of 
activities which are part of Pustejovsky’s 
telic ‘role’ and those which would be in-
cluded in his agentive ‘role’. (E.g., “the re-
pairing of the car”.) 

• Related-Agents: For the activities in which 
the concept in question is acted upon, the 
agent of the activity: e.g., “the writer of the 
book”, “the driver of the car”. 

• Non-Attributes: This category covers the 
cases in which the construction “the N of the 
N” expresses other semantic relations, as in: 
“the last of the deer”, “the majority of the 
deer,” “the lake of the deer,” and “in the 
case of the deer”. 

We will quickly add that (i) we do not view this 
classification as definitive—in fact, we already 
collapsed the classes ‘part’ and ‘related objects’  in 
the  experiments discussed below—and (ii) not all 
of these distinctions are very easy even for human 
judges to do.  For example, design, as an attribute 
of a car, can be judged to be a quality if we think 
of it as taking values such as modern and standard; 
on the other hand, design might also be viewed as 
an activity in other contexts discussing the design-
ing process. Another type of difficulty is that a 
given attribute may express different things for 
different objects. For example, introduction is a 
part of a book, and an activity for a product. An 
additional difficulty results from the strong similar-
ity between parts and related-objects. For example, 
“key” is a related-object to a car but it is not part 
of it. We will return to this issue and to agreement 
on this classification scheme when discussing the 
experiment. 

One difference from previous work is that we 
use additional linguistic constructions to extract 
candidate attributes. The construction “the X of the 
Y is” used in our previous work is only one exam-
ple of genitive construction. Quirk et al (1985) list 
eight types of genitives in English, four of which 
are useful for our purposes:  

• Possessive Genitive: used to express quali-
ties, parts, related-objects, and related-
agents. 

• Genitive of Measure: used to express quali-
ties. 

• Subjective & Objective Genitives: used to 
express activities. 

We used all of these constructions in the work 
discussed here.  

4 Information Used to Classify Attributes 

Our attribute classifier uses four types of informa-
tion: morphological information, an attribute 
model, a question model, and an attributive-usage 
model. In this section we discuss how this informa-
tion is automatically computed.  

4.1 Morphological Information 

Our use of morphological information is based on 
the noun classification scheme proposed by Dixon 
(1991). According to Dixon, derivational morphol-
ogy provides some information about attribute typ-
e. Parts are concrete objects and almost all of them 
are expressed using basic noun roots (i.e., not de-
rived from adjectives or verbs). Most of qualities 
and properties are either basic noun roots or de-
rived from adjectives. Finally, activities are mostly 
nouns derived from verbs. Although these rules 
only have a heuristic value, we found that morpho-
logically based heuristics did provide useful cues 
when used in combination with the other types of 
information discussed below.  

As we are not aware of any publicly available 
software performing automatic derivational mor-
phology, we developed our own (and very basic) 
heuristic methods. The techniques we used involve 
using information from WordNet, suffix-checking, 
and a POS tagger. 

WordNet was used to find nouns that are de-
rived from verbs and to filter out words that are not 
in the noun database. Nouns in WordNet are linked 
to their derivationally related verbs, but there is no 
indication about which is derived from which. We 
use a heuristic based on length to decide this: the 
system checks if the noun contains more letters 
than the most similar related verb. If this is the 
case, then the noun is judged to be derived from 
the verb. If the same word is used both as a noun 
and as a verb, then we check the usage familiarity 
of the word, which can also be found in WordNet. 
If the word is used more as a verb and the verbal 
usage is not rare, then again the system treats the 
noun as derived from the verb. 
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To find nouns that are derived from adjectives 
we used simple heuristics based on suffix-
checking. (This was also done by Berland and 
Charniak (1999).) All words that end with “ity” or 
“ness” are considered to be derived from adjec-
tives. A noun not found to be derived from a verb 
or an adjective is assumed to be a basic noun root. 

In addition to derivational morphology, we used 
the Brill tagger (Brill, 1995) to filter out adjectives 
and other types of words that can occasionally be 
used as nouns such as better, first, and whole be-
fore training. Only nouns, base form verbs, and 
gerund form verbs were kept in the candidate at-
tribute list. 

4.2 Clustering Attributes  

Attributes are themselves concepts, at least in the 
sense that they have their own attributes: for ex-
ample, a part of a car, such as a wheel, has its own 
parts (the tyre) its qualities (weight, diameter) etc.  
This observation suggests that it should be possible 
to find similar attributes in an unsupervised fashion 
by looking at their attributes, just as we did earlier 
for concepts (Almuhareb and Poesio, 2004). In 
order to do this, we used our text patterns for find-
ing attributes to collect from the Web up to 500 
pattern instances for each of the candidate attrib-
utes. The collected data were used to build a vecto-
rial representation of attributes as done in 
(Almuhareb and Poesio, 2004).  We then used 
CLUTO (Karypis, 2002) to cluster attributes using 
these vectorial representations. In a first round of 
experiments we found that the classes ‘parts’ and 
‘related objects’ were difficult to differentiate, and 
therefore we merged them. The final model clus-
ters candidate attributes into five classes: activities, 
parts & related-objects, qualities, related-agents, 
and non-attributes. This classification was used as 
one of the input features in our supervised classi-
fier for attributes.  

We also developed a measure to identify par-
ticularly distinctive ‘attributes of attributes’—
attributes which have a strong tendency to occur 
primarily with attributes (or any concept) of a 
given class—which has proven to work pretty well. 
This measure, which we call Uniqueness, actually 
is the product of two factors: the degree of unique-
ness proper, i.e., the probability P(classi | attrib-
utej) that  an attribute (or, in fact, any other noun) 
will belong to class i given than it has attribute j; 
and a measure of ‘definitional power’ –the prob-

ability P(attribute j | classi) that a concept belong-
ing to a given class will have a certain attribute. 
Using MLE to estimate these probabilities, the de-
gree of uniqueness of attributesj of classi is com-
puted as follows: 
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where ni is the number of concepts in classi. C is a 
count function that counts concepts that are associ-
ated with the given attribute. Uniqueness ranges 
from 0 to 1. 

Table 1 shows the 10 most distinctive attributes 
for each of the five attribute classes, as determined 
by the Uniqueness measure just introduced, for the 
1,155 candidate attributes in the training data for 
the experiment discussed below. 
 
Class Top 10 Distinctive Attributes 

Related-Agent 
(0.39) 

identity, hands, duty, consent, 
responsibility, part, attention, 
voice, death, job 

Part &  
Related-Object 
(0.40) 

inside, shape, top, outside, sur-
face, bottom, center, front, size, 
interior 

Activity 
(0.29) 

time, result, process, results, 
timing, date, effect, beginning, 
cause, purpose 

Quality 
(0.23) 

measure, basis, determination, 
question, extent, issue, meas-
urement, light, result, increase 

Non-Attribute 
(0.18) 

content, value, rest, nature, 
meaning, format, interpretation, 
essence, size, source 

Table 1: Top 10 distinctive attributes of the five 
classes of candidate attributes. Average distinct-
iveness (uniqueness) for the top 10 attributes is 

shown between parentheses 
 

 Most of the top 10 attributes of related-agents, 
parts & related-objects, and activities are genuinely 
distinctive attributes for such classes. Thus, attrib-
utes of related-agents reflect the ‘intentionality’ 
aspect typical of members of this class: identity, 
duty, and responsibility. Attributes of parts are 
common attributes of physical objects (e.g., inside, 
shape). Most attributes of activities have to do with 
temporal properties and causal structure: e.g., be-
ginning, cause. The ‘distinctive’ attributes of the 
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quality class are less distinctive, but four such at-
tributes (measure, extent, measurement, and in-
crease) are related to values since many of the 
qualities can have different values (e.g., small and 
large for the quality size). There are however sev-
eral attributes in common between these classes of 
attributes, emphasizing yet again how some of 
these distinctions at least are not completely clear 
cut:  e.g., result, in common between activities and 
qualities (two classes which are sometimes diffi-
cult to distinguish). Finally, as one would expect, 
the attributes of the non-attribute class are not 
really distinctive: their average uniqueness score is 
the lowest. This is because ‘non-attribute’ is a het-
erogeneous class. 

4.3 The Question Model 

Certain types of attributes can only be used when 
asking certain types of questions. For example, it is 
possible to ask “What is the color of the car?” but 
not “∗When is the color of the car?”.  

We created a text pattern for each type of ques-
tion and used these patterns to search the Web and 
collect counts of occurrences of particular ques-
tions. An example of such patterns would be: 

• “what is|are the A  of the” 

where A is the candidate attribute under investiga-
tion. Patterns for who, when, where, and how are 
similar.  

After collecting occurrence frequencies for all 
the candidate attributes, we transform these counts 
into weights using the t-test weighting function as 
done for all of our counts, using the following for-
mula from Manning and Schuetze (1999): 
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where N is the total number of relations, and C is a 
count function. 

Table 2 shows the 10 most frequent attributes 
for each question type. This data was collected us-
ing a more restricted form of the question patterns 
and a varying number of instances for each type of 
questions. The restricted form includes a question 
mark at the end of the phrase and was used to im-
prove the precision. For example, the what-pattern 
would be “what is the * of the *?”. 

Question Top 10 Attributes 

what purpose, name, nature, role, cost, func-
tion, significance, size, source, status 

who author, owner, head, leader, president, 
sponsor, god, lord, father, king 

where rest, location, house, fury, word, edge, 
center, end, ark, voice 

how 
quality, rest, pace, level, length, mo-
rale, performance, content, organiza-
tion, cleanliness 

when end, day, time, beginning, date, onset, 
running, birthday, fast, opening 

Table 2: Frequent attributes for each question type 
 

Instances of the what-pattern are frequent in the 
Web: the Google count was more than 2,000,000 
for a query issued in mid 2004. The who-pattern is 
next in terms of occurrence, with about 350,000 
instances. The when-pattern is the most infrequent 
pattern, about 5,300 instances. 

The counts broadly reflected our intuitions 
about the use of such questions. What-questions 
are mainly used with qualities, whereas who-
questions are used with related-agents. Attributes 
occurring with when-questions have some tempo-
ral aspects; attributes occurring with how-questions 
are mostly qualities and activities, and attributes in 
where-questions are of different types but some are 
related to locations. Parts usually do not occur with 
these types of questions. 

4.4 Attributive Use  

Finally, we exploited the fact that certain types of 
attributes are used more in language as concepts 
rather than as attributes. For instance, it is more 
common to encounter the phrase “the size of the 
∗” than “the ∗  of the size”. On the other hand, it is 
more common to encounter the phrase “the * of 
the window” than “the window of the *”. Gener-
ally speaking, parts, related-objects, and related-
agents are more likely to have more attributes than 
qualities and activities. We used the two patterns 
“the * of the A” and “the A of the *” to collect 
Google counts for all of the candidate attributes. 
These counts were also weighted using the t-test as 
in the question model. 

Table 3 illustrates the attributive and conceptual 
usage for each attribute class using a training data 
of 1,155 attributes. The usage averages confirm the 
initial assumption.  

22



Average T-Test Score Attribute Class Conceptual Attributive
Parts & 
Related-Objects 18.81 3.00 

Non-Attributes 13.29 11.07 
Related-Agents 12.15 2.54 
Activities 3.22 5.08 
Qualities 0.23 17.09 

Table 3: Conceptual and attributive usage averages 
for each attribute class 

5 The Experiment 

We trained two classifiers: a 2-way classifier that 
simply classifies candidate attributes into attributes 
and non-attributes, and a 5-way classifier that clas-
sifies candidate attributes into activities, parts & 
related-objects, qualities, related-agents, and non-
attributes. These classifiers were trained using de-
cision trees algorithm (J48) from WEKA (Witten 
and Frank, 1999). 
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Cluster Id 1 2 4 0 3 
What 0.00 0.00 0.00 0.00 3.80 
When 2.62 0.00 0.00 0.00 0.00 
Where 0.78 0.94 0.00 0.00 0.00 
Who 0.00 0.00 0.00 30.28 0.00 
How 2.05 0.00 1.54 0.00 2.61 
Conceptual 38.16 20.15 0.00 0.00 135.40 
Attributive 0.00 0.00 10.22 1.60 0.00 
Morph DV BN DA DV BN 
Attribute 
Class  
(Output) 

Activity Part Quality Related
Agent 

Non- 
Attribute

Table 4: Five examples of training instances. The 
values for morph are as follows: DV: derived from 
verb; BN: basic noun; DA: derived from adjective 

 
Our training and testing material was acquired 

as follows. We started from the 24,178 candidate 
attributes collected for the concepts in the balanced 
concept dataset we recently developed (Almuhareb 
and Poesio, 2005). We threw out every candidate 
attribute with a Google frequency less than 20; this 
reduced the number of candidate attributes to 
4,728. We then removed words other than nouns 

and gerunds as discussed above, obtaining 4,296 
candidate attributes.   

The four types of input features for this filtered 
set of candidate attributes were computed as dis-
cussed in the previous section. The best results 
were obtained using all of these features. A train-
ing set of 1,155 candidate attributes was selected 
and hand-classified (see below for agreement fig-
ures). We tried to include enough samples for each 
attribute class in the training set. Table 4 shows the 
input features for five different training examples, 
one for each attribute class. 

6  Evaluation 

For a qualitative idea of the behavior of our classi-
fier, the best attributes for some concepts are listed 
in Appendix A. We concentrate here on quantita-
tive analyses. 

6.1 Classifier Evaluation 1: Cross-Validation 

Our two classifiers were evaluated, first of all, us-
ing 10-fold cross-validation. The 2-way classifier 
correctly classified 81.82% of the candidate attrib-
utes (the baseline accuracy is 80.61%). The 5-way 
classifier correctly classified 80.35% of the attrib-
utes (the baseline accuracy is 23.55%). The preci-
sion / recall results are shown in Table 5. 

 
Attribute Class P R F 

2-Way Classifier 
Attribute 0.854 0.934 0.892
Non-Attribute 0.551 0.335 0.417

5-Way Classifier 
Related-Agent 0.930 0.970 0.950
Part & Related-Object 0.842 0.882 0.862
Activity 0.822 0.878 0.849
Quality 0.799 0.821 0.810
Non-Attribute 0.602 0.487 0.538

Table 5: Cross-validation results for the two  
attribute classifiers 

 
As it can be seen from Table 5, both classifiers 

achieve good F values for all classes except for the 
non-attribute class: F-measures range from 81% to 
95%. With the 2-way classifier, the valid attribute 
class has an F-measure of 89.2%. With the 5-way 
classifier, related-agent is the most accurate class 
(F = 95%) followed by part & related-object, 
activity, and quality (86.2%, 84.9%, and 81.0%, 
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respectively). With non-attribute, however, we 
find an F of 41.7% in the 2-way classification, and 
53.8% in the 5-way classification. This suggests 
that the best strategy for lexicon building would be 
to use these classifiers to ‘find’ attributes rather 
than ‘filter’ non-attributes. 

6.2 Classifier Evaluation 2: Human Judges 

Next, we evaluated the accuracy of the attribute 
classifiers against two human judges (the authors). 
We randomly selected a concept from each of the 
21 classes in the balanced dataset.  Next, we used 
the classifiers to classify the 20 best candidate at-
tributes of each concept, as determined by their t-
test scores. Then, the judges decided if the as-
signed classes are correct or not. For the 5-way 
classifier, the judges also assigned the correct class 
if the automatic assigned class is incorrect.  

After a preliminary examination we decided not 
to consider two troublesome concepts: constructor 
and future. The reason for eliminating constructor 
is that we discovered it is ambiguous: in addition 
to the sense of ‘a person who builds things’, we 
discovered that constructor is used widely in the 
Web as a name for a fundamental method in object 
oriented programming languages such as Java. 
Most of the best candidate attributes (e.g., call, 
arguments, code, and version) related to the latter 
sense, that doesn’t exist in WordNet. Our system is 
currently not able to do word sense discrimination, 
but we are currently working on this issue. The 
reason for ignoring the concept future was that this 
word is most commonly used as a modifier in 
phrases such as: “the car of the future”, and “the 
office of the future”, and that all of the best candi-
date attributes occurred in this type of construction.  
This reduced the number of evaluated concepts to 
19. 

According to the judges, the 2-way classifier 
was on average able to correctly assign attribute 
classes for 82.57% of the candidate attributes. This 
is very close to its performance in evaluation 1. 
The results using the F-measure reveal similar re-
sults too. Table 6 shows the results of the two clas-
sifiers based on the precision and recall measures. 

According to the judges, the 5-way classifier 
correctly classified 68.72% on average. This per-
formance is good but not as good as its perform-
ance in evaluation 1 (80.35%). The decrease in the 
performance was also shown in the F-measure. 

The F-measure ranges from 0.712 to 0.839 exclud-
ing the non-attribute class. 
  

Attribute Class P R F 
2-Way Classifier 

Attribute 0.928 0.872 0.899
Non-Attribute 0.311 0.459 0.369

5-Way Classifier 
Related-Agent 0.813 0.868 0.839
Part & Related-Object 0.814 0.753 0.781
Activity 0.870 0.602 0.712
Quality 0.821 0.658 0.730
Non-Attribute 0.308 0.632 0.414
Table 6: Evaluation against human judges results 

for the two classifiers 
 

An important question when using human 
judges is the degree of agreement among them. 
The K-statistic was used to measure this agree-
ment. The values of K are shown in Table 7. In the 
2-way classification, the judges agreed on 89.84% 
of the cases. On the other hand, the K-statistic for 
this classification task is 0.452. This indicates that 
part of this strong agreement is because that the 
majority of the candidate attributes are valid attrib-
utes. It also shows the difficulty of identifying non-
attributes even for human judges. In the 5-way 
classification, the two judges have a high level of 
agreement; Kappa statistic is 0.749. The judges 
and the 5-way classifier agreed on 63.71% of the 
cases. 
 

Description 2-Way 5-Way
Human Judges 89.84% 80.69%
Human Judges (Kappa) 0.452 0.749 
Human Judges & Classifier 78.36% 63.71%
Table 7: Level of agreement between the human 

judges and the classifiers 

6.3 Re-Clustering the Balanced Dataset 

Finally, we looked at whether using the classifiers 
results in a better lexical description for the pur-
poses of clustering (Almuhareb and Poesio, 2004). 
In Table 8 we show the results obtained using the 
output of the 2-way classifier to re-cluster the 402 
concepts of our balanced dataset, comparing these 
results with those obtained using all attributes (first 
column) and all attributes that remain after fre-
quency cutoff and POS filtering (column 2). The 
results are based on the CLUTO evaluation meas-
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ures: Purity (which measures the degree of cohe-
sion of the clusters obtained) and Entropy. The 
purity and entropy formulas are shown in Table 9. 
 

Description 
All 

Candidate 
Attributes

Filtered 
Candidate 
Attributes 

2-Way 
Attributes

Purity 0.657 0.672 0.693 
Entropy 0.335 0.319  0.302  
Vector Size 24,178 4,296 3,824 
Table 8: Results of re-clustering concepts using 

different sets of attributes 
 

Clustering the concepts using only filtered can-
didate attributes improved the clustering purity 
from 0.657 to 0.672. This improvement in purity is 
not significant. However, clustering using only the 
attributes sanctioned by  the 2-way classifier im-
proved the purity further to 0.693, and this im-
provement in purity from the initial purity  was 
significant (t = 2.646, df = 801, p < 0.05). 

 
 Entropy Purity 

Single 
Cluster ∑

=

−=
q

i r

i
r

r

i
r

r n
n

n
n

q
SE

1

log
log

1)(  )(max1)( i
ri

r
r n

n
SP =

Over-
all )(

1
r

k

r

r SE
n
nEntropy ∑

=

=  )(
1

r

k

r

r SP
n
nPurity ∑

=

=

Table 9: Entropy and Purity in CLUTO. 
Sr is a cluster, nr is the size of the cluster, q is the number of 
classes, ni

r is the number of concepts from the  ith class that 
were assigned to the rth cluster, n is the number of concepts, 

and k is the number of clusters. 

7 Discussion and Conclusions 

The lexicon does not simply contain information 
about synonymy and hyponymy relations; it also 
contains information about the attributes of the 
concepts expressed by senses, as in Qualia struc-
tures. In previous work, we developed techniques 
for mining candidate attributes from the Web; in 
this paper we presented a method for improving 
the quality of attributes thus extracted, based on a 
classification for attributes derived from work in 
linguistics and philosophy, and a classifier that 
automatically tags candidate attributes with such 
classes. Both the 2-way and the 5-way classifiers 
achieve good precision and recall. Our work also 
reveals, however, that the notion of attribute is not 

fully understood. On the one hand, that attribute 
judgments are not always easy for humans even 
given a scheme; on the other hand, the results for 
certain types of attributes, especially activities and 
qualities, could certainly be improved. We also 
found that whereas attributes of physical objects 
are relatively easy to classify, the attributes of 
other types of concepts are harder –particularly 
with activities. (See the Appendix for examples.) 
Our longer term goal is thus to further clarify the 
notion of attribute, possibly refining our classifica-
tion scheme, in collaboration with linguists, phi-
losophers, and psycholinguists. One comparison 
we are particularly interested in pursuing at the 
moment is that with feature lists used by psycholo-
gist, for whom knowledge representation is en-
tirely concept-based, and virtually every property 
of a concept counts as an attribute, including prop-
erties that would be viewed as IS-A links and what 
would be considered a value. Is it possible to make 
a principled, yet cognitively based distinction? 

Acknowledgments 
Abdulrahman Almuhareb is supported by King 
Abdulaziz City for Science and Technology 
(KACST), Riyadh, Saudi Arabia. We wish to thank 
the anonymous referees for many helpful sugges-
tions.  

 References 
Almuhareb, A. and Poesio, M. (2004). Attribute-Based 

and Value-Based Clustering: An Evaluation. In Proc. 
of EMNLP. Barcelona, July. 

Almuhareb, A. and Poesio, M. (2005). Concept Learn-
ing and Categorization from the Web. In Proc. of 
CogSci. Italy, July. 

Baader, F., Calvanese, D., McGuinness, D., Nardi, D. 
and Patel-Schneider, P. (Editors). (2003). The De-
scription Logic Handbook. Cambridge University 
Press. 

Berland, M. and Charniak, E. (1999). Finding parts in 
very large corpora. In Proc. of the 37th ACL, (pp. 
57–64). University of Maryland. 

Brill, E. (1995). Transformation-Based Error-Driven 
Learning and Natural Language Processing: A Case 
Study in Part of Speech Tagging. Computational 
Linguistics. 

25



Caraballo, S. A. (1999). Automatic construction of a 
hypernym-labeled noun hierarchy from text. In Proc. 
of  the 37th  ACL. 

Dixon, R. M. W. (1991). A New Approach to English 
Grammar, on Semantic Principles. Clarendon Press, 
Oxford. 

Fellbaum, C. (Editor). (1998). WordNet: An electronic 
lexical database. The MIT Press. 

Girju, R. and Moldovan, D. (2002). Mining answers for 
causal questions. In Proc. AAAI.   

Guarino, N. (1992). Concepts, attributes and arbitrary 
relations: some linguistic and ontological criteria for 
structuring knowledge base. Data and Knowledge 
Engineering, 8, (pp. 249–261). 

Hearst, M. A. (1998). Automated discovery of WordNet 
relations. In Fellbaum, C. (Editor). WordNet: An 
Electronic Lexical Database. MIT Press. 

Karypis, G. (2002). CLUTO: A clustering toolkit. Tech-
nical Report 02-017. University of Minnesota. At 
http://www-users.cs.umn.edu/~karypis/cluto/. 

Manning, C. D. and Schuetze H. (1999). Foundations of 
Statistical NLP. MIT Press. 

Merlo, P. and Stevenson, S. (2001). Automatic Verb 
Classification Based on Statistical Distributions of 
Argument Structure. Computational Linguistics. 27: 
3, 373-408. 

Murphy, G. L. (2002). The Big Book of Concepts. The 
MIT Press. 

Poesio, M., Ishikawa, T., Schulte im Walde, S. and 
Vieira, R. (2002).  Acquiring lexical knowledge for 
anaphora resolution. In Proc. Of LREC.     

Pustejovsky, J. (1995). The generative lexicon. MIT 
Press. 

Quirk, R., Greenbaum, S., Leech, G., and Svartvik, J. 
(1985). A comprehensive grammar of the English 
language. London: Longman. 

Sanchez-Graillet, O. and Poesio, M. (2004). Building 
Bayesian Networks from text. In Proc. of LREC, Lis-
bon, May. 

Vinson, D. P., Vigliocco, G., Cappa, S., and Siri, S. 
(2003). The breakdown of semantic knowledge: in-
sights from a statistical model of meaning representa-
tion. Brain and Language, 86(3), 347-365(19). 

Witten, I. H. and Frank, E. (1999). Data Mining: Prac-
tical Machine Learning Tools and Techniques with 
Java Implementations, Morgan Kaufmann. 

Woods, W. A. (1975). What’s in a link: Foundations for 
semantic networks. In Daniel G. Bobrow and Alan 
M. Collins, editors, Representation and Understand-
ing: Studies in Cognitive Science, (pp. 35-82). Aca-
demic Press, New York. 

 

 

 

Appendix A.    5-Way Automatic Classification of the Best Candidate Attributes of 
Some Concepts 
 

Car 
Class Best Attributes 

Activity acceleration, performance, styling, construction, propulsion, insurance, stance, ride, move-
ment 

Part & 
Related-
Object  

front, body, mass, underside, hood, roof, nose, graphics, side, trunk, engine, boot, frame, bot-
tom, backseat, chassis, wheelbase, silhouette, floor, battery, windshield, seat, undercarriage, 
tank, window, steering, drive, finish  

Quality  speed, weight, handling, velocity, color, condition, width, look, colour, feel, momentum, 
heritage, shape, appearance, ownership, make, convenience, age, quality, reliability 

Related-
Agent  driver, owner, buyer, sponsor, occupant, seller 

Non-
Attribute  

rest, price, design, balance, motion, lure, control, use, future, cost, inertia, model, wheel, 
style, position, setup, sale, supply, safety  
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Camel 

Class Best Attributes 
Activity introduction, selling, argument, exhaustion 

Part & 
Related-
Object  

nose, hump, furniture, saddle, hair, flesh, neck, milk, head, reins, foot, eye, hooves, humps, 
ass, feet, hoof, flanks, bones, ears, bag, skin, haunches, stomach, legs, urine, meat, penis, 
load, breast, backside, testicles, rope, corpse, house, nostrils, foam, bell, sight, butt, fur, bod-
ies, toe, hoofs, heads, knees, pancreas, mouth, coat, uterus, necks, chin, udders 

Quality  origins, gait, domestication, usefulness, pace, fleetness, smell, existence, appeal, birth, awk-
wardness  

Related-
Agent  ghost 

Non-
Attribute  gift, rhythm, physiology, battle, case, example, dance, manner, description 

 
Cancer 

Class Best Attributes 

Activity 
growth, development, removal, treatment, recurrence, diagnosis, pain, spreading, metastasis, 
detection, eradication, elimination, production, discovery, remission, advance, excision, pre-
vention, evolution, disappearance, anxiety 

Part & 
Related-
Object  

location, site, lump, nature, root, cells, margin, formation, margins, roots, world, region 

Quality  

extent, size, seriousness, progression, severity, aggressiveness, cause, progress, symptoms, 
effects, risk, incidence, staging, biology, onset, characteristics, histology, ability, status, ap-
pearance, thickness, sensitivity, causes, prevalence, responsiveness, ravages, frequency, aeti-
ology, circumstances, rarity, outcome, behavior, genetics 

Related-
Agent  club, patient 

Non-
Attribute  

stage, spread, grade, origin, course, power, return, area, response, presence, type, particulars, 
occurrence, prognosis, pathogenesis, source, news, cure, pathology, properties, genesis, 
boundaries, drama, stages, chapter 

 
Family 

Class Best Attributes 

Activity disintegration, protection, decline, destruction, breakup, abolition, participation, reunifica-
tion, reconciliation, dissolution, composition, restoration 

Part & 
Related-
Object  

head, institution, support, flower, core, fabric, culture, dimension, food, lineage, cornerstone, 
community 

Quality  
breakdown, importance, honor, structure, sociology, integrity, unity, sanctity, health, privacy, 
survival, definition, influence, honour, involvement, continuity, stability, size, preservation, 
upbringing, centrality, ancestry, solidarity, hallmark, status, functioning, primacy, autonomy  

Related-
Agent  

father, baby, member, mother, members, patriarch, breadwinner, matriarch, man, foundation, 
founder, heir, daughter 

Non-
Attribute  

rest, role, income, history, concept, welfare, pedigree, genealogy, presence, context, origin, 
bond, tradition, taxonomy, system, wealth, lifestyle, surname, crisis, ideology, rights, eco-
nomics, safety 

 

27



Proceedings of the ACL-SIGLEX Workshop on Deep Lexical Acquisition, pages 28–37,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Automatically Learning Qualia Structures from the Web

Philipp Cimiano & Johanna Wenderoth
Institute AIFB

University of Karlsruhe

Abstract

Qualia Structures have many applications
within computational linguistics, but currently
there are no corresponding lexical resources
such as WordNet or FrameNet. This paper
presents an approach to automatically learn
qualia structures for nominals from the World
Wide Web and thus opens the possibility to ex-
plore the impact of qualia structures for natural
language processing at a larger scale. Further-
more, our approach can be also used support a
lexicographer in the task of manually creating
a lexicon of qualia structures. The approach is
based on the idea of matching certain lexico-
syntactic patterns conveying a certain seman-
tic relation on the World Wide Web using stan-
dard search engines. We evaluate our approach
qualitatively by comparing our automatically
learned qualia structures with the ones from the
literature, but also quantitatively by presenting
results of a human evaluation.

1 Introduction

Qualia Structures have been originally introduced by
(Pustejovsky, 1991) and are used for a variety of purposes
in Natural Language processing such as the analysis of
compounds (Johnston and Busa, 1996), co-composition
and coercion (Pustejovsky, 1991) as well as for bridging
reference resolution (Bos et al., 1995). Further, it has also
been argued that qualia structures and lexical semantic
relations in general have applications in information re-
trieval (Voorhees, 1994; Pustejovsky et al., 1993). One
major bottleneck however is that currently Qualia Struc-
tures need to be created by hand, which is probably also
the reason why there are no practical system using qualia
structures, but a lot of systems using globally available re-
sources such as WordNet (Fellbaum, 1998) or FrameNet1

1http://framenet.icsi.berkeley.edu/

as source of lexical/world knowledge. The work de-
scribed in this paper addresses this issue and presents
an approach to automatically learning qualia structures
for nominals from the Web. The approach is inspired
in recent work on using the Web to identify instances
of a relation of interest such as in (Markert et al., 2003)
and (Cimiano and Staab, 2004). These approaches are
in essence a combination of the usage of lexico-syntactic
pattens conveying a certain relation of interest such as in
(Hearst, 1992), (Charniak and Berland, 1999), (Iwanska
et al., 2000) or (Poesio et al., 2002) with the idea of us-
ing the web as a big corpus (Resnik and Smith, 2003),
(Grefenstette, 1999), (Keller et al., 2002).
The idea of learning Qualia Structures from the Web is
not only a very practical, it is in fact a principled one.
While single lexicographers creating qualia structures -
or lexicon entries in general - might take very subjective
decisions, the structures learned from the Web do not mir-
ror the view of a single person, but of the whole world as
represented on the World Wide Web. Thus, an approach
learning qualia structures from the Web is in principle
more reliable than letting lexicographers craft lexical en-
tries on their own. Obviously, on the other hand, using
an automatic web based approach yields also a lot of in-
appropriate results which are due to 1) errors produced
by the linguistic analysis (e.g. part-of-speech tagging), 2)
idiosyncrasies of ranking algorithms of search machines,
3) the fact that the Web or in particular search engines
are to a great extent commercially biased, 4) the fact that
people also publish erroneous information on the Web,
and 5) lexical ambiguities. Because of these reasons our
aim is in fact not to replace lexicographers, but to support
them in the task of creating qualia structures on the basis
of the automatically learned qualia structures. The pa-
per is structured as follows: Section 2 introduces qualia
structures and describes the specific qualia structures we
aim to acquire. Section 3 describes our approach in detail
and section 4 presents a quantitative and qualitative eval-
uation of our approach. Before concluding, we discuss
some related work in Section 5.
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2 Qualia Structures

According to Aristotle, there are four basic factors or
causes by which the nature of an object can be described
(cf. (Kronlid, 2003)):
� the material cause, i.e. the material an object is

made of

� the agentive cause, i.e. the source of movement, cre-
ation or change

� the formal cause, i.e. its form or type

� the final cause, i.e. its purpose, intention or aim

In his Generative Lexicon (GL) framework (Puste-
jovsky, 1991) reused Aristotle’s basic factors for the de-
scription of the meaning of lexical elements. In fact he in-
troduced so called Qualia Structures by which the mean-
ing of a lexical element is described in terms of four roles:
� Constitutive: describing physical properties of an

object, i.e. its weight, material as well as parts and
components

� Agentive: describing factors involved in the bringing
about of an object, i.e. its creator or the causal chain
leading to its creation

� Formal: describing that properties which distinguish
an object in a larger domain, i.e. orientation, magni-
tude, shape and dimensionality

� Telic: describing the purpose or function of an object

Most of the qualia structures used in (Pustejovsky,
1991) however seem to have a more restricted interpre-
tation. In fact, in most examples the Constitutive role
seems to describe the parts or components of an object,
while the Agentive role is typically described by a verb
denoting an action which typically brings the object in
question into existence. The Formal role normally con-
sists in typing information about the object, i.e. its hyper-
nym or superconcept. Finally, the Telic role describes the
purpose or function of an object either by a verb or nom-
inal phrase. The qualia structure for knife for example
could look as follows (cf. (Johnston and Busa, 1996)):

Formal: artifact tool
Constitutive: blade,handle,...
Telic: cut act
Agentive: make act

Our understanding of Qualia Structure is in line with this
restricted interpretation of the qualia roles. Our aim is to
automatically acquire Qualia Structures from the Web for
nominals, looking for (i) nominals describing the type of
the object, (ii) verbs defining its agentive role, (iii) nomi-
nals describing its parts or components and (iv) nouns or
verbs describing its intended purpose.

3 Approach

Our approach to learning qualia structures from the
Web is on the one hand based on the assumption that
instances of a certain semantic relation can be learned by
matching certain lexico-syntactic patterns more or less
reliably conveying the relation of interest in line with
the seminal work of (Hearst, 1992), who defined the
following patterns conveying a hypernym relation:

(1)
�����

such as
�����

,
���
	

, ...,
���
����

(and � or)���
� 2

(2) such
�����
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�����

,
���
	

, ...
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���
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�����
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�����

, (including � especially)
�����

,
���
	

, ...,
���
�����

(and � or)
���
�

According to Hearst, from such patterns we can derive
that for all

���
���������������! #"%$'&)(%��"�*,+-�������.��� �)/
.

For example, for the expression: Bruises, wounds,
broken bones or other injuries, we would extract:
hypernym(bruise,injury), hypernym(broken bone,injury)
and hypernym(wound,injury). However, it is well known
that Hearst-style patterns occur rarely, such that it seems
intuitive to match them on the Web. So in our case we
are looking not only for the hypernym relation (com-
parable to the Formal-Relation) but for similar patterns
conveying a Constitutive, Telic or Agentive relation. As
currently there is no support for searching using regular
expressions in standard search engines such as Google or
Altavista3, our approach consists of 5 phases (compare
Figure 1):

1. generate for each qualia role a set of so called clues,
i.e. search engine queries indicating the relation of
interest

2. download the snippets of the 10 first Google hits
matching the generated clues 4

3. part-of-speech-tagging of the downloaded snippets

4. match regular expressions conveying the qualia role
of interest

5. weight the returned qualia elements according to
some measure

The outcome of this process are then so called
Weighted Qualia Structures (WQSs) in which every

2 02143 stands for a noun phrase.
3An exception is certainly the Linguist’s Search Engine

(Resnik and Elkiss, 2003)
4The reason for using only the 10 first hits is to maintain

efficiency. With the current setting the systems needs between
3 and 10 minutes to generate the qualia structure for a given
nominal
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qualia element in a certain role is weighted according to
some measure. The patterns in our pattern library are ac-
tually tuples

+ $�� � / where
$

is a regular expression defined
over part-of-speech tags and � a function ������� (%� �	��

��� (%� �	� called the clue. Given a nominal � and a clue � , the
query � + � / is sent to the Google API and we download the
abstracts of the first

�
documents matching this query and

then process the abstracts to find instances of pattern
$

.
For example, given the clue  +�� /���� ���	�  �� � ��� +�� /

and
the instance computer we would download

�
abstracts

matching the query f(computer), i.e. ”such as comput-
ers”. Hereby

� +�� /
is a function returning the plural form

of x. We implemented this function as a lookup in a lexi-
con in which plural nouns are mapped to their base form.
With the use of such clues, we thus download a number
of Google-abstracts in which a corresponding pattern will
probably be matched thus restricting the linguistic analy-
sis to a few promising pages. The downloaded abstracts
are then part-of-speech tagged using QTag (Tufis and Ma-
son, 1998). Then we match the corresponding pattern

$
in the downloaded snippets thus yielding candidate qualia
elements as output. In our approach we then calculate the
weight of a candidate qualia element

&
for the term � we

want to compute the qualia structure for by the Jaccard
Coefficient:

����� ��� & � � �!� + &#" � /
����� ��� & � � �!� + & / " ����� ��� & � � �!� + � /%$ ����� �&�-& � � �!� +-&'" � /
The result is then a Weighted Qualia Structure (WQS) in
which for each role the qualia elements are weighted ac-
cording to this Jaccard coefficient. In what follows we
describe in detail the procedure for acquiring qualia el-
ements for each qualia role. In particular, we describe
in detail the clues and lexico-syntactic patterns used. In
general, the patterns have been crafted by hand, testing
and refining them in an iterative process, paying attention
to maximize their coverage but also accuracy.
In general it is important to mention that by this approach
we are not able to detect and separate multiple meanings
of words, i.e. to handle polysemy, which is appropriately
accounted for in the framework of the Generative Lexi-
con (Pustejovsky, 1991).

3.1 The Formal Role

To derive qualia elements for the Formal role, we first
download for each of the clues in Table 1 the first 10
abstracts matching the clue and then process them offline
matching the patterns defined over part-of-speech-tags5

thus yielding up to 10 different qualia element candidates
per clue. The patterns are specified in form of regular
expressions, whereby the part-of-speech tags are always

5We use the well-known Penn Treebank tagset described at
http://www.computing.dcu.ie/ ( acahill/tagset.html.

Figure 1: General Approach

given in square brackets after the token. Further, besides
using the traditional regular expression operators such
as

"
, ) and * , we also use Perl-like symbols such as+ ,

denoting any alphabetic character as well as [a-z]
denoting the set of all lower case letters.
As there are 4 different clues for the Formal role, we thus
yield up to 40 qualia elements as potential candidates
to fill the Formal role. In general, we paid attention to
create clues relying on indefinite articles as we found
out that they produce more general and reliable results
than when using definite articles. In order to choose the
correct indefinite article – a or an – or even using no
article at all, we implemented some ad-hoc heuristics
checking if the first letter of the term in question is a
vowel and checking if the term is used more often with
an article or without an article on the Web by a set of
corresponding Google queries. The alternative ’(a/an/?)’
means that we use either the indefinite article ’a’ ’an’
or no article depending on the results of the above
mentioned Google queries.
A general question raised also by Hearst (Hearst, 1992)
is how to deal with NP modification. Hearst’s conclusion
is that this depends on the application. In our case we
mainly remove adjective modifiers, keeping only the
heads of noun phrases as candidate qualia elements.
The lemmatized heads of the NP - noun phrase are then
regarded as qualia role candidates for the Formal role.
These candidates are then weighted using the above
defined Jaccard Coefficient measure. Hereby, a noun
phrase is an instance matching the following regular
expression:

NP:=[a-z]+[DT]? ([a-z]+[JJ])+? ([a-z]+[NN(S?)])+,

where the head is the underlined expression, which
is lemmatized and considered as a candidate qualia
element. After some initial experiments we decided not
to use the patterns ’X is Y’ and ’X is a kind of Y’ such
as in a book is an item or a book is a kind of publication

30



as well as the pattern ’Y, including X’ (compare (Hearst,
1992)) as we found that in our settings they delivered
quite spurious results.

Clue Pattern
such as

� + � / NP - ,? such[DT] as[IN] NP
especially

� + � / NP - ,? especially[RB] NP� + � / or other NP or[CC] other[JJ] NP -� + � / and other NP and[CC] other[JJ] NP -

Table 1: Clues and Patterns for the Formal role

3.2 The Constitutive Role

The procedure for finding elements of the Constitutive
role is similar to the one described above for the Formal
role. The corresponding clues and patterns are given in
Table 2. As above, the candidate qualia elements are then
the lemmatized heads of the noun phrase NP � .

Clue Pattern
(a/an)? � is made NP is[VBZ] made[VBN]
up of up[RP] of[IN] NP �� + � / are made up of NP are[VBP] made[VBN]

up[RP] of[IN] NP �
(a/an)? � is made of NP are[VBP] made[VBN]

of[IN] NP �� + � / are made of NP are[VBP] made[VBN]
of[IN] NP �

(a/an)? � comprises NP comprises[VBZ] NP �� + � / comprise NP comprise[VBP] NP �
(a/an)? � consists of NP consists[VBZ] of[IN] NP �� + � / consist of NP consist[VBP] of[IN] NP �
Table 2: Clues and Patterns for the Constitutive Role

As an additional heuristic, we test if the lemmatized
head of NP � is an element of the following list contain-
ing nouns denoting an indication of amount:

�
variety,

bundle, majority, thousands, million, millions, hundreds,
number, numbers, set, sets, series, range � and further-
more this NP � is followed by the preposition ’of’. In
that case we would take the head of the noun phrase after
the preposition ’of’ as potential candidate of the Consti-
tutive role. For example, when considering a conversa-
tion is made up of a series of observable interpersonal
exchanges, we would take exchange as a potential qualia
element candidate instead of series.

3.3 The Telic Role

The Telic Role is in principle acquired in the same way as
the Formal and Constitutive roles with the exception that
the qualia element is not only the head of a noun phrase,
but also a verb or a verb followed by a noun phrase. Table

3 gives the corresponding clues and patterns. In particu-
lar, the returned candidate qualia elements are the lem-
matized underlined expressions in PURP:=

+
w+[VB] NP� NP � be[VB]

+
w+[VBD]).

Clue Pattern
purpose of a � is purpose[NN] of[IN]

NP
�

is[VBZ] (to[TO])? PURP
purpose of

� + � / is purpose[NN] of[IN]
NP
�

is[VBZ] (to[TO])? PURP
(a/an)? � is used to (A � a �An � an) NP

�
is[VBZ]

used[VBN] to[TO] PURP� + � / are used to NP
�

are[VBZ] used[VBN]
to[TO] PURP

Table 3: Clues and Patterns for the Telic Role

3.4 The Agentive Role

As mentioned in (Hearst, 1992), it is not always as
straightforward to find lexico-syntactic patterns reliably
conveying a certain relation. In fact, we did not find any
patterns reliably identifying qualia elements for the Agen-
tive role. Certainly, it would have been possible to find
the source of the creation by using patterns such as X is
made by Y or X is produced by Y. However, we found
that these patterns do not reliably convey a verb describ-
ing how an object is brought into existence. The fact
that it is far from straightforward to find patterns indi-
cating an Agentive role is further corroborated by the re-
search in (Yamada and Baldwin, 2004), in which only
one pattern indicating a qualia relation is used, namely
’NN BE V[+en]’ in order to match passive constructions
such as the book was written. On the other hand it is
clear that constructing a reliable clue for this pattern is
not straightforward given the current state-of-the-art con-
cerning search engine queries. Nevertheless, in order to
also get results for the Agentive role, we apply a different
method here. Instead of issuing a query which is used to
search for possible candidates for the role, we take advan-
tage of the fact that the verbs which describe how some-
thing comes into being, particularly artificial things, are
often quite general phrases like ”make, produce, write,
build...”. So instead of generating clues as above, we
calculate the value �������
	���

�����������
���������! ��  ���"$#&%('

�*)
�����+�
	���

���������*)
for the nominal we want to acquire a qualia structure for
as well as the following verbs: build, produce, make,
write, plant, elect, create, cook, construct and design. If
this value is over a threshold (0.0005 in our case), we as-
sume that it is a valid filler of the Agentive qualia role.

4 Evaluation

We evaluate our approach for the lexical elements knife,
beer, book, which are also discussed in (Johnston and
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Busa, 1996) or (Pustejovsky, 1991), as well as computer,
an abstract noun, i.e. conversation, as well as two very
specific multi-term words, i.e. natural language process-
ing and data mining. We give the automatically learned
weighted Qualia Structures for these entries in Figures 3,
4, 5 and 6. The evaluation of our approach consists on
the one hand of a discussion of the weighted qualia struc-
tures, in particular comparing them to the ideal struc-
tures form the literature. On the other hand, we also
asked a student at our institute to assign credits to each
of the qualia elements from 0 (incorrect) to 3 (totally cor-
rect) whereby 1 credit meaning ’not totally wrong’ and 2
meaning ’still acceptable’.

4.1 Quantitative Evaluation

The distribution of credits for each qualia role and term
is given in Table 4. It can be seen that with three
exceptions: beer



formal, book



agentive as well as

beer



constitutive, ’3’ is the mark assigned in most
cases to the automatically learned qualia elements. Fur-
ther, for almost every query term and qualia role, at
least 50% of the automatically learned qualia structures
have a mark of ’2’ or ’3’ – the only exceptions being
beer



formal with 45.45%, book



agentive with 33.33%

and beer



constitutive with 28.57%. In general this
shows that the automatically learned qualia roles are in-
deed reasonable. Considering the average over all the
terms (’All’ in the table), we observe that the qualia role
which is recognized most reliably is the Telic one with
73.15% assignments of credit ’3’ and 75.93% of cred-
its ’2’ or ’3’, followed by the Agentive role with 71.43%
assignments of credit 3. The results for the Formal and
Constitutive role are still reasonable with 62.09% assign-
ments of credit ’3’ and 66.01% assignments of credits
’2’ or ’3’ for the Formal role; and respectively 61.61%
and 64.61% for the Constitutive role. The worst results
are achieved for the Constitutive role due to the fact that
26.26% of the qualia elements are regarded as totally
wrong. Table 5 supports the above claims and shows
the average credits assigned by the human evaluator per
query term and role. It shows again that the roles with
the best results are the Agentive and Telic roles, while the
Formal and Constitutive roles are not identified as accu-
rately. This is certainly due to the fact that the patterns
for the Telic role are much less ambiguous than the ones
for the Formal and Constitutive roles. Finally, we also
discuss the correlation between the credits assigned and
the Jaccard Coefficient. Figure 2 shows this correlation.
While for the Formal role the correlation is as expected,
i.e. the higher the credit assigned, the higher also the Jac-
card Coefficient, for the Constitutive and Telic roles this
correlation is unfortunately less clear, thus making the
task of finding a cut-off threshold more difficult.

4.2 Qualitative Evaluation & Discussion

In this section we provide a more subjective evaluation
of the automatically learned qualia structures by compar-
ing them to ideal qualia structures discussed in the liter-
ature wherever possible. In particular, we discuss more
in detail the qualia structure for book, knife and beer and
leave the detailed assessment of the qualia structures for
computer, natural language processing, data mining and
conversation to the interested reader.
For book, the first four candidates of the Formal role,
i.e. product, item, publication and document are very ap-
propriate, but alluding to the physical object meaning of
book as opposed to the meaning in the sense of informa-
tion container (compare (Pustejovsky, 1991). As candi-
dates for the Agentive role we have make, write and cre-
ate which are appropriate, write being the ideal filler of
the Agentive role according to (Pustejovsky, 1991). For
the Constitutive role of book we get – besides it at the
first position which could be easily filtered out – sign
(2nd position), letter (3rd position) and page (6th posi-
tion), which are quite appropriate. The top four candi-
dates for the Telic role are give, select, read and purchase.
It seems that give is emphasizing the role of a book as a
gift, read is referring to the most obvious purpose of a
book as specified in the ideal qualia structures of (Puste-
jovsky, 1991) as well as (Johnston and Busa, 1996) and
purchase denotes the more general purpose of a book, i.e.
to be bought.
The first element of the Formal role of knife unfortunately
denotes the material it is typically made of, i.e. steel, but
the next 5 elements are definitely appropriate: weapon,
item, kitchenware, object and instrument. The ideal ele-
ment artifact tool (compare (Johnston and Busa, 1996))
can be found at the 10th position. The results are inter-
esting in that on the one hand the most prominent mean-
ing of knife according to the web is the one of a weapon.
On the other hand our results are more specific, classify-
ing a knife as kitchenware instead of merely as an arti-
fact tool. Very interesting are the specific and accurate
results at the end of the list. The reason why they appear
at the end is that the Jaccard Coefficient ranks them lower
because they are more specific, thus appearing less fre-
quently. This shows that using some other measure less
sensitive to frequency could yield more accurate results.
The fillers of the Agentive role produce, make and create
seem all appropriate, whereby make corresponds exactly
to the ideal filler for the Agentive role as mentioned in
(Johnston and Busa, 1996). The results for the Constitu-
tive role contain not only parts but also materials a knife
is made of and thus contain more information than the
typical qualia structures assumed in the literature. The
best results are (in this order) blade, metal, steel, wood
and handle at the 6th position. In fact, in the ideal qualia
structure in (Johnston and Busa, 1996) blade and han-
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Formal
0 1 2 3

Book 2/17 (11.76%) 4/17 (23.52%) 1/17 (5.88%) 10/17 (58.82%)
Computer 8/28 (28.57%) 1/28 (3.57%) 2/28 (7.14%) 17/28 (60.71%)
Knife 3/16 (18.75%) 0/16 (0%) 0/16 (0%) 13/16 (81.25%)
Beer 12/22 (54.54%) 0/22 (0%) 2/22 (9.09%) 8/22 (36.36%)
Data Mining 6/25 (24%) 0/25 (0%) 0/25 (0%) 19/25 (76%)
Natural Language Processing 2/15 (13.33%) 1/15 (6.66%) 0/15 (0%) 12/15 (80%)
Conversation 10/30 (33.33%) 4/30 (13.33%) 0/30 (0%) 16/30 (53.33%)
All 43/153 (28.10%) 11/153 (7.19%) 6/153 (3.92%) 95/153 (62.09%)

Agentive
Book 0/3 (0%) 2/3 (66.66%) 0/3 (0%) 1/3 (33.33%)
Computer 0/1 (0%) 0/1 (0%) 0/1 (0%) 1/1 (100%)
Knife 0/3 (0%) 0/3 (0%) 0/3 (0%) 3/3 (100%)
Beer 0/3 (0%) 1/3 (33.33%) 0/3 (0%) 2/3 (66.66%)
Data Mining 0/1 (0%) 0/1 (0%) 0/1 (0%) 1/1 (100%)
Natural Language Processing 0/1 (0%) 0/1 (0%) 0/1 (0%) 1/1 (100%)
Conversation 1/2 (50%) 0/2 (0%) 0/2 (0%) 1/2 (50%)
All 1/14 (7.14%) 3/14 (21.43%) 0/14 (0%) 10/14 (71.43%)

Constitutive
Book 8/29 (27.58%) 4/29 (13.79%) 1/29 (3.44%) 16/29 (55.17%)
Computer 6/26 (23.07%) 1/26 (3.84%) 0/26 (0%) 19/26 (73.07%)
Knife 4/15 (26.66%) 0/15 (0%) 0/15 (0%) 11/15 (73.33%)
Beer 5/7 (71.42%) 0/7 (0%) 0/7 (0%) 2/7 (28.57%)
Data Mining 0/1 (0%) 0/1 (0%) 0/1 (0%) 1/1 (100%)
Natural Language Processing
Conversation 3/21 (14.28%) 4/21 (19.04%) 0/21 (0%) 14/21 (66.66%)
All 26/99 (26.26%) 9/99 (9%) 3/99 (3%) 61/99 (61.61%)

Telic
Book 3/22 (13.63%) 2/22 (9.09%) 3/22 (13.63%) 14/22 (63.63%)
Computer 0/27 (0%) 3/27 (11.11%) 0/27 (0%) 24/27 (88.88%)
Knife 5/18 (27.77%) 0/18 (0%) 0/18 (0%) 13/18 (72.22%)
Beer
Data Mining 2/22 (9.09%) 4/22 (18.18%) 0/22 (0%) 16/22 (72.72%)
Natural Language Processing 1/6 (16.66%) 0/6 (0%) 0/6 (0%) 5/6 (83.33%)
Conversation 6/13 (46.15%) 0/13 (0%) 0/13 (0%) 7/13 (53.84%)
All 17/108 (15.74%) 9/108 (8.33%) 3/108 (2.78%) 79/108 (73.15%)

Table 4: Distribution of credits for each role and term

Formal Agentive Constitutive Telic
Book 2.12 1.67 1.86 2.27
Computer 2 3 2.23 2.78
Knife 2.44 3 2.2 2.17
Beer 1.27 2.33 0.96 n.a.
Data Mining 2.28 3 3 2.36
Natural Language Processing 2.47 3 n.a. 2.5
Conversation 1.73 1.5 2.19 1.62
All 1.99 2.36 2.02 2.33

Table 5: Average credits for each role
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Figure 2: Average Jaccard Coefficient value per credit

dle are mentioned as fillers of the Constitutive role, while
there are no elements describing the materials of which a
knife is made of. Finally, the top four candidates for the
Telic role are kill, slit, cut and slice, whereby cut corre-
sponds to the ideal filler of the qualia structure for knife
as mentioned in (Johnston and Busa, 1996).
Considering the qualia structure for beer, it is surpris-
ing that no purpose has been found. The reason is that
currently no results are returned by Google for the clue
a beer is used to and the four snippets returned for the
purpose of a beer contain expressions of the form the
purpose of a beer is to drink it which is not matched
by our patterns as it is a pronoun and not matched by
our NP pattern (unless it is matched by an error as in the
Qualia Structure for book in Figure 4). Considering the
results for the Formal role, the elements drink (1st), al-
cohol (2nd) and beverage (4th) are much more specific
than liquid as given in (Pustejovsky, 1991), while thing
at the 3rd position is certainly too general. Furthermore,
according to the automatically learned qualia structure,
beer is made of rice, malt and hop, which are perfectly
reasonable results. Very interesting are the results con-
coction and libation for the Formal role of beer, which
unfortunately were rated low by our evaluator (compare
Figure 3).
Overall, the discussion has shown that the results pro-
duced by our method are reasonable when compared to
the qualia structures from the literature. In general, our
method produces in some cases additional qualia candi-
dates, such as the ones describing the material a knife is
typically made of. In other cases it discovers more spe-
cific candidates, such as for example weapon or kitchen-
ware as elements of the Formal role for knife instead of
the general term artifact tool.

5 Related Work

There is quite a lot of work related to the use of lin-
guistic patterns to discover certain ontological relations
from text. Hearst’s (Hearst, 1992) seminal work had the
aim of discovering taxonomic relations from electronic
dictionaries. The precision of the is-a-relations learned

is 61/106 (57.55%) when measured against WordNet
as gold standard, which is comparable to our results.
Hearst’s idea has been reapplied by different researchers
with either slight variations in the patterns used (Iwan-
ska et al., 2000), to acquire knowledge for anaphora res-
olution (Poesio et al., 2002), or to discover other kinds
of semantic relations such as part-of relations (Char-
niak and Berland, 1999) or causation relations (Girju and
Moldovan, 2002).
Instead of matching these patterns in a large text collec-
tion, some researchers have recently turned to the Web
to match these patterns such as in (Cimiano and Staab,
2004) or (Markert et al., 2003). (Cimiano and Staab,
2004) for example aim at learning instance-of as well as
taxonomic (is-a) relations. This is very related to the ac-
quisition of the Formal role proposed here. (Markert et
al., 2003) aim at acquiring knowledge for anaphora res-
olution, while (Etzioni et al., 2004) aim at learning the
complete extension of a certain concept. For example,
they aim at finding all the actors in the world.
Our approach goes further in that it not only learns typing,
superconcept or instance-of relations, but also Constitu-
tive and Telic relations.
There also exist approaches specifically aiming at learn-
ing qualia elements from corpora based on machine
learning techniques. (Claveau et al., 2003) for example
use Inductive Logic Programming to learn if a given verb
is a qualia element or not. However, their approach goes
not as far as learning the complete qualia structure for a
lexical element in an unsupervised way as presented in
our approach. In fact, in their approach they do not dis-
tinguish between different qualia roles and restrict them-
selves to verbs as potential fillers of qualia roles. (Ya-
mada and Baldwin, 2004) present an approach to learn-
ing Telic and Agentive relations from corpora analyzing
two different approaches: one relying on matching cer-
tain lexico-syntactic patterns as in the work presented
here, but also a second approach consisting in training
a maximum entropy model classifier. Their conclusion is
that the results produced by the classification approach
correlate better with two hand-crafted gold standards.
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The patterns used by (Yamada and Baldwin, 2004) differ
substantially from the ones used in this paper, which is
mainly due to the fact that search engines do not provide
support for regular expressions and thus instantiating a
pattern as ’V[+ing] Noun’ is impossible in our approach
as the verbs are unknown a priori.
Finally, (Pustejovsky et al., 1993) present an interesting
framework for the acquisition of semantic relations from
corpora not only relying on statistics, but guided by the-
oretical lexicon principles.

6 Conclusion

We have presented an approach to automatically learn-
ing Qualia Structures from the Web. Such an approach is
especially interesting either for lexicographers aiming at
constructing lexicons, but even more for natural language
processing systems relying on deep lexical knowledge as
represented by qualia structures. We have in particular
shown that the qualia structures learned by our system
are reasonable. In general, it is valid to claim that our
system is the first one automatically producing complete
qualia structures for a given nominal.
Our system can be tested online at http://km.aifb.uni-
karlsruhe.de/pankow/qualia/. Further work will aim at
improving the system but also at using the automatically
learned structures within NLP applications.
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Knife
Formal

steel 3.8666 3
weapon 3.4876 3
item 1.7458 3
kitchenware 1.6840 3
object 1.6025 3
instrument 1.2963 3
utensil 1.2886 3
court 1.1441 0
equipment 0.9479 3
tool 0.7090 3
action 0.7028 0
time 0.6590 0
cutting instrument 0.0739 3
cutting instruments 0.0551 3
emergency items 0.0383 3
cutting weapons 0.0232 3

Agentive
produce 3
make 3
create 3

Constitutive
blade 5.4618 3
metal 5.0205 3
steel 3.8666 3
wood 2.9699 3
person 2.6829 0
handle 1.9223 3
tang 1.6784 3
gold 1.6609 0
alloy 1.2466 3
dragonfly 0.8742 3
model 0.7513 3
tool 0.7090 0
quality 0.6575 3
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rotating discs 0.0062 3

Telic
kill 3.7626 3
slit 3.4829 3
cut 3.4373 3
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an instrument 0.8137 0
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cut things 0.0545 3
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add details 0.0361 0
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slit a wide variety 0.0004 3

Beer
Formal

drink 9.6677 3
alcohol 4.6006 3
thing 4.0028 3
beverage 3.6182 3
adventure 3.0825 0
mistake 2.7014 0
matter 2.6533 0
style 2.1583 0
delight 1.9198 3
people 1.4465 0
creation 1.2201 0
can 0.9433 3
list 0.8432 0
product 0.8224 3
refreshment 0.5328 3
concoction 0.4851 0
libation 0.1147 0
summery 0.0872 0
adult beverages 0.0848 2
speciality beers 0.0269 2
looney things 0.0002 0

Agentive
produce 3
make 3
create 1

Constitutive
rice 2.9871 0
malt 2.5724 3
hop 2.1744 3
bottom 2.1179 0
continuum 0.4808 0
puree 0.3563 0
stoneware 0.3325 0

Figure 3: Weighted Qualia Structure for knife and beer
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Book
Formal

product 34.6238 3
item 33.8573 3
publication 20.2621 3
document 14.4778 3
history 12.7262 1
project 8.9809 2
material 8.6704 3
reader 8.3890 0
resource 7.7259 3
source 7.6739 3
piece 7.6131 3
format 7.2203 0
tool 6.1124 1
object 3.7705 3
specifics 0.5374 1
library materials 0.1468 3
library property 0.0026 1

Agentive
make 1
write 3
create 1

Constitutive
it 21.5785 0
sign 21.0870 3
letter 18.7778 3
part 11.7830 1
individual 11.4043 0
page 10.9202 3
collection 10.7901 0
teaching 10.7004 2
language 9.6041 1
period 9.4002 0
paper 9.3551 3
table 8.7089 3
material 8.6704 3
word 8.1424 3
piece 7.6131 0
chapter 7.4746 3
presentation 7.0955 3
detail 6.8218 3
minute 5.3550 0
sheet 4.4369 3
lie 3.0866 1
ticket 2.3198 0
ink 2.2769 3
dot 1.7427 3
leather 1.1162 1
leaf 1.0266 3
title page 0.3639 3
peice 0.0530 0
dedication page 0.0076 3

Telic
give 14.8954 1
select 12.9594 0
read 12.4937 3
purchase 9.0372 3
support 8.0204 3
identify 7.9388 1
represent 5.7829 2
inspire 1.7292 3
convey 1.3940 3
present information 0.0728 3
provide additional information 0.0368 3
convey information 0.0260 3
filch 0.0101 3
share a story 0.0081 3
commit crime 0.0061 0
contain words 0.0055 3
introduce concepts 0.0038 2
traprock 0.0015 0
stock libraries 0.0009 3
hold a collection 0.0008 3
fund special projects 0.0007 2
support teachings 0.0001 3

Computer
Formal

technology 20.3667 3
information 20.2418 0
network 14.8052 3
hardware 14.6539 3
service 13.9161 3
office 12.2881 0
equipment 7.4594 2
machine 7.0099 3
item 6.7469 3
device 5.6259 3
medium 4.0503 3
fix 3.9188 0
piece 3.5898 3
notebook 2.1126 3
circuit 1.8663 0
consumer electronics 1.1544 0
appliance 1.0045 3
toy 0.7934 3
office equipment 0.4055 3
datum 0.3262 0
computer clipart 0.3156 1
mentality 0.1158 0
network device 0.0343 3
artefact 0.0339 3
data stores 0.0133 3
display screen equipment 0.0042 2
library equipment 0.0037 3
complex computer processes 0.0001 0

Agentive
build 3

Constitutive
software 25.5230 3
hardware 14.6539 3
part 14.6224 1
electronics 9.6139 3
individual 9.3791 0
memory 8.9683 3
man 5.9584 0
device 5.6259 3
unit 5.2078 3
component 4.3808 3
switch 4.2159 3
mix 3.8996 0
string 1.8896 3
circuit 1.8663 0
silicon 1.7717 3
actor 1.2127 0
processing unit 0.1444 3
individual components 0.1122 3
hardware components 0.1087 3
centra 0.0530 0
computer codes 0.0463 3
plastic case 0.0167 3
data storage device 0.0077 3
transitors 0.0022 3

Telic
make 16.9616 1
access 15.5691 3
control 12.2216 3
run 8.6411 3
assist 4.1410 3
publish 3.0015 3
solve 2.9701 3
facilitate 2.8860 3
insight 2.2718 3
combine 1.9592 1
calculate 1.2977 3
execute 1.2792 3
translate 1.2530 3
suppose 1.1340 3
provide information 0.8969 3
access data 0.1025 3
imitate 0.0998 1
provide feedback 0.0900 3
human freedom 0.0065 3
teach children 0.0266 3
enable people 0.0255 3
manage information 0.0231 3
process words 0.0009 3
support program goals 0.0003 3
reduce analysis time 0.0002 3
perform useful computations 0.0001 3

Conversation
Formal

concept 6.6834 3
expression 5.8487 3
context 5.2338 3
object 4.6343 0
sound 4.4566 0
function 4.1414 0
material 4.1324 0
place 3.7806 0
employee 3.4710 0
skill 3.3323 3
interaction 3.1092 3
communication 3.0006 3
activity 2.9859 3
people 2.9027 0
label 2.7427 3
time 2.6158 1
source 1.6782 0
text 1.5877 1
transmission 1.2251 3
information 1.2182 3
contact 1.1309 3
utterance 0.9499 1
transaction 0.9412 3
school activities 0.2094 3
datum 0.1462 3
mannerism 0.0635 0
communication difficulties 0.0412 1
ambient audio 0.0148 3
official forms 0.0140 3
priceless tidbits 0.0002 0

Agentive
make 3
create 0

Constitutive
relationship 6.1848 3
silence 5.7213 3
answer 5.6855 3
question 4.8714 3
sentence 4.8663 3
story 4.4669 3
laughter 3.1766 1
unit 2.9359 1
tree 2.7633 0
contribution 2.6421 3
world 2.1804 0
sequence 1.8986 3
requests 1.4969 3
repetition 1.4267 3
token 1.2746 1
bonus 1.2155 1
pauses 1.1568 3
utterance 0.9499 0
cliches 0.2556 3
interpersonal exchanges 0.0082 3
brief debates 0.0003 3

Telic
exchange 4.2769 3
establish 3.3530 3
further 3.2694 0
allow 3.2489 3
create 2.7141 0
generate 2.0107 0
get 1.9484 0
gloss 0.4780 0
exchange information 0.2313 3
exchange ideas 0.1896 3
enable people 0.1151 3
pass time 0.0469 0
teach skills 0.0171 3

Figure 4: Weighted Qualia Structures for book, computer and conversation
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Data Mining
Formal

data analysis 2.1492 3
intelligence 1.4242 0
analysis 1.2009 3
tool 1.1987 3
prediction 0.9682 3
approach 0.7279 3
speciality 0.6245 3
system 0.6018 3
application 0.5209 3
functionality 0.3974 3
process 0.3840 3
mechanism 0.3503 3
type 0.3372 0
practice 0.3310 3
technology 0.3240 3
activity 0.3207 3
employment 0.2565 0
use 0.2128 3
name 0.1944 3
area 0.1856 0
datum 0.1701 0
data warehousing technologies 0.1497 3
subject 0.1403 0
information process 0.0498 3
information process techniques 0.0005 3

Agentive
design 3

Constitutive
knowledge 0.7062 3

Telic
connect 0.5949 0
achieve 0.3651 3
uncover 0.3460 3
research 0.3374 3
answer 0.2122 3
support 0.2025 3
look 0.1834 0
provide information 0.1527 3
search 0.1451 3
tell 0.1099 1
identify patterns 0.0959 3
discover patterns 0.0934 3
identify trends 0.0765 3
provide a foundation 0.0620 1
improve services 0.0559 3
gain business intelligence 0.0048 3
explore knowledge 0.0045 3
detect dependencies 0.0036 3
gain business 0.0223 1
analyse large volumes 0.0022 1
find new prospects 0.0011 3
analyze disparate customer data 0.0002 3

Figure 5: Weighted Qualia Structure for data mining

Natural Language Processing
Formal

linguistics 1.0047 3
technique 0.4983 3
intelligence 0.3559 3
method 0.2748 3
model 0.1847 3
aspect 0.1380 3
scheme 0.1258 3
system 0.0750 1
research 0.0636 3
application 0.0603 3
science 0.0536 3
technology 0.0414 3
area 0.0373 0
product 0.0337 0
document processing applications 0.0174 3

Agentive
design 3

Constitutive
Telic

build 0.1037 3
keep track 0.0820 3
understand 0.0662 3
soften 0.0501 0
provide 0.0384 3
build tailored knowledge base 0.0008 3

Figure 6: Weighted Qualia Structure for natural language
processing
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Abstract

We investigate the meaning extensions
of very frequent and highly polysemous
verbs, both in terms of their compositional
contribution to a light verb construction
(LVC), and the patterns of acceptability of
the resulting LVC. We develop composi-
tionality and acceptability measures that
draw on linguistic properties specific to
LVCs, and demonstrate that these statisti-
cal, corpus-based measures correlate well
with human judgments of each property.

1 Introduction

Due to a cognitive priority for concrete, easily visu-
alizable entities, abstract notions are often expressed
in terms of more familiar and concrete things and
situations (Newman, 1996; Nunberg et al., 1994).
This gives rise to a widespread use of metaphor
in language. In particular, certain verbs easily un-
dergo a process of metaphorization and meaning
extension (e.g., Pauwels, 2000; Newman and Rice,
2004). Many such verbs refer to states or acts that
are central to human experience (e.g., sit, put, give);
hence, they are often both highly polysemous and
highly frequent. An important class of verbs prone
to metaphorization are light verbs, on which we fo-
cus in this paper.

A light verb, such as give, take, or make, com-
bines with a wide range of complements from differ-
ent syntactic categories (including nouns, adjectives,
and prepositions) to form a new predicate called a
light verb construction (LVC). Examples of LVCs
include:

1. (a) Azin took a walk along the river.
(b) Sam gave a speech to a few students.
(c) Joan takes care of him when I am away.
(d) They made good on their promise to win.
(e) You should always take this into account.

The light verb component of an LVC is “seman-
tically bleached” to some degree; consequently, the
semantic content of an LVC is assumed to be de-
termined primarily by the complement (Butt, 2003).
Nevertheless, light verbs exhibit meaning variations
when combined with different complements. For ex-
ample, give in give (someone) a present has a literal
meaning, i.e., “transfer of possession” of a THING

to a RECIPIENT. In give a speech, give has a figura-
tive meaning: an abstract entity (a speech) is “trans-
ferred” to the audience, but no “possession” is in-
volved. In give a groan, the notion of transfer is
even further diminished.

Verbs exhibiting such meaning variations are
widespread in many languages. Hence, successful
NLP applications—especially those requiring some
degree of semantic interpretation—need to identify
and treat them appropriately. While figurative uses
of a light verb are indistinguishable on the surface
from a literal use, this distinction is essential to a
machine translation system, as Table 1 illustrates. It
is therefore important to determine automatic mech-
anisms for distinguishing literal and figurative uses
of light verbs.

Moreover, in their figurative usages, light verbs
tend to have similar patterns of cooccurrence with
semantically similar complements (e.g., Newman,
1996). Each similar group of complement nouns can
even be viewed as a possible meaning extension for
a light verb. For example, in give advice, give or-
ders, give a speech, etc., give contributes a notion of
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Sentence in English Intermediate semantics Translation in French
Azin gave Sam a book. (e1/give Azin a donné un livre à Sam.

:agent (a1/“Azin”) Azin gave a book to Sam.
:theme (b1/“book”)
:recepient (s1/“Sam”))

Azin gave the lasagna a try. (e2/give-a-try � try Azin a essayé le lasagne.
:agent (a1/“Azin”) Azin tried the lasagna.
:theme (l1/“lasagna”))

Table 1: Sample sentences with literal and figurative usages of give.

“abstract transfer”, while in give a groan, give a cry,
give a moan, etc., give contributes a notion of “emis-
sion”. There is much debate on whether light verbs
have one highly abstract (underspecified) meaning,
further determined by the context, or a number of
identifiable (related) subsenses (Pustejovsky, 1995;
Newman, 1996). Under either view, it is important
to elucidate the relation between possible interpreta-
tions of a light verb and the sets of complements it
can occur with.

This study is an initial investigation of techniques
for the automatic discovery of meaning extensions
of light verbs in English. As alluded to above, we
focus on two issues: (i) the distinction of literal ver-
sus figurative usages, and (ii) the role of semanti-
cally similar classes of complements in refining the
figurative meanings.

In addressing the first task, we note the connection
between the literal/figurative distinction and the de-
gree to which a light verb contributes composition-
ally to the semantics of an expression. In Section 2,
we elaborate on the syntactic properties that relate
to the compositionality of light verbs, and propose
a statistical measure incorporating these properties,
which places light verb usages on a continuum of
meaning from literal to figurative. Figure 1(a) de-
picts such a continuum in the semantic space of give,
with the literal usages represented as the core.

The second issue above relates to our long-term
goal of dividing the space of figurative uses of a
light verb into semantically coherent segments, as
shown in Figure 1(b). Section 3 describes our hy-
pothesis on the class-based nature of the ability of
potential complements to combine with a light verb.
At this point we cannot spell out the different figura-
tive meanings of the light verb associated with such
classes. We take a preliminary step in proposing a
statistical measure of the acceptability of a combi-
nation of a light verb and a class of complements,

and explore the extent to which this measure can re-
veal class-based behaviour.

Subsequent sections of the paper present the cor-
pus extraction methods for estimating our composi-
tionality and acceptability measures, the collection
of human judgments to which the measures will be
compared, experimental results, and discussion.

2 Compositionality of Light Verbs

2.1 Linguistic Properties: Syntactic Flexibility

We focus on a broadly-documented subclass of light
verb constructions, in which the complement is an
activity noun that is often the main source of seman-
tic predication (Wierzbicka, 1982). Such comple-
ments are assumed to be indefinite, non-referential
predicative nominals (PNs) that are often morpho-
logically related to a verb (see the complements in
examples (1a–c) above). We refer to this class of
light verb constructions as “LV+PN” constructions,
or simply LVCs.

There is much linguistic evidence that semantic
properties of a lexical item determine, to a large ex-
tent, its syntactic behaviour (e.g., Rappaport Hovav
and Levin, 1998). In particular, the degree of com-
positionality (decomposability) of a multiword ex-
pression has been known to affect its participation
in syntactic transformations, i.e., its syntactic flexi-
bility (e.g., Nunberg et al., 1994). English “LV+PN”
constructions enforce certain restrictions on the syn-
tactic freedom of their noun components (Kearns,
2002). In some, the noun may be introduced by a
definite article, pluralized, passivized, relativized, or
even wh-questioned:
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give a book
give a present

give money

give rightgive advice

give opportunity

give orders

give permission

give a speech

give a smile

give a laugh give a yell

give a groan

give a sweep

give a push

give a dust

give a wipe

give a pull

give a kick

more figurative
give a book

give a present
give money

give a wipe

give a sweep

give a dust

give a push

give a kick

give a pull

give orders

give a speech

give advice
give permission

give right

give opportunity

give a yell

give a laugh

give a groan

give a smile

(a) (b)

Figure 1: Two possible partitionings of the semantic space of give.

2. (a) Azin gave a speech to a few students.
(b) Azin gave the speech just now.
(c) Azin gave a couple of speeches last night.
(d) A speech was given by Azin just now.
(e) Which speech did Azin give?

Others have little or no syntactic freedom:

3. (a) Azin gave a groan just now.
(b) * Azin gave the groan just now.
(c) ? Azin gave a couple of groans last night.
(d) * A groan was given by Azin just now.
(e) * Which groan did Azin give?

Recall that give in give a groan is presumed to be
a more abstract usage than give in give a speech. In
general, the degree to which the light verb retains
aspects of its literal meaning—and contributes them
compositionally to the LVC—is reflected in the de-
gree of syntactic freedom exhibited by the LVC. We
exploit this insight to devise a statistical measure of
compositionality, which uses evidence of syntactic
(in)flexibility of a potential LVC to situate it on a
scale of literal to figurative usage of the light verb:
i.e., the more inflexible the expression, the more fig-
urative (less compositional) the meaning.

2.2 A Statistical Measure of Compositionality

Our proposed measure quantifies the degree of syn-
tactic flexibility of a light verb usage by looking

at its frequency of occurrence in any of a set of
relevant syntactic patterns, such as those in exam-
ples (2) and (3). The measure, COMP

�
LV � N � , as-

signs a score to a given combination of a light verb
(LV) and a noun (N):

COMP
�
LV � N ���

ASSOC
�
LV;N ���

DIFF
�
ASSOC

�
LV;N � PSpos ��� ASSOC

�
LV;N � PSneg ���

That is, the greater the association between LV and
N, and the greater the difference between their asso-
ciation with positive syntactic patterns and negative
syntactic patterns, the more figurative the meaning
of the light verb, and the higher the score.

The strength of the association between the light
verb and the complement noun is measured using
pointwise mutual information (PMI) whose standard
formula is given here:1

ASSOC
�
LV;N �	� log

Pr
�
LV � N �

Pr
�
LV � Pr

�
N �


 log
n f
�
LV � N �

f
�
LV � f

�
N �

where n is an estimate of the total number of verb
and object noun pairs in the corpus.

1PMI is subject to overestimation for low frequency items
(Dunning, 1993), thus we require a minimum frequency of oc-
currence for the expressions under study.
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PSpos represents the set of syntactic patterns pre-
ferred by less-compositional (more figurative) LVCs
(e.g., as in (3a)), and PSneg represents less preferred
patterns (e.g., those in (3b–e)). Typically, these pat-
terns most affect the expression of the complement
noun. Thus, to measure the strength of association
between an expression and a set of patterns, we use
the PMI of the light verb, and the complement noun
appearing in all of the patterns in the set, as in:

ASSOC
�
LV;N � PSpos � � PMI

�
LV;N � PSpos �

� log
Pr
�
LV � N � PSpos �

Pr
�
LV � Pr

�
N � PSpos �


 log
n f
�
LV � N � PSpos �

f
�
LV � f

�
N � PSpos �

in which counts of occurrences of N in syntactic
contexts represented by PSpos are summed over all
patterns in the set. ASSOC(LV;N � PSneg) is defined
analogously using PSneg in place of PSpos.

DIFF measures the difference between the asso-
ciation strengths of the positive and negative pat-
tern sets, referred to as ASSOC pos and ASSOCneg ,
respectively. Our calculation of ASSOC uses max-
imum likelihood estimates of the true probabilities.
To account for resulting errors, we compare the two
confidence intervals,

�
ASSOC pos � ∆ASSOC pos � and�

ASSOCneg � ∆ASSOCneg � , as in Lin (1999). We take
the minimum distance between the two as a conser-
vative estimate of the true difference:

DIFF
�
ASSOC

�
LV;N � PSpos ��� ASSOC

�
LV;N � PSneg ��� 
�

ASSOC pos � ∆ASSOCpos �
� � ASSOCneg � ∆ASSOCneg �

Taking the difference between confidence intervals
lessens the effect of differences that are not statisti-
cally significant. (The confidence level, 1 � α, is set
to 95% in all experiments.)

3 Acceptability Across Semantic Classes

3.1 Linguistic Properties: Class Behaviour

In this aspect of our work, we narrow our focus onto
a subclass of “LV+PN” constructions that have a PN
complement in a stem form identical to a verb, pre-
ceded (typically) by an indefinite determiner (as in
(1a–b) above). Kearns (2002), Wierzbicka (1982),

and others have noted that the way in which LVs
combine with such PNs to form acceptable LVCs
is semantically patterned—that is, PNs with similar
semantics appear to have the same trends of cooc-
currence with an LV.

Our hypothesis is that semantically similar
LVCs—i.e., those formed from an LV plus any of
a set of semantically similar PNs—distinguish a fig-
urative subsense of the LV. In the long run, if this is
true, it could be exploited by using class information
to extend our knowledge of acceptable LVCs and
their likely meaning (cf. such an approach to verb
particle constructions by Villavicencio, 2003).

As steps to achieving this long-term goal, we must
first devise an acceptability measure which deter-
mines, for a given LV, which PNs it successfully
combines with. We can even use this measure to
provide evidence on whether the hypothesized class-
based behaviour holds, by seeing if the measure ex-
hibits differing behaviour across semantic classes of
potential complements.

3.2 A Statistical Measure of Acceptability

We develop a probability formula that captures the
likelihood of a given LV and PN forming an accept-
able LVC. The probability depends on both the LV
and the PN, and on these elements being used in an
LVC:

ACPT
�
LV � PN �

� Pr
�
LV � PN � LVC �

� Pr
�
PN � Pr

�
LVC � PN � Pr

�
LV � PN � LVC �

The first factor, Pr
�
PN � , reflects the linguistic

observation that higher frequency words are more
likely to be used as LVC complements (Wierzbicka,
1982). We estimate this factor by f

�
PN ��� n, where n

is the number of words in the corpus.
The probability that a given LV and PN form an

acceptable LVC further depends on how likely it is
that the PN combines with any light verbs to form an
LVC. The frequency with which a PN forms LVCs is
estimated as the number of times we observe it in the
prototypical “LV a/an PN” pattern across LVs. (Note
that such counts are an overestimate, since we can-
not determine which usages are indeed LVCs vs. lit-
eral uses of the LV.) Since these counts consider the
PN only in the context of an indefinite determiner,
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we normalize over counts of “a/an PN” (noted as
aPN) to form the conditional probability estimate of
the second factor:

Pr
�
LVC � PN � 


v
∑

i � 1
f
�
LV i � aPN �

f
�
aPN �

where v is the number of light verbs considered.
The third factor, Pr

�
LV � PN � LVC � , reflects that

different LVs have varying degrees of acceptability
when used with a given PN in an LVC. We similarly
estimate this factor with counts of the given LV and
PN in the typical LVC pattern: f

�
LV � aPN ��� f

�
aPN � .

Combining the estimates of the three factors
yields:

ACPT
�
LV � PN � 


f
�
PN �
n

�

v
∑

i � 1
f
�
LV i � aPN �

f
�
aPN �

� f
�
LV � aPN �
f
�
aPN �

4 Materials and Methods

4.1 Light Verbs

Common light verbs in English include give, take,
make, get, have, and do, among others. We focus
here on two of them, i.e., give and take, that are
frequently and productively used in light verb con-
structions, and are highly polysemous. The Word-
Net polysemy count (number of different senses) of
give and take are 44 and 42, respectively.

4.2 Experimental Expressions

Experimental expressions—i.e., potential LVCs us-
ing give and take—are drawn from two sources.
The development and test data used in experiments
of compositionality (bncD and bncT, respectively)
are randomly extracted from the BNC (BNC Ref-
erence Guide, 2000), yielding expressions cover-
ing a wide range of figurative usages of give and
take, with complements from different semantic cat-
egories. In contrast, in experiments that involve ac-
ceptability, we need figurative usages of “the same
type”, i.e., with semantically similar complement
nouns, to further examine our hypothesis on the
class-based behaviour of light verb combinations.
Since in these LVCs the complement is a predica-
tive noun in stem form identical to a verb, we form

development and test expressions by combining give
or take with verbs from selected semantic classes of
Levin (1993), taken from Stevenson et al. (2004).

4.3 Corpora

We gather estimates for our COMP measure from the
BNC, processed using the Collins parser (Collins,
1999) and TGrep2 (Rohde, 2004). Because some
LVCs can be rare in classical corpora, our ACPT es-
timates are drawn from the World Wide Web (the
subsection indexed by AltaVista). In our compari-
son of the two measures, we use web data for both,
using a simplified version of COMP. The high level
of noise on the web will influence the performance
of both measures, but COMP more severely, due to
its reliance on comparisons of syntactic patterns.

Web counts are based on an exact-phrase query to
AltaVista, with the number of pages containing the
search phrase recorded as its frequency.2 The size
of the corpus is estimated at 3.7 billion, the number
of hits returned in a search for the. These counts are
underestimates of the true frequencies, as a phrase
may appear more than once in a web page, but we
assume all counts to be similarly affected.

4.4 Extraction

Most required frequencies are simple counts of a
word or string of words, but the syntactic patterns
used in the compositionality measure present some
complexity. Recall that PSpos and PSneg are pattern
sets representing the syntactic contexts of interest.
Each pattern encodes several syntactic attributes: v,
the voice of the extracted expression (active or pas-
sive); d, the type of the determiner introducing N
(definite or indefinite); and n, the number of N (sin-
gular or plural). In our experiments, the set of pat-
terns associated with less-compositional use, PSpos,
consists of the single pattern with values active, in-
definite, and singular, for these attributes. PSneg con-
sists of all patterns with at least one of these at-
tributes having the alternative value.

While our counts on the BNC can use syntac-
tic mark-up, it is not feasible to collect counts on
the web for some of the pattern attributes, such as
voice. We develop two different variations of the
measure, one for BNC counts, and a simpler one for

2All searches were performed March 15–30, 2005.
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give take
Human Ratings bncD bncT bncD bncT
‘low’ 20 10 36 19
‘medium’ 35 16 9 5
‘high’ 24 10 27 10
Total 79 36 72 34

Table 2: Distribution of development and test expressions with
respect to human compositionality ratings.

web counts. We thus subscript COMP with abbre-
viations standing for each attribute in the measure:
COMPvdn for a measure involving all three attributes
(used on BNC data), and COMPd for a measure in-
volving determiner type only (used on web data).

5 Human Judgments

5.1 Judgments of Compositionality

To determine how well our proposed measure
of compositionality captures the degree of lit-
eral/figurative use of a light verb, we compare its
scores to human judgments on compositionality.
Three judges (native speakers of English with suf-
ficient linguistic knowledge) answered yes/no ques-
tions related to the contribution of the literal mean-
ing of the light verb within each experimental ex-
pression. The combination of answers to these ques-
tions is transformed to numerical ratings, ranging
from 0 (fully non-compositional) to 4 (largely com-
positional). The three sets of ratings yield linearly
weighted Kappa values of .34 and .70 for give and
take, respectively. The ratings are averaged to form
a consensus set to be used for evaluation.3

The lists of rated expressions were biased toward
figurative usages of give and take. To achieve a spec-
trum of literal to figurative usages, we augment the
lists with literal expressions having an average rating
of 5 (fully compositional). Table 2 shows the distri-
bution of the experimental expressions across three
intervals of compositionality degree, ‘low’ (ratings�

1), ‘medium’ (1 � ratings � 3), and ‘high’ (rat-
ings � 3). Table 3 presents sample expressions with
different levels of compositionality ratings.

3We asked the judges to provide short paraphrases for each
expression, and only use those expressions for which the major-
ity of judges expressed the same sense.

Sample Expressions
Human Ratings give take
‘low’ give a squeeze take a shower
‘medium’ give help take a course
‘high’ give a dose take an amount

Table 3: Sample expressions with different levels of composi-
tionality ratings.

5.2 Judgments of Acceptability

Our acceptability measure is compared to the hu-
man judgments gathered by Stevenson et al. (2004).
Two expert native speakers of English rated the ac-
ceptability of each potential “LV+PN” construction
generated by combining give and take with candi-
date complements from the development and test
Levin classes. Ratings were from 1 (unacceptable)
to 5 (completely natural; this was capped at 4 for
test data), allowing for “in-between” ratings as well,
such as 2.5. On test data, the two sets of ratings
yielded linearly weighted Kappa values of .39 and
.72 for give and take, respectively. (Interestingly,
a similar agreement pattern is found in our human
compositionality judgments above.) The consensus
set of ratings was formed from an average of the two
sets of ratings, once disagreements of more than one
point were discussed.

6 Experimental Results

To evaluate our compositionality and acceptability
measures, we compare them to the relevant con-
sensus human ratings using the Spearman rank cor-
relation coefficient, rs. For simplicity, we report
the absolute value of rs for all experiments. Since
in most cases, correlations are statistically signifi-
cant (p ��� 01), we omit p values; those rs values
for which p is marginal (i.e., � 01

�
p
� � 10) are

subscripted with an “m” in the tables. Correlation
scores in boldface are those that show an improve-
ment over the baseline, PMILVC .

The PMILVC measure is an informed baseline, since
it draws on properties of LVCs. Specifically, PMILVC

measures the strength of the association between a
light verb and a noun appearing in syntactic patterns
preferred by LVCs, i.e., PMILVC � PMI

�
LV;N � PSpos � .

Assuming that an acceptable LVC forms a detectable
collocation, PMILVC can be interpreted as an informed
baseline for degree of acceptability. PMILVC can also

43



PMILVC COMPvdn
LV Data Set n rs rs

bncT 36 .62 .57
give bncDT 114 .68 .70

bncDT/a 79 .68 .75
bncT 34 .51 .59

take bncDT 106 .52 .61
bncDT/a 68 .63 .72

Table 4: Correlations (rs; n = # of items) between human com-
positionality ratings and COMP measure (counts from BNC).

be considered as a baseline for the degree of compo-
sitionality of an expression (with respect to the light
verb component), under the assumption that the less
compositional an expression, the more its compo-
nents appear as a fixed collocation.

6.1 Compositionality Results

Table 4 displays the correlation scores of the human
compositionality ratings with COMPvdn, our com-
positionality measure estimated with counts from
the BNC. Given the variety of light verb usages
in expressions used in the compositionality data,
we report correlations not only on test data (bncT),
but also on development and test data combined
(bncDT) to get more data points and hence more re-
liable correlation scores. Compared to the baseline,
COMPvdn has generally higher correlations with hu-
man ratings of compositionality.

There are two different types of expressions
among those used in compositionality experiments:
expressions with an indefinite determiner a (e.g.,
give a kick) and those without a determiner (e.g.,
give guidance). Despite shared properties, the two
types of expressions may differ with respect to syn-
tactic flexibility, due to differing semantic proper-
ties of the noun complements in the two cases. We
thus calculate correlation scores for expressions with
the indefinite determiner only, from both develop-
ment and test data (bncDT/a). We find that COMPvdn

has higher correlations (and larger improvements
over the baseline) on this subset of expressions.
(Note that there are comparable numbers of items
in bncDT and bncDT/a, and the correlation scores
are highly significant—very small p values—in both
cases.)

To explore the effect of using a larger but noisier
corpus, we compare the performance of COMPvdn

Levin class: 18.1,2 30.3 43.2
LV n=35 n=18 n=35

give % fair/good ratings 51 44 54
log of mean ACPT -6 -4 -5

take % fair/good ratings 23 28 3
log of mean ACPT -4 -3 -6

Table 5: Comparison of the proportion of human ratings consid-
ered “fair” or “good” in each class, and the log10 of the mean
ACPT score for that class.

with COMPd , the compositionality measure using
web data. The correlation scores for COMPd on
bncDT are .41 and .35, for give and take, respec-
tively, compared to a baseline (using web counts) of
.37 and .32. We find that COMPvdn has significantly
higher correlation scores (larger rs and much smaller
p values), as well as larger improvements over the
baseline. This is a confirmation that using more syn-
tactic information, from less noisy data, improves
the performance of our compositionality measure.4

6.2 Acceptability Results

We have two goals in assessing our ACPT measure:
one is to demonstrate that the measure is indeed in-
dicative of the level of acceptability of an LVC, and
the other is to explore whether it helps to indicate
class-based patterns of acceptability.

Regarding the latter, Stevenson et al. (2004) found
differing overall levels of (human) acceptability for
different Levin classes combined with give and take.
This indicates a strong influence of semantic simi-
larity on the possible LV and complement combina-
tions. Our ACPT measure also yields differing pat-
terns across the semantic classes. Table 5 shows,
for each light verb and test class, the proportion of
acceptable LVCs according to human ratings, and
the log of the mean ACPT score for that LV and
class combination. For take, the ACPT score gener-
ally reflects the difference in proportion of accepted
expressions according to the human ratings, while
for give, the measure is less consistent. (The three
development classes show the same pattern.) The
ACPT measure thus appears to reflect the differing
patterns of acceptability across the classes, at least

4Using the automatically parsed BNC as a source of less
noisy data improves performance. However, since these con-
structions may be infrequent with any particular complement,
we do not expect the use of cleaner but more plentiful text (such
as existing treebanks) to improve the performance any further.
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Levin PMILVC ACPT
LV Class n rs rs

18.1,2 35 .39m .55
give 30.3 18 .38m .73

43.2 35 .30m .34m
18.1.2 35 .57 .61

take 30.3 18 .55 .64
43.2 35 .43 .47

Table 6: Correlations (rs; n = # of items) between acceptability
measures and consensus human ratings (counts from web).

Human PMILVC ACPT COMPd
Ratings LV n rs rs rs
accept. give 88 .31 .42 .40
(Levin) take 88 .58 .61 .56
compos. give 114 .37 .21m .41
(bncDT) take 106 .32 .30 .35

Table 7: Correlations (rs; n = # of items) between each measure
and each set of human ratings (counts from web).

for take.
To get a finer-grained notion of the degree to

which ACPT conforms with human ratings, we
present correlation scores between the two, in
Table 6. The results show that ACPT has higher
correlation scores than the baseline—substantially
higher in the case of give. The correlations for give
also vary more widely across the classes.

These results together indicate that the accept-
ability measure may be useful, and indeed taps into
some of the differing levels of acceptability across
the classes. However, we need to look more closely
at other linguistic properties which, if taken into ac-
count, may improve the consistency of the measure.

6.3 Comparing the Two Measures

Our two measures are intended for different pur-
poses, and indeed incorporate differing linguistic in-
formation about LVCs. However, we also noted that
PMILVC can be viewed as a baseline for both, indicat-
ing some underlying commonality. It is worth ex-
ploring whether each measure taps into the differ-
ent phenomena as intended. To do so, we correlate
COMP with the human ratings of acceptability, and
ACPT with the human ratings of compositionality,
as shown in Table 7. (The formulation of the ACPT

measure here is adapted for use with determiner-less
LVCs.) For comparability, both measures use counts
from the web. The results confirm that COMPd cor-
relates better than does ACPT with compositionality

ratings, while ACPT correlates best with acceptabil-
ity ratings.

7 Discussion and Concluding Remarks

Recently, there has been increasing awareness of the
need for appropriate handling of multiword expres-
sions (MWEs) in NLP tasks (Sag et al., 2002). Some
research has concentrated on the automatic acqui-
sition of semantic knowledge about certain classes
of MWEs, such as compound nouns or verb parti-
cle constructions (VPCs) (e.g., Lin, 1999; McCarthy
et al., 2003; Villavicencio, 2003). Previous research
on LVCs, on the other hand, has primarily focused
on their automatic extraction (e.g., Grefenstette and
Teufel 1995; Dras and Johnson 1996; Moirón 2004;
though see Stevenson et al. 2004).

Like most previous studies that focus on seman-
tic properties of MWEs, we are interested in the is-
sue of compositionality. Our COMP measure aims to
identify a continuum along which a light verb con-
tributes to the semantics of an expression. In this
way, our work combines aspects of earlier work on
VPC semantics. McCarthy et al. (2003) determine a
continuum of compositionality of VPCs, but do not
distinguish the contribution of the individual compo-
nents. Bannard et al. (2003), on the other hand, look
at the separate contribution of the verb and particle,
but assume that a binary decision on the composi-
tionality of each is sufficient.

Previous studies determine compositionality by
looking at the degree of distributional similarity be-
tween an expression and its component words (e.g.,
McCarthy et al., 2003; Bannard et al., 2003; Bald-
win et al., 2003). Because light verbs are highly pol-
ysemous and frequently used in LVCs, such an ap-
proach is not appropriate for determining their con-
tribution to the semantics of an expression. We in-
stead examine the degree to which a light verb usage
is “similar” to the prototypical LVC, through a sta-
tistical comparison of its behaviour within different
syntactic patterns. Syntactic flexibility and semantic
compositionality are known to be strongly correlated
for many types of MWEs (Nunberg et al., 1994). We
thus intend to extend our approach to include other
polysemous verbs with metaphorical extensions.

Our compositionality measure correlates well
with the literal/figurative spectrum represented in
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human judgments. We also aim to determine finer-
grained distinctions among the identified figurative
usages of a light verb, which appear to relate to the
semantic class of its complement. Semantic class
knowledge may enable us to elucidate the types of
relations between a light verb and its complement
such as those determined in the work of Wanner
(2004), but without the need for the manually la-
belled training data which his approach requires.
Villavicencio (2003) used class-based knowledge to
extend a VPC lexicon, but assumed that an unob-
served VPC is not acceptable. We instead believe
that more robust application of class-based knowl-
edge can be achieved with a better estimate of the
acceptability of various expressions.

Work indicating acceptability of MWEs is largely
limited to collocational analysis using PMI-based
measures (Lin, 1999; Stevenson et al., 2004). We
instead use a probability formula that enables flex-
ible integration of LVC-specific linguistic proper-
ties. Our ACPT measure yields good correlations
with human acceptability judgments; indeed, the av-
erage increase over the baseline is about twice as
high as that of the acceptability measure proposed
by Stevenson et al. (2004). Although ACPT also
somewhat reflects different patterns across seman-
tic classes, the results clearly indicate the need for
incorporating more knowledge into the measure to
capture class-based behaviour more consistently.

The work presented here is preliminary, but is the
first we are aware of to tie together the two issues of
compositionality and acceptability, and relate them
to the notion of class-based meaning extensions of
highly polysemous verbs. Our on-going work is fo-
cusing on the role of the noun component of LVCs,
to determine the compositional contribution of the
noun to the semantics of the expression, and the role
of noun classes in influencing the meaning exten-
sions of light verbs.
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Abstract

This paper describes a technique for ex-
tracting idioms from text. The tech-
nique works by finding patterns such as
“thrills and spills”, whose reversals (such
as “spills and thrills”) are never encoun-
tered.

This method collects not only idioms, but
also many phrases that exhibit a strong
tendency to occur in one particular order,
due apparently to underlying semantic is-
sues. These include hierarchical relation-
ships, gender differences, temporal order-
ing, and prototype-variant effects.

1 Introduction

Natural language is full of idiomatic and metaphor-
ical uses. However, language resources such as dic-
tionaries and lexical knowledge bases give at best
poor coverage of such phenomena. In many cases,
knowledge bases will mistakenly ‘recognize’ a word
and this can lead to more harm than good: for exam-
ple, a typical mistake of blunt logic would be to as-
sume that “somebody let the cat out of the bag” im-
plied that “somebody let some mammal out of some
container.”

Idiomatic generation of natural language is, if
anything, an even greater challenge than idiomatic
language understanding. As pointed out decades ago
by Fillmore (1967), a complete knowledge of En-
glish requires not only an understanding of the se-
mantics of the wordgood, but also an awareness

that this special adjective (alone) can occur with the
word any to construct phrases like“Is this paper
any good at all?”, and traditional lexical resources
were not designed to provide this information. There
are many more general examples occur: for exam-
ple, “the big bad wolf” sounds right and the “the bad
big wolf” sounds wrong, even though both versions
are syntactically and semantically plausible. Such
examples are perhaps ‘idiomatic’, though we would
perhaps not call them ‘idioms’, since they are com-
positional and can sometimes be predicted by gen-
eral pattern of word-ordering.

In general, the goal of manually creating a com-
plete lexicon of idioms and idiomatic usage patterns
in any language is unattainable, and automatic ex-
traction and modelling techniques have been devel-
oped to fill this ever-evolving need. Firstly, auto-
matically identifying potential idioms and bringing
them to the attention of a lexicographer can be used
to improve coverage and reduce the time a lexicog-
rapher must spend in searching for such examples.
Secondly and more ambitiously, the goal of such
work is to enable computers to recognize idioms in-
dependently so that the inevitable lack of coverage
in language resources does not impede their ability
to respond intelligently to natural language input.

In attempting a first-pass at this task, the exper-
iments described in this paper proceed as follows.
We focus on a particular class of idioms that can
be extracted usinglexicosyntactic patterns(Hearst,
1992), which are fixed patterns in text that suggest
that the words occurring in them have some inter-
esting relationship. The patterns we focus on are
occurrences of the form “A and/orB”, whereA and
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B are both nouns. Examples include “football and
cricket” and “hue and cry.” From this list, we extract
those examples for which there is a strong prefer-
ence on theorderingof the participants. For exam-
ple, we do see the pattern “cricket and football,” but
rarely if ever encounter the pattern “cry and hue.”
Using this technique, 4173 potential idioms were ex-
tracted. This included a number of both true idioms,
and words that have regular semantic relationships
but do appear to have interesting orderings on these
relationships (such as earlier before later, strong be-
fore weak, prototype before variant).

The rest of this paper is organized as follows. Sec-
tion 2 elaborates on some of the previous works
that motivate the techniques we have used. Sec-
tion 3 describes the precise method used to extract
idioms through their asymmetric appearance in a
large corpus. Section 4 presents and analyses several
classes of results. Section 5 describes the methods
attempted to filter these results into pairs of words
that are more and less contextually related to one an-
other. These include a statistical method that analy-
ses the original corpus for evidence of semantic re-
latedness, and a combinatoric method that relies on
link-analysis on the resulting graph structure.

2 Previous and Related Work

This section describes previous work in extracting
information from text, and inferring semantic or id-
iomatic properties of words from the information so
derived.

The main technique used in this paper to ex-
tract groups of words that are semantically or id-
iomatically related is a form of lexicosyntactic pat-
tern recognition. Lexicosyntactic patterns were pio-
neered by Marti Hearst (Hearst, 1992; Hearst and
Scḧutze, 1993) in the early 1990’s, to enable the
addition of new information to lexical resources
such as WordNet (Fellbaum, 1998). The main in-
sight of this sort of work is that certain regular pat-
terns in word-usage can reflect underlying seman-
tic relationships. For example, the phrase “France,
Germany, Italy, and other European countries” sug-
gests thatFrance, Germany and Italy are part of
the class ofEuropean countries. Such hierarchi-
cal examples are quite sparse, and greater coverage
was later attained by Riloff and Shepherd (1997)

and Roark and Charniak (1998) in extracting rela-
tions not of hierarchy but ofsimilarity, by find-
ing conjunctions or co-ordinations such as “cloves,
cinammon, and nutmeg” and “cars and trucks.” This
work was extended by Caraballo (1999), who built
classes of related words in this fashion and then rea-
soned that if a hierarchical relationship could be ex-
tracted foranymember of this class, it could be ap-
plied to all members of the class. This technique
can often mistakenly reason across an ambiguous
middle-term, a situation that was improved upon
by Cederberg and Widdows (2003), by combining
pattern-based extraction with contextual filtering us-
ing latent semantic analysis.

Prior work in discovering non-compositional
phrases has been carried out by Lin (1999)
and Baldwin et al. (2003), who also used LSA
to distinguish between compositional and non-
compositional verb-particle constructions and noun-
noun compounds.

At the same time, work in analyzing idioms and
asymmetry within linguistics has become more so-
phisticated, as discussed by Benor and Levy (2004),
and many of the semantic factors underlying our re-
sults can be understood from a sophisticated theoret-
ical perspective.

Other motivating and related themes of work for
this paper include collocation extraction and ex-
ample based machine translation. In the work of
Smadja (1993) on extracting collocations, prefer-
ence was given to constructions whose constituents
appear in a fixed order, a similar (and more generally
implemented) version of our assumption here that
asymmetric constructions are more idiomatic than
symmetric ones. Recent advances in example-based
machine translation (EBMT) have emphasized the
fact that examining patterns of language use can
significantly improve idiomatic language generation
(Carl and Way, 2003).

3 The Symmetric Graph Model as used for
Lexical Acquisition and Idiom
Extraction

This section of the paper describes the techniques
used to extract potentially idiomatic patterns from
text, as deduced from previously successful experi-
ments in lexical acquisition.
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The main extraction technique is to use lexicosyn-
tactic patterns of the form “A, B and/orC” to find
nouns that are linked in some way. For example,
consider the following sentence from the British Na-
tional Corpus (BNC).

Ships laden with nutmeg, cinnamon,
cloves or coriander once battled the
SevenSeasto bring home their precious
cargo.

Since the BNC is tagged for parts-of-speech, we
know that the words highlighted in bold are nouns.
Since the phrase “nutmeg, cinnamon, cloves or co-
riander” fits the pattern “A, B, C or D”, we create
nodes for each of these nouns and create links be-
tween them all. When applied to the whole of the
BNC, these links can be aggregated to form a graph
with 99,454 nodes (nouns) and 587,475 links, as de-
scribed by Widdows and Dorow (2002). This graph
was originally used for lexical acquisition, since
clusters of words in the graph often map to recog-
nized semantic classes with great accuracy (> 80%,
(Widdows and Dorow, 2002)).

However, for the sake of smoothing over sparse
data, these results made the assumption that the links
between nodes weresymmetric, rather thandirected.
In other words, when the pattern “A and/orB” was
encountered, a link fromA toB anda link fromB
to A was introduced. The nature of symmetric and
antisymmetric relationships is examined in detail by
Widdows (2004). For the purposes of this paper, it
suffices to say that the assumption of symmetry (like
the assumption of transitivity) is a powerful tool for
improving recall in lexical acquisition, but also leads
to serious lapses in precision if the directed nature of
links is overlooked, especially if symmetrized links
are used to infer semantic similarity.

This problem was brought strikingly to our atten-
tion by the examples in Figure 1. In spite of appear-
ing to be a circle of related concepts, many of the
nouns in this group are not similar at all, and many
of the links in this graph are derived from very very
different contexts. In Figure 1,cat andmouse are
linked (they are re both animals and the phrase “cat
and mouse” is used quite often): but thenmouse
andkeyboard are also linked because they are both
objects used in computing. Akeyboard, as well
as being a typewriter or computer keyboard, is also

fiddlefiddlefiddle

catcatcat

barrowbarrowbarrowbowbowbow

cellocellocello

flutefluteflute

mousemousemouse

dogdogdog

gamegamegame

kittenkittenkitten

violinviolinviolin

pianopianopiano

bassbassbass

fortepianofortepianofortepiano

orchestraorchestraorchestra

keyboardkeyboardkeyboard

screenscreenscreen

monitormonitormonitor

memorymemorymemory

guitarguitarguitar

ratratrat

humanhumanhuman

Figure 1: A cluster involving several idiomatic links

used to mean (part of) a musical instrument such as
an organ or piano, andkeyboard is linked tovio-
lin. A violin and afiddle are the same instrument (as
often happens with synonyms, they don’t appear to-
gether often but have many neighbours in common).
The unlikely circle is completed (it turns out) be-
cause of the phrase from the nursery rhyme

Hey diddle diddle,
The cat and the fiddle,
The cow jumped over the moon;

It became clear from examples such as these that
idiomatic links, like ambiguous words, were a seri-
ous problem when using the graph model for lexical
acquisition. However, with ambiguous words, this
obstacle has been gradually turned into an opportu-
nity, since we have also developed ways to used the
apparent flaws in the model to detect which words
are ambiguous in the first place (Widdows, 2004, Ch
4). It is now proposed that we can take the same op-
portunity for certain idioms: that is, to use the prop-
erties of the graph model to work out which links
arise from idiomatic usage rather than semantic sim-
ilarity.

3.1 Idiom Extraction by Recognizing
Asymmetric Patterns

The link between thecat andfiddle nodes in Fig-
ure 1 arises from the phrase “the cat and the fiddle.”

50



Table 1: Sample of asymmetric pairs extracted from
the BNC.

First word Second word
highway byway

cod haddock
composer conductor

wood charcoal
element compound
assault battery
north south
rock roll
god goddess

porgy bess
middle class

war aftermath
god hero

metal alloy
salt pepper

mustard cress
stocking suspender

bits bobs
stimulus response

committee subcommittee
continent ocean

However, no corpus examples were ever found of the
converse phrase, “the fiddle and the cat.” In cases
like these, it may be concluded that placing asym-
metric link between these two nodes is a mistake.
Instead, adirectedlink may be more appropriate.

We therefore formed the hypothesis that if the
phrase “A and/orB” occurs frequently in a corpus,
but the phrase “B and/orA” is absent, then the link
betweenA andB should be attributed to idiomatic
usage rather than semantic similarity.

The next step was to rebuild, finding those rela-
tionships that have a strong preference for occurring
in a fixed order. Sure enough, several British English
idioms were extracted in this way. However, several
other kinds of relationships were extracted as well,
as shown in the sample in Table 1.1

After extracting these pairs, groups of them were
gathered together intodirected subgraphs.2 Some of
these directed subgraphs are reporduced in the anal-
ysis in the following section.

1The sample chosen here was selected by the authors to be
representative of some of the main types of results. The com-
plete list can be found athttp://infomap.stanford.
edu/graphs/idioms.html .

2These can be viewed athttp://infomap.
stanford.edu/graphs/directed_graphs.html

4 Analysis of Results

The experimental results include representatives of
several types of asymmetric relationships, including
the following broad categories.

‘True’ Idioms

There are many results that display genuinely id-
iomatic constructions. By this, we mean phrases that
have an explicitly lexicalized nature that a native
speaker may be expected to recognize as having a
special reference or significance. Examples include
the following:

thrills and spills
bread and circuses
Punch and Judy
Porgy and Bess
lies and statistics
cat and fiddle
bow and arrow
skull and crossbones

This category is quite loosely defined. It includes

1. historic quotations such as “lies, damned lies
and statistics”3 and “bread and circuses.”4

2. titles of well-known works.

3. colloquialisms.

4. groups of objects that have become fixed nom-
inals in their own right.

All of these types share the common property that
any NLP system that encounters such groups, in or-
der to behave correctly, should recognize, generate,
or translate them as phrases rather than words.

Hierarchical Relationships

Many of the asymmetric relationships follow
some pattern that may be described as roughly hi-
erarchical. A cluster of examples from two domains
is shown in Figure 2. In chess, a rook outranks a
bishop, and the phrase “rook and bishop” is encoun-
tered much more often than the phrase “bishop and

3Attributed to Benjamin Disraeli, certainly popularized by
Mark Twain.

4A translation of “panem et circenses,” from the Roman
satirist Juvenal, 1st century AD.
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Figure 2: Asymmetric relationships in the chess and
church hierarchies

Figure 3: Different beverages, showing their di-
rected relationships

rook.” In the church, a cardinal outranks a bishop,
a bishop outranks most of the rest of the clergy, and
the clergy (in some senses) outrank the laity.

Sometimes these relationships coincide with fig-
ure / ground and agent / patient distinctions. Ex-
amples of this kind, as well as “clergy and laity”,
include “landlord and tenant”, “employer and em-
ployee”, “teacher and pupil”, and “driver and pas-
sengers”. An interesting exception is “passengers
and crew”, for which we have no semantic explana-
tion.

Pedigree and potency appear to be two other di-
mensions that can be used to establish the directed-
ness of an idiomatic construction. For example, Fig-
ure 3 shows that alcoholic drinks normally appear
before their cocktail mixers, but that wine outranks
some stronger drinks.

Figure 4: Hierarchical relationships between aristo-
crats, some of which appear to be gender based

Gender Asymmetry

The relationship between corresponding concepts
of different genders also appear to be heavily biased
towards appearing in one direction. Many of these
relationships are shown in Figure 4. This shows
that, in cases where one class outranks another, the
higher class appears first, but if the classes are iden-
tical, then the male version tends to appear before
the female. This pattern is repeated in many pairs
of words such as “host and hostess”, “god and god-
dess”, etc. One exception appears to be in parent-
ing relationships, where female precedes male, as in
“mother and father”, “mum and dad”, “grandma and
grandpa”.

Temporal Ordering

If one word refers to an event that precedes an-
other temporally or logically, it almost always ap-
pears first. The examples in Table 2 were extracted
by our experiment. It has been pointed out that for
cyclical events, it is perfectly possible that the order
of these pairs may be reversed (e.g., “late night and
early morning”), though the data we extracted from
the BNC showed strong tendencies in the directions
given.

A directed subgraph showing many events in hu-
man lives in shown in Figure 5.

Prototype precedes Variant

In cases where one participant is regarded as a
‘pure’ substance and the other is a variant or mix-
ture, the pure substance tends to come first. These
occur particularly in scientific writing, examples
including “element and compound”, “atoms and
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Table 2: Pairs of events that have a strong tendency
to occur in asymmetric patterns.

Before After
spring autumn

morning afternoon
morning evening
evening night
morning night

beginning end
question answer
shampoo conditioner
marriage divorce
arrival departure
eggs larvae

molecules”, “metals and alloys”. Also, we see “ap-
ples and pears”, “apple and plums”, and “apples and
oranges”, suggesting that an apple is a prototypical
fruit (in agreement with some of the results of pro-
totype theory; see Rosch (1975)).

Another possible version of this tendency is that
core precedes periphery, which may also account for
asymmetric ordering of food items such as “fish and
chips”, “bangers and mash”, “tea and coffee” (in the
British National Corpus, at least!) In some cases
such as “meat and vegetables”, a hierarchical or fig-
ure / ground distinction may also be argued.

Mistaken extractions

Our preliminary inspection has shown that the ex-
traction technique finds comparatively few genuine
mistakes, and the reader is encouraged to follow the
links provided to check this claim. However, there
are some genuine errors, most of which could be
avoided with more sophisticated preprocessing.

To improve recall in our initial lexical acquisition
experiments, we chose to strip off modifiers and to
stem plural forms to singular forms, so that “apples
and green pears” would give a link betweenapple
andpear.

However, in many cases this is a mistake, be-
cause the bracketing should not be of the form “A
and (B C),” but of the form “(A andB) C.” Us-
ing part-of-speech tags alone, we cannot recover
this information. One example is the phrase “hard-
ware and software vendors,” from which we ob-
tain a link betweenhardware and vendors, in-
stead of a link betweenhardware and software.
A fuller degree of syntactic analysis would improve
this situation. For extracting semantic relationships,

Figure 5: Directed graph showing that life-events
are usually ordered temporally when they occur to-
gether

Cederberg and Widdows (2003) demonstrated that
nounphrase chunking does this work very satisfacto-
rily, while being much more tractable than full pars-
ing.

The mistaken pairmiddle and class shown in
Table 1 is another of these mistakes, arising from
phrases such as “middle and upper class” and “mid-
dle and working class.” These examples could be
avoided simply by more accurate part-of-speech tag-
ging (since the word “middle” should have been
tagged as an adjective in these examples).

This concludes our preliminary analysis of re-
sults.

5 Filtering using Latent Semantic Analysis
and Combinatoric Analysis

From the results in the previous section, the follow-
ing points are clear.

1. It is possible to extract many accurate exam-
ples of asymmetric constructions, that would be
necessary knowledge for generation of natural-
sounding language.

2. Some of the pairs extracted are examples of
general semantic patterns, others are examples
of genuinely idiomatic phrases.

Even for semantically predictable phrases, the
fact that the words occur in fixed patterns can be
very useful for the purposes of disambiguation, as
demonstrated by (Yarowsky, 1995). However, it

53



would be useful to be able to tell which of the asym-
metric patterns extracted by our experiments corre-
spond to semantically regular phrases which hap-
pen to have a conventional ordering preference, and
which phrases correspond to genuine idioms. This
final section demonstrates two techniques for per-
forming this filtering task, which show promising re-
sults for improving our classification, though should
not yet be considered as reliable.

5.1 Filtering using Latent Semantic Analysis

Latent semantic analysis or LSA (Landauer and Du-
mais, 1997) is by now a tried and tested technique
for determining semantic similarity between words
by analyzing large corpus (Widdows, 2004, Ch 6).
Because of this, LSA can be used to determine
whether a pair of words is likely to participate in a
regular semantic relationship, even though LSA may
not contribute specific information regarding thena-
ture of the relationship. However, once a relation-
ship is expected, LSA can be used to predict whether
this relationship is used in contexts that are typical
uses of the words in question, or whether these uses
appear to be anomalies such as rare senses or idioms.
This technique was used successfully by (Cederberg
and Widdows, 2003) to improve the accuracy of hy-
ponymy extraction. It follows that it should be use-
ful to tell the difference between regularly related
words and idiomatically related words.

To test this hypothesis, we used an LSA model
built from the BNC using the Infomap NLP soft-
ware.5 This was used to measure the LSA similar-
ity between the words in each of the pairs extracted
by the techniques in Section 4. In cases where a
word was too infrequent to appear in the LSA model,
we used ‘folding in,’ which assigns a word-vector
‘on the fly’ by adding together the vectors of any
surrounding words of a target word that are in the
model.

The results are shown in Table 3. The hypothesis
is that words whose occurrence is purely idiomatic
would have a low LSA similarity score, because
they are otherwise not closely related. However, this
hypothesis does not seem to have been confirmed,
partly due to the effects of overall frequency. For
example, the wordPorgy only occurs in the phrase

5Freely available from http://infomap-nlp.
sourceforge.net/

Table 3: Ordering of results from semantically sim-
ilar to semantically dissimilar using LSA

Word pair LSA similarity
north south 0.931
middle class 0.834
porgy bess 0.766
war aftermath 0.676
salt pepper 0.672
bits bobs 0.671
mustard cress 0.603
composer conductor 0.588
cod haddock 0.565
metal alloy 0.509
highway byway 0.480
committee subcommittee 0.479
god goddess 0.456
rock roll 0.398
continent ocean 0.300
wood charcoal 0.273
stimulus response 0.261
stocking suspender 0.177
god hero 0.115
element compound 0.044
assault battery -0.068

granitegranite

cheesecheese

breadbread

chalkchalk

limestonlimestonee   flint  flint

marblmarblee  coa coall sandsand

 sandstone sandstone butte butterr meameatt winewine

sugasugarr  margarin margarinee milkmilk  clay clay

Figure 6: Nodes in the original symmetric graph in
the vicinity ofchalk andcheese

“Porgy and Bess,” and the wordbobs almost always
occurs in the phrase “bits and bobs.” A more effec-
tive filtering technique would need to normalize to
account for these effects. However, there are some
good results: for example, the low score between
assault andbattery reflects the fact that this usage,
though compositional, is a rare meaning of the word
battery, and the same argument can be made forel-
ement andcompound. Thus LSA might be a better
guide for recognizing rarity in meaning of individual
words than it is for idiomaticity of phrases.

5.2 Link analysis

Another technique for determining whether a link is
idiomatic or not is to check whether it connects two
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areas of meaning that are otherwise unconnected. A
hallmark example of this phenomenon is the “chalk
and cheese” example shown in Figure 6.6 Note that
none of the other members of the rock-types clus-
ters is linked to any of the other foodstuffs. We may
be tempted to conclude that the single link between
these clusters is an idiomatic phenomenon. This
technique shows promise, but has yet to be explored
in detail.

6 Conclusions and Further Work

It is possible to extract asymmetric constructions
from text, some of which correspond to idioms
which are indecomposable (in the sense that their
meaning cannot be decomposed into a combination
of the meanings of their constituent words).

Many other phrases were extracted which exhibit
a typical directionality that follows from underlying
semantic principles. While these are sometimes not
defined as ‘idioms’ (because they are still compos-
able), knowledge of their asymmetric behaviour is
necessary for a system to generate natural language
utterances that would sound ‘idiomatic’ to native
speakers.

While all of this information is useful for cor-
rectly interpreting and generating natural language,
further work is necessary to distinguish accurately
between these different categories. The first step in
this process will be to manually classify the results,
and evaluate the performance of different classifica-
tion techniques to see if they can reliably identify
different types of idiom, and also distinguish these
cases from false positives that were mistakenly ex-
tracted. Once some of these techniques have been
evaluated, we will be in a better position to broaden
our techniques by turning to larger corpora such as
the Web.
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Abstract

SemFrame generates FrameNet-like
frames, complete with semantic roles and
evoking lexical units. This output can
enhance FrameNet by suggesting new
frames, as well as additional lexical units
that evoke existing frames. SemFrame
output can also support the addition of
frame semantic relationships to WordNet.

1 Introduction

The intuition that semantic analysis can make a posi-
tive contribution to language-based applications has
motivated the development of a number of lexical-
semantic resources. Prominent among them are
WordNet,1 PropBank,2 and FrameNet.3 The poten-
tial contribution of these resources is constrained by
the information they contain and the level of effort
involved in their development.

For example, semantic annotation tasks (Baker et
al., 2004) typically assign semantic roles to the ar-
guments of predicates. The benefit of the semantic
annotation is constrained by the presence and quality
of semantic roles in the lexical-semantic resource(s)
used. Gildea and Jurafsky (2002) suggest that the
availability of semantic annotation of this sort is use-
ful for information extraction, word sense disam-
biguation, machine translation, text summarization,
text mining, and speech recognition.

1http://www.cogsci.princeton.edu/˜wn
2http://www.cis.upenn.edu/˜ace
3http://framenet.icsi.berkeley.edu

Other tasks rely on the identification of seman-
tic relationships to recognize lexical chains (sets of
semantically related words that enable a text to be
cohesive) (Morris and Hirst, 1991). The success
of this work is constrained by the set of semantic
relationship types and instantiations underlying the
recognition of lexical chains. As Stokes’s disser-
tation (2004) notes, lexical cohesion has been used
in discourse analysis, text segmentation, word sense
disambiguation, text summarization, topic detection
and tracking, and question answering.

Unfortunately, most lexical-semantic resources,
including those previously mentioned, are the prod-
uct of considerable ongoing human effort. Given
the high development costs associated with these re-
sources, the possibility of enhancing them on the
basis of complementary resources that are produced
automatically is welcome.

This paper demonstrates several of the character-
istics and benefits of SemFrame (Green et al., 2004;
Green and Dorr, 2004), a system that produces such
a resource.

1. SemFrame generates semantic frames in a form
like those of FrameNet, the ostensible gold
standard for semantic frames.

2. Some SemFrame frames correspond to
FrameNet frames. When SemFrame identifies
additional lexical units that evoke the frame,
it bolsters the use of semantic frames for
identifying lexical chains.

3. Some SemFrame frames cover semantic space
not yet investigated in FrameNet, which, be-
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cause of the labor-intensive nature of its de-
velopment, is incomplete. The identification of
new frames thus helps fill in gaps in FrameNet.

4. In addition to complementing FrameNet, Sem-
Frame could be used as a more systematic
source of semantic roles for PropBank or could
serve as the basis for adding frame semantic re-
lationships to WordNet.

The rest of the paper is organized as follows:
Section 2 discusses lexical-semantic resources that
could be enhanced by using SemFrame’s output.
Section 3 sets out how SemFrame works, with Sub-
sections 3.1 and 3.2 explaining, respectively, the
identification of lexical units that evoke shared se-
mantic frames and the generation of the internal
structure of those frames. Section 4 discusses how
we evaluate SemFrame’s output. Finally, Section 5
summarizes SemFrame’s contributions and sketches
future directions in its development.

2 Lexical-Semantic Resources

Lexical-semantic resources, such as FrameNet and
PropBank, which involve semantic frames and/or
semantic roles, are one kind of resource that Sem-
Frame’s output can enhance. SemFrame could also
benefit a resource like WordNet that captures differ-
ent kinds of semantic relationships. Here we discuss
characteristics of these resources that make them
amenable to enhancement through SemFrame.

2.1 FrameNet

FrameNet documents the semantic and syntactic be-
havior of words with respect to frames. A frame
characterizes a conventional conceptual structure,
for instance, a situation involving risk, a hitting
event, a commercial transaction. Lexical units are
said to evoke a frame. For example, use of the literal
sense ofbuy introduces into a discourse an expecta-
tion that some object or service (the Goods) passes
from one person (the Seller) to another (the Buyer)
in exchange for something of (presumably equiva-
lent) value (typically Money).

A significant contribution of the FrameNet project
is the creation of frames, which involves the enumer-
ation both of participant roles in the frame (a.k.a,
frame elements, frame slots) and of lexical units that

evoke the frame. As of May 2005, 657 frames have
been defined in FrameNet; approximately 8600 lex-
ical unit/frame associations have been made.

FrameNet’s approach to identifying frames is
“opportunistic” and driven by the corpus data being
annotated. Thus the FrameNet team does not ex-
pect to have a full inventory of frames until a sub-
stantial proportion of the general-purpose vocabu-
lary of English has been analyzed. As the develop-
ment of FrameNet is labor-intensive, supplementing
FrameNet’s frames and evoking lexical units using
data from SemFrame would be beneficial.

2.2 PropBank

Like FrameNet, PropBank (Kingsbury et al., 2002)
is a project aimed at semantic annotation, in this
case of the Penn English Treebank.4 The intent of
PropBank is to provide for “automatic extraction of
relational data” on the basis of consistent labeling
of predicate argument relationships. Typically the
labels/semantic roles are verb-specific (but are of-
ten standardized across synonyms). For example,
the set of semantic arguments forpromise, pledge,
etc. (its ‘roleset’) includes the promiser, the person
promised to, and the promised thing or action. These
correspond respectively to FrameNet’s Speaker, Ad-
dressee, and Message elements within the Commit-
ment frame.

The more general labels used in FrameNet and
SemFrame give evidence of a more systematic ap-
proach to semantic argument structure, more eas-
ily promoting the discovery of relationships among
frames. It can be seen from the terminology used
that PropBank is more focused on the individual ar-
guments of the semantic argument structure, while
FrameNet and SemFrame are more focused on the
overall gestalt of the argument structure, that is, the
frame. The use of FrameNet and SemFrame to sug-
gest more generic (that is, frame-relevant) roleset la-
bels would help move PropBank toward greater sys-
tematicity.

4The semantic annotation tasks in the FrameNet and Prop-
Bank projects enable them to link semantic roles and syntactic
behavior. Enhancing and stabilizing its semantic frame inven-
tory must precede the inclusion of such linkage in SemFrame.
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2.3 WordNet

WordNet is a lexical database for English nouns,
verbs, adjectives, and adverbs. Fine-grained sense
distinctions are recognized and organized into syn-
onym sets (‘synsets’), WordNet’s basic unit of anal-
ysis; each synset has a characterizing gloss, and
most are exemplified through one or more phrases
or sentences.

In addition to the synonymy relationship at the
heart of WordNet, other semantic relationships are
referenced, including, among others, antonymy, hy-
ponymy, troponymy, partonomy, entailment, and
cause-to. On the basis of these relationships, Fell-
baum (1998) noted that WordNet reflected the struc-
ture of frame semantics to a degree, but suggested
that its organization by part of speech would pre-
clude a full frame-semantic approach.

With release 2.0, WordNet added morphological
and topical category relationships that cross over
part-of-speech boundaries. This development relates
to incorporating a full frame-semantic approach in
WordNet in two ways.

First, since the lexical units that evoke a frame are
not restricted to a single part of speech, the ability
to create links between parts of speech is required in
order to encode frame semantic relationships.

Second, topical categories (e.g., slang, meat,
navy, Arthurian legend, celestial body, historical
linguistics, Mafia) have a kinship with semantic
frames, but are not the same. While topical cate-
gory domains map between categories and lexical
items—as do semantic frames—it is often not clear
what internal structure might be posited for a cate-
gory domain. What, for example, would the partici-
pant structure of ‘meat’ look like?

Should WordNet choose to adopt a full frame-
semantic approach, FrameNet and SemFrame
are natural starting points for identifying frame-
semantic relationships between synsets. The most
beneficial enhancement would involve WordNet’s
incorporating FrameNet and/or SemFrame frames
as a separate resource, with a mapping between
WordNet’s synsets and the semantic frame inven-
tory. SemFrame has the extra advantage that its lex-
ical units are already identified as WordNet synsets.

3 Development of SemFrame

There are two main processing stages in producing
SemFrame output: The first establishes verb classes,
while the second generates semantic frames. The
next two subsections describe these stages.

3.1 Establishing Verb Classes

SemFrame adopts a multistep approach to identify-
ing sets of frame-semantically related verb senses.
The basic steps involved in the current version5 of
SemFrame are:

1. Building a graph with WordNet verb synsets as
vertices and semantic relationships as edges

2. Identifying for each vertex a maximal highly
connected component (HCC) (i.e., a highly in-
terconnected subgraph that the vertex is part of)

3. Eliminating HCC’s with undesirable qualities

4. Forming preliminary verb semantic classes by
supplementing HCC’s with reliable semantic
relationships

5. Merging verb semantic classes with a high de-
gree of overlap

Building the Relationships Graph

WordNet 2.0 includes a vast array of semantic
relationships between synsets of the same part of
speech and has now been enhanced with relation-
ships linking synsets of different parts of speech.
Some of these relationships are almost guaranteed
to link synsets that evoke the same frame, while oth-
ers operate within the bounds of a semantic frame
on some occasions, but not others. Among the re-
lationship types in WordNet most fruitful for iden-
tifying verb synsets within the same frame seman-
tic verb class are: synonymy (e.g.,buy, purchase,
as collocated within synsets), antonymy (e.g.,buy,

5The process of establishing verb classes has been re-
designed. All that has been carried over from the previ-
ous/initial version of SemFrame is the use of some of the same
WordNet relationships. New in the current version are: the use
of relationship types first implemented in WordNet 2.0, the pre-
dominant and exclusive use of WordNet as the source of data
(the previous version used WordNet as a source secondary to
the Longman Dictionary of Contemporary English), and mod-
eling the identification of classes of related verbs as a graph,
specifically through the use of highly connected components.
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sell), cause-to (e.g.,transfer, change hands), en-
tailment (e.g.,buy, pay), verb group (e.g., different
commercial senses ofbuy, morphological derivation
(e.g., buy, buyer),6 and “see also” (e.g.,buy, buy
out). Instances of these relationship types for all
verb synsets in WordNet 2.0 are represented as edges
within the graph.

Additional edges are inserted between any two
synsets/vertices related by two or more of the fol-
lowing: clustering of synsets based on the occur-
rence of word stems in their glosses and example
sentences;7 hyperonymy/hyponymy relationships;
and category domain relationships. These three rela-
tionship types are too noisy to be used on their own
for identifying frame semantic relationships among
synsets, but when a relationship is verified by two or
more of these relationships, the likelihood that the
related synsets evoke the same frame is considerably
higher. Table 1 summarizes the number of edges in
the graph supported by each relationship type.

Relationship Type Count
Antonymy 502
Cause-to 218
Entailment 409
Verb group 874
Morphological derivation 8,986
See also 539
Two of: 2,223

Clustering 54,298
Hyperonymy/hyponymy 12,985
Category domain 18,482

Total 13,751

Table 1: Relationship Counts in WordNet 2.0

Identifying Highly Connected Components
(HCC’s)

Step 1 constructs a graph interconnecting thou-
sands of WordNet verb synsets. Identifying sets of
verb synsets likely to evoke the same semantic frame
requires identifying subgraphs with a high degree
of interconnectivity. Empirical investigation has

6SemFrame relates verb synsets with a morphological
derivation relationship to a common noun synset. This includes
verbs related to different members of the shared noun synset.

7Voorhees’ (1986) hierarchical agglomerative clustering al-
gorithm was implemented.

Figure 1: Relationships Subgraph with HCC

shown that “highly connected components” (Har-
tuv and Shamir, 2000)—induced subgraphs of size
k in which every vertex’s connectivity exceedsk2
vertices—identify such sets of verb synsets.8 For
example, in a 5-vertex highly connected component,
each vertex is related to at least 3 other vertices. Fig-
ure 1 shows a portion of the original graph in which
relationship arcs constituting an HCC are given as
solid lines, while those that fail the interconnectivity
threshold are given as dotted lines.

Given an undirected graph, the Hartuv-Shamir al-
gorithm for identifying HCC’s returns zero or more
non-overlapping subgraphs (including zero or more
singleton vertices). But it is inaccurate to assume
that verb synsets evoke only a single frame, as is
suggested by non-overlapping subgraphs.9 For this
reason, we have modified the Hartuv-Shamir algo-
rithm to identify a maximal HCC, if one exists, for
(i.e., that includes) each vertex of the graph. This
modification reduces the effort involved in identify-
ing any single HCC: Since the diameter of a HCC
is no greater than two, only those vertices who are
neighbors of the source vertex, or neighbors of those
neighbors, need to be examined.

8The algorithm for computing HCC’s first finds the mini-
mum cut for a (sub)graph. If the graph meets the highly con-
nected component criterion, the graph is returned, else the al-
gorithm is called recursively on each of the subgraphs created
by the cut. The Stoer-Wagner (1997) algorithm has been imple-
mented for finding the minimum cut.

9Semantic frames can be defined at varying levels of gen-
erality; thus, a given synset may evoke a set of hierarchically
related frames. Words/Synsets may also evoke multiple, unre-
lated frames simultaneously;criticize, for example, evokes both
a Judging frame and a Communication frame.

60



Eliminating Duplicates

Because HCC’s were generated for each vertex
in the relationships graph, considerable duplication
and overlap existed in the output. The output of
step 2 was cleaned up using three filters. First,
duplicate HCC’s were eliminated. Second, any
HCC wholly included within another HCC was
deleted.10 Third, any HCC based only on mor-
phological derivation relationships was deleted. In
SemFrame, all verb synsets morphologically derived
from the same noun synset were related to each
other. Thus all verb synsets derived from a common
noun synset are guaranteed to generate an HCC. If
only such relationships support an HCC, the likeli-
hood that all of the interrelated verb synsets evoke
the same semantic frame is much lower than if other
types of relationships also provide evidence for their
interrelationship.

Supplementing HCC’s

The HCC’s generated in step 2 that survived the
filters implemented in step 3 form the basis of verb
framesets, that is, sets of verb senses that evoke the
same semantic frame. Specifically, all the synsets
represented by vertices in a single HCC form a
frameset.

The connectivity threshold imposed by HCC’s
helps maintain reasonably high precision of the re-
sulting framesets, but is too strict for high recall.
Some types of relationships known to operate within
frame-semantic boundaries generally do not survive
the connectivity threshold cutoff. For example, for
frames of a certain level of generality, if a spe-
cific verb evokes that frame, it is also the case that
its antonym evokes the frame, as antonyms operate
against the backdrop of the same situational con-
text; that is, they share participant structure.11 How-
ever, since antonymy is (only) alexical relationship
between two word senses, A and B, the tight cou-
pling of A and B is unlikely to be reflected in A’s
being directly related to other synsets that are re-
lated to B and vice-versa. Thus, antonyms are un-

10Given the interest in generating semantic frames of varying
levels of generality, this filter may itself be eliminated in the
future.

11Identifying antonyms is especially helpful in the case of
conversives, as withbuy andsell; the inclusion of both in the
frameset promotes discovery of all relevant frame participants,
in this case, both buyer and seller.

likely to be highly connected through WordNet to
other words/synsets that evoke the frame and thus
fail the HCC connectivity threshold. The same ar-
gument can be made for causatively related verbs.
A post-processing step was required therefore to add
to a frameset any verb synsets related through Word-
Net’s antonymy or cause-to relationships to a mem-
ber of the frameset. Similarly, any verb synset en-
tailed by a member of a verb frameset was added to
the frameset.

Other verb synsets fail to survive the connectivity
threshold cutoff because they enter into few relation-
ships of any kind. If a verb synset is related to only
one other verb synset, the assumption is made that it
evokes the same frame as that one other synset; it is
then added to the corresponding frameset.

Lastly, if a synset is related to two or more mem-
bers of a frameset, the likelihood that it evokes the
same semantic frame is reasonably high. Such verb
synsets were added to the frameset if not already
present.

At the end of this phase, any framesets wholly in-
cluded within another frameset were again deleted.

Merging Overlapping Verb Classes

The preceding processes produced many frame-
sets with a significant degree of overlap. For any
two framesets, if at least half of the verb synsets in
both framesets were also members of the other, the
two framesets were merged into a single frameset.

Summary of Stage 1 Results

The above steps generated 1434 framesets, vary-
ing in size from 2 to 25 synsets (see Table 2). Small
framesets dominate the results, with over 60% of the
framesets including only 2 or 3 synsets.

Representative examples of these framesets are
given in Appendix A, where members of each synset
appear in parentheses, followed by the synset’s
gloss. (Examples are ordered by frameset size.)
Smaller and medium-sized framesets generally en-
joy high precision, but many of the largest framesets
would be better split into two or more framesets.

3.2 Generating Semantic Frames

Generating frames from verb framesets relies on
the insight that the semantic arguments of a frame
are largely drawn from nouns associated with verb
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Frameset Size Count
2 536
3 346

4-5 309
6-8 169
9-12 54
13-25 20
Total 1434

Table 2: Count of Frameset Sizes

synsets in the frameset. In SemFrame’s processing,
these include nouns in the gloss of a verb synset or in
the gloss of its corresponding LDOCE verb sense(s),
as well as nouns (that is, noun synsets) to which
a verb synset is morphologically related and those
naming the category domain to which a verb synset
belongs. In the latter two cases, the nouns come dis-
ambiguated within WordNet, but nouns from glosses
must undergo disambiguation. The set of noun
senses associated with a verb frameset is then ana-
lyzed against the WordNet noun hierarchy, using an
adaptation of Agirre and Rigau’s (1995) conceptual
density measure. This analysis identifies a frame
name and a set of frame participants, all of which
correspond to nodes in the WordNet noun hierarchy.

Disambiguating Nouns from Glosses

First we consider how nouns from WordNet and
LDOCE verb glosses are disambiguated.12 This step
involves looking for matches between the stems of
words in the glosses of WordNet noun synsets that
include the noun needing to be disambiguated, on
the one hand, and the stems of words in the glosses
of all WordNet verb synsets (and corresponding
LDOCE verb senses) in the frameset, on the other
hand.

A similarity score is computed by dividing the
match count by the number of non-stop-word stems
in the senses under consideration. SemFrame favors
predominant senses by examining word senses in
frequency order. Any sense with a non-zero similar-
ity score that is the highest score yet seen is chosen
as an appropriate word sense.

The various nodes within WordNet’s noun net-

12Identification of LDOCE verb senses that correspond to
WordNet verb synsets is carried out using a similar strategy.

work that correspond to a verb frameset—either
through morphological derivation or category do-
main relationships in WordNet or through the dis-
ambiguation of nouns from the glosses of verbs in
the frameset—constitute ‘evidence synsets’ for the
participant structure of the corresponding semantic
frame and form the input for the conceptual density
calculation.

In preparation for use in calculating conceptual
density, evidence synsets are given weights that
take into account the source and basis of the dis-
ambiguation. In the current implementation, noun
synsets related to the frameset through morpho-
logical derivation or shared category domain are
given a weight of 4.0 (the nouns are guaranteed
to be related to the verbs, and disambiguation of
the nouns is built into the fact that relationships
are given between synsets); disambiguated noun
synsets coming from WordNet verb synsets receive
a weight of 2.0 (since the original framesets contain
WordNet synsets, and the disambiguation strategy is
fairly conservative); non-disambiguated nouns com-
ing from LDOCE verbs related to the frameset have
a weight of 0.5 (LDOCE verbs are a step removed
from the original framesets, and the nouns have
not been disambiguated); all other nouns receive a
weight of 1.0. The weight for non-disambiguated
nouns is ultimately distributed across the noun’s
senses, with higher proportions of the weight being
assigned to more frequent senses.

Computing Conceptual Density

The overall idea behind transforming the list of
evidence synsets into a list of participants involves
using the relationship structure of WordNet to iden-
tify an appropriately small set of concepts (i.e.,
synsets) within WordNet that account for (i.e., are
superordinate to) as many of the evidence synsets as
possible; such synsets will be referred to as ‘cover-
ing synsets’.

This task relies on the hypothesis that a frame’s
evidence synsets will not be randomly distributed
across WordNet, but will be clustered in various sub-
trees within the hierarchy. Intuitively, when evi-
dence synsets cluster together, the subtrees in which
they occur will be more dense than those subtrees
where few or no evidence synsets occur. It is hy-
pothesized that the WordNet subtrees with the high-
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est density are the most likely to correspond to
frame slots. Thus, the task is to identify such clus-
ters/subtrees and then to designate the nodes at the
roots of the subtrees as covering synsets (subject to
certain constraints).

The conceptual density measure we have used has
been inspired by the measure of the same name in
Agirre and Rigau (1995). The conceptual density,
CD(n), of a noden is computed as follows:

CD(n) =
∑

iεdescendantsn
(wgti ∗ treesizei)

treesizen

Both frame names and frame slots are identified
on the basis of this conceptual density measure, with
the frame name being taken from the node with the
highest conceptual density from a specified group
of subnetworks within the WordNet noun network
(including abstractions, actions, events, phenomena,
psychological features, and states). Frame slots
are subject to a density threshold (based on mean
density and variance), an evidence-synset-support
threshold, and a constraint on the number of pos-
sible slots to be taken from specific subnetworks
within WordNet. Further details on the computation
and interpretation of conceptual density are given
in (Green and Dorr, 2004).

Frame names and frame structures for
the framesets in Appendix A are given
in Appendix B. The full set of Sem-
Frame’s frames (including ca. 30,000 lexical
unit/frame associations) is publicly available at:
http://www.cs.umd.edu/˜rgreen/semframe2.tar.gz.

The correspondence between frameset sizes and
the number of slots generated for the frame is worth
noting, since we have independent evidence about
the number of slots that should be generated. Frames
in FrameNet generally have from 1 to 5 slots (occa-
sionally more). Over 70% of SemFrame’s frames
contain from 1 to 5 frame slots. Of course, generat-
ing an appropriate number of frame slots is not the
same as generating the right frame slots, a determi-
nation that requires empirical investigation.

4 Evaluation

Three student judges evaluated SemFrame’s results,
with 200 frames each assessed by two judges, and
1234 frames each assessed by one judge.

In evaluating a frame, judges began by examining
the set of verb synsets deemed to evoke a common
frame and identified from among them the largest
subset of synsets they considered to evoke the same
frame. This frame—designated the ‘target frame’—
was simply a mental construct in the judge’s mind.
For only 9% of the frame judgments were the judges
unable to identify a target frame.

If a target frame was discerned, judges were
then asked to evaluate whether the WordNet verb
synsets and LDOCE verb senses listed by Sem-
Frame could be used to communicate about the
frame the judge had in mind. This evaluation step
applied to 6147 WordNet verb synsets and 7148
LDOCE verb senses; in the judges’ views, 78% of
the synsets and 68% of the verb senses evoke the
target frame.

Judges were asked how well the frame names
generated by SemFrame capture the overall target
frame. Some 53% of the names were perceived to be
satisfactory (good or excellent), with another 25%
of the names in the right hierarchy. Only 11% of the
names were deemed to be only mediocre and 9% to
be unrelated.

Judges were also asked how well the frame ele-
ment names generated by SemFrame named a par-
ticipant or attribute of the target frame. Here 46%
of the names were found satisfactory, with another
18% of the names consistent with a target frame par-
ticipant, but either too general or too narrow. An-
other 5% of the names were regarded as mediocre
and 30% as unrelated.

Lastly, judges were asked to look for corre-
spondences between target frames and FrameNet
frames. While only 17% of the target frames were
considered equivalent to a FrameNet frame, many
were judged to be hierarchically related; 51% of
the FrameNet frames were judged more general
than the corresponding SemFrame frame, while 8%
were judged more specific. This reflects the need
to combine some number of SemFrame frames.
For 23% of the SemFrame frames, even the best
FrameNet match was considered only mediocre.
These may represent viable frames not yet recog-
nized by FrameNet. Judges also found 3668 verbs
in SemFrame that could be appropriately listed for a
corresponding frame in FrameNet, but were not.

These results reveal SemFrame’s strengths in in-
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ducing frames by enumerating sets of verbs that
evoke a shared frame and in naming such frames.
SemFrame’s ability to postulate names for the ele-
ments of a frame is less robust, although results in
this area are still noteworthy.

5 Conclusion and Future Work

SemFrame’s output can be used to enhance lexical-
semantic resources in various ways. For example,
WordNet has recently incorporated new relationship
types, some of which touch on frame semantic re-
lationships. But frame semantic relationships are as
yet only implicit in WordNet; not all morphological
derivation relationships, for example, operate within
a frame. Should WordNet choose to reflect frame
semantic relationships, SemFrame would provide a
useful point of departure, since the verb framesets,
frame names, and frame slots are all already ex-
pressed as WordNet synsets.

SemFrame can also add to FrameNet. The ex-
tensive human effort that has gone into FrameNet
is overwhelmingly evident in the quality of its
frame structures (and attendant annotations). Sem-
Frame is unlikely ever to compete with FrameNet
on this score. However, SemFrame has identi-
fied frames not recognized in FrameNet, e.g., Sem-
Frame’s SOILING frame. SemFrame has like-
wise identified lexical units appropriate to FrameNet
frames that have not yet been incorporated into
FrameNet, e.g.,stick to, stick with,andabide byin
the COMPLIANCE / CONFORMITY frame. These
contributions would add as well to the semantic rep-
resentations in PropBank. Since identifying frames
and their evoking lexical units from scratch re-
quires more effort than assessing the general qual-
ity of proposed frames and lexical units—indeed,
since there is currently no other systematic way in
which to identify either a universal set of seman-
tic frames or the set of lexical items that evoke a
frame—SemFrame’s ability to propose new frames
and new evoking lexical units constitutes a major
contribution to the development of lexical-semantic
resources.

SemFrame’s current results might themselves be
enhanced by considering data from other parts of
speech. For instance, at present SemFrame bases
all its frames on verb framesets, but some FrameNet

frames list only adjectives as evoking lexical units.
At the same time, potentially more can be done in as-
sociating verb synsets with frames: Only one-third
of WordNet’s verb synsets are now included in Sem-
Frame’s output. Some of those not now included
evoke none of SemFrame’s current frames, but some
do and have not yet been recognized. Ways of estab-
lishing hierarchical and compositional relationships
among frames should also be investigated.

The above suggestions for enhancing SemFrame
notwithstanding, major progress in improving Sem-
Frame awaits incorporation of corpus data. Rely-
ing on data from lexical resources has contributed
to SemFrame’s precision, but the data sparseness
bottleneck that SemFrame faces is nonetheless real.
On the basis of the lexical resource data used, verb
synsets are related on average to only 5 nouns, many
of which closely reflect the participant structure of
the corresponding frame. However, it is not uncom-
mon for specific elements of the participant structure
to go unrepresented, and any nouns in the dataset
that are not particularly reflective of the participant
structure carry far too much weight amidst such a
paucity of data.

In contrast, the number of nouns that co-occur
with a verb in a corpus may be orders of magnitude
greater.13 But the nouns in a corpus are less likely
to reflect closely the participant structure of the cor-
responding frame; many more nouns are thus likely
to be needed. Furthermore, word sense disambigua-
tion will be required to assign to a frame only those
nouns corresponding to an appropriate sense of the
verb.14 We are optimistic, however, that the pres-
ence of additional corpus data will help fill in frame
element gaps arising from the sparseness of lexical
resource data and can also be used to help reduce the
impact of nouns from lexical resource data that are
not representative of a frame’s participant structure.

Coupled with subject-specific resources, the anal-
ysis of corpus data may then lead to the development

13We are investigating two levels of noun-verb co-
occurrence. The first counts co-occurrences of all nouns and
verbs appearing within the same paragraph of newswire texts.
The second counts only those nouns related to verbs as their
subjects, direct objects, indirect objects, or as objects of prepo-
sitional phrases that modify the verb.

14We make the simplifying assumption that if a noun occurs
with some reasonable percentage of the verbs within a frameset,
the desired verb sense is in play.

64



of subject-specific frame inventories. Such invento-
ries can in turn inform such knowledge-intensive ap-
plications as information retrieval, information ex-
traction, and question answering.

Acknowledgements

This work has been supported in part by NSF ITR
Grant IIS-0326553.

References

Eneko Agirre and German Rigau. A proposal for word
sense disambiguation using conceptual distance.1st
International Conference on Recent Advances in NLP.

Collin Baker, Jan Hajic, Martha Palmer, and Manfred
Pinkal. 2004. Beyond syntax: Predicates, arguments,
valency frames and linguistic annotations. Tutorial at
42nd Annual Meeting of the Association of Computa-
tional Linguistics.

Christiane Fellbaum (Ed.) 1998. Introduction. In
C. Fellbaum (Ed.),WordNet: An Electronic Lexical
Database.MIT Press.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic la-
beling of semantic roles.Computational Linguistics,
28(3): 245–288.

Rebecca Green, Bonnie J. Dorr, and Philip Resnik. 2004.
Inducing frame semantic verb classes from WordNet
and LDOCE.42nd Annual Meeting of the Association
of Computational Linguistics.

Rebecca Green and Bonnie J. Dorr. 2004. Inducing a
semantic frame lexicon from WordNet data.Work-
shop on Text Meaning and Interpretation, 42nd Annual
Meeting of the Association of Computational Linguis-
tics.

Erez Hartuv and Ron Shamir. 2000. A clustering algo-
rithm based on graph connectivity.Information Pro-
cessing Letters, 76:175–181.

Paul Kingsbury, Martha Palmer, and Mitch Marcus.
2002. Adding Semantic Annotation to the Penn Tree-
bank. Proceedings of the Human Language Technol-
ogy Conference.

Jane Morris and Graeme Hirst. 1991. Lexical cohe-
sion computed by thesaural relations as an indicator
of the structure of text. Computational Linguistics,
18(1):21–48.

Paul Procter (Ed.) 1978.Longman Dictionary of Con-
temporary English.Longman Group Ltd.

Mechthild Stoer and Frank Wagner. 1997. A simple min-
cut algorithm.Journal of the ACM, 44(4):585–591.

Nicola Stokes. 2004. Applications of lexical cohe-
sion: Analysis in the topic detection and tracking do-
main. Ph.D. dissertation, National University of Ire-
land, Dublin.

Ellen Voorhees. 1986. Implementing agglomerative
hierarchic clustering algorithms for use in document
retrieval. Information Processing & Management,
22(6):465–476.

65



A Sample Framesets
(a)
( stick to stick with follow ) keep to
( comply follow abideby ) act in accordance with someone’s rules, commands, or wishes
(b)
( sneer ) smile contemptuously
( sneer ) express through a scornful smile
( contemn despise scorn disdain ) look down on with disdain
(c)
( muck ) remove muck, clear away muck, as in a mine
( slime ) cover or stain with slime
( clean makeclean ) make clean by removing dirt, filth, or unwanted substances from
( dirty soil begrime grime colly bemire ) make soiled, filthy, or dirty
( mire muck mud muckup ) soil with mud, muck, or mire
(d)
( federate federalize federalise ) unite on a federal basis or band together as a league
( ally ) become an ally or associate, as by a treaty or marriage
( confederate ) form a confederation with; of nations
( divide split split up separate dissever carveup ) separate into parts or portions
( unite unify ) act in concert or unite in a common purpose or belief
( bandtogether confederate ) form a group or unite
(e)
( fade melt ) become less clearly visible or distinguishable; disappear gradually or seemingly
( get down begin get startout start setabout setout commence ) take the first step or steps in carrying out an action
( begin leadoff start commence ) set in motion, cause to start
( end terminate ) bring to an end or halt
( appear comealong ) come into being or existence, or appear on the scene
( vanish disappear ) cease to exist
( vanish disappear goaway ) become invisible or unnoticeable
( begin start ) have a beginning, in a temporal, spatial, or evaluative sense
( end stop finish terminate cease ) have an end, in a temporal, spatial, or quantitative sense; either spatial or metaphorical

B Sample Frames
(a)
FRAME CONFORMITY (acting according to certain accepted standards):
- ATTRIBUTE (complaisance (a disposition or tendency to yield to the will of others)) [ ]
- COMMUNICATION (law (legal document setting forth rules governing a particular kind of activity)) [ ]
- PSYCH FEATURE (e.g., law (a rule or body of rules of conduct essential to or binding upon human society)) [ ]
- PERSON1/AGENT [ ]
- PERSON2/RECIPIENT OR PATIENT [ ]
- COMMUNICATION (advice (a proposal for an appropriate course of action)) [ ]
- ACT (e.g., accordance (the act of granting rights)) [ ]
(b)
FRAME CONTEMPT (open disrespect for a person or thing):
- COMMUNICATION (scorn (open disrespect for a person or thing)) [ ]
- PERSON1/AGENT [ ]
- PERSON2/RECIPIENT OR PATIENT [ ]
(c)
FRAME SOILING (the act of soiling something):
- ACTION (e.g., soiling (the act of soiling something)) [ ]
- STATE (e.g., soil (the state of being covered with unclean things)) [ ]
- CLEANER (the operator of dry cleaning establishment) [ ]
- CLEANER (someone whose occupation is cleaning) [ ]
(d)
FRAME CONFEDERATION (the act of forming an alliance or confederation):
- ACTION (e.g., division (the act or process of dividing)) [ ]
- SPLITTER (a taxonomist who classifies organisms into many groups on the basis of relatively minor characteristics) [ ]
- STATE (e.g., marriage (the state of being a married couple voluntarily joined for life (or until divorce))) [ ]
(e)
FRAME BEGINNING (the act of starting something):
- ACTION (e.g., beginning (the act of starting something)) [ ]
- COMMUNICATION (conclusion (the last section of a communication)) [ ]
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Abstract

We propose a range of deep lexical acqui-
sition methods which make use of mor-
phological, syntactic and ontological lan-
guage resources to model word similarity
and bootstrap from a seed lexicon. The
different methods are deployed in learn-
ing lexical items for a precision gram-
mar, and shown to each have strengths and
weaknesses over different word classes. A
particular focus of this paper is the rela-
tive accessibility of different language re-
source types, and predicted “bang for the
buck” associated with each in deep lexical
acquisition applications.

1 Introduction

Over recent years, computational linguistics has
benefitted considerably from advances in statisti-
cal modelling and machine learning, culminating
in methods capable of deeper, more accurate au-
tomatic analysis, over a wider range of languages.
Implicit in much of this work, however, has been
the existence ofdeep language resources(DLR
hereafter) of ever-increasing linguistic complexity,
including lexical semantic resources (e.g. Word-
Net and FrameNet), precision grammars (e.g. the
English Resource Grammar and the various Par-
Gram grammars) and richly-annotated treebanks
(e.g. PropBank and CCGbank).

Due to their linguistic complexity, DLRs are in-
variably constructed by hand and thus restricted in
size and coverage. Our aim in this paper is to de-
velop general-purpose automatic methods which can
be used to automatically expand the coverage of an
existing DLR, through the process ofdeep lexical
acquisition (DLA hereafter).

The development of DLRs can be broken down
into two basic tasks: (1) design of a data represen-
tation to systematically capture the generalisations

and idiosyncracies of the dataset of interest (system
design); and (2) classification of data items accord-
ing to the predefined data representation (data clas-
sification). In the case of a deep grammar, for exam-
ple, system design encompasses the construction of
the system of lexical types, templates, and/or phrase
structure rules, and data classification corresponds
to the determination of the lexical type(s) each in-
dividual lexeme conforms to. DLA pertains to the
second of these tasks, in automatically mapping a
given lexeme onto a pre-existing system of lexical
types associated with a DLR.

We propose to carry out DLA through a boot-
strap process, that is by employing some notion of
word similarity, and learning the lexical types for a
novel lexeme through analogy with maximally sim-
ilar word(s) for which we know the lexical types. In
this, we are interested in exploring the impact of dif-
ferent secondary language resources (LRs) on DLA,
and estimating how successfully we can expect to
learn new lexical items from a range of LR types.
That is, we estimate the expected DLA “bang for the
buck” from a range of secondary LR types of vary-
ing size and complexity. As part of this, we look
at the relative impact of different LRs on DLA for
different open word classes, namely nouns, verbs,
adjectives and adverbs.

We demonstrate the proposed DLA methods rel-
ative to the English Resource Grammar (see Sec-
tion 2.1), and in doing so assume the lexical types
of the target DLR to be syntactico-semantic in na-
ture. For example, we may predict that the word
dog has a usage as an intransitive countable noun
(n intr le ,1 cf. The dogbarked), and also as a
transitive verb (v np trans le , cf. It doggedmy
every step).

A secondary interest of this paper is the consid-
eration of how well we could expect to perform
DLA for languages of differing density, from “low-

1All example lexical types given in this paper are taken di-
rectly from the English Resource Grammar – see Section 2.1.
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density” languages (such as Walpiri or Uighur) for
which we have limited LRs, to “high-density” lan-
guages (such as English or Japanese) for which we
have a wide variety of LRs. To this end, while we ex-
clusively target English in this paper, we experiment
with a range of LRs of varying complexity and type,
including morphological, syntactic and ontological
LRs. Note that we attempt to maintain consistency
across the feature sets associated with each, to make
evaluation as equitable as possible.

The remainder of this paper is structured as fol-
lows. Section 2 outlines the process of DLA and re-
views relevant resources and literature. Sections 3,
4 and 5 propose a range of DLA methods based on
morphology, syntax and ontological semantics, re-
spectively. Section 6 evaluates the proposed meth-
ods relative to the English Resource Grammar.

2 Task Outline

This research aims to develop methods for DLA
which can be run automatically given: (a) a pre-
existing DLR which we wish to expand the cover-
age of, and (b) a set of secondary LRs/preprocessors
for that language. The basic requirements to achieve
this are the discrete inventory of lexical types in the
DLR, and a pre-classification of each secondary LR
(e.g. as a corpus or wordnet, to determine what set of
features to employ). Beyond this, we avoid making
any assumptions about the language family or DLR
type.

The DLA strategy we propose in this research is
to use secondary LR(s) to arrive at a feature sig-
nature for each lexeme, and map this onto the sys-
tem of choice indirectly via supervised learning, i.e.
observation of the correlation between the feature
signature and classification of bootstrap data. This
methodology can be applied to unannotated corpus
data, for example, making it possible to tune a lex-
icon to a particular domain or register as exempli-
fied in a particular repository of text. As it does not
make any assumptions about the nature of the sys-
tem of lexical types, we can apply it fully automat-
ically to any DLR and feed the output directly into
the lexicon without manual intervention or worry of
misalignment. This is a distinct advantage when the
inventory of lexical types is continually undergoing
refinement, as is the case with the English Resource
Grammar (see below).

A key point of interest in this paper is the investi-
gation of the relative “bang for the buck” when dif-

ferent types of LR are used for DLA. Crucially, we
investigate only LRs which we believe to be plausi-
bly available for languages of varying density, and
aim to minimise assumptions as to the pre-existence
of particular preprocessing tools. The basic types of
resources and tools we experiment with in this paper
are detailed in Table 1.

Past research on DLA falls into two basic cat-
egories: expert system-style DLA customised to
learning particular linguistic properties, and DLA
via resource translation. In the first instance, a spe-
cialised methodology is proposed to (automatically)
learn a particular linguistic property such as verb
subcategorisation (e.g. Korhonen (2002)) or noun
countability (e.g. Baldwin and Bond (2003a)), and
little consideration is given to the applicability of
that method to more general linguistic properties. In
the second instance, we take one DLR and map it
onto another to arrive at the lexical information in
the desired format. This can take the form of a one-
step process, in mining lexical items directly from
a DLR (e.g. a machine-readable dictionary (Sanfil-
ippo and Poznánski, 1992)), or two-step process in
reusing an existing system to learn lexical properties
in one format and then mapping this onto the DLR
of choice (e.g. Carroll and Fang (2004) for verb sub-
categorisation learning).

There have also been instances of more gen-
eral methods for DLA, aligned more closely with
this research. Fouvry (2003) proposed a method
of token-based DLA for unification-based precision
grammars, whereby partially-specified lexical fea-
tures generated via the constraints of syntactically-
interacting words in a given sentence context, are
combined to form a consolidated lexical entry for
that word. That is, rather than relying on indi-
rect feature signatures to perform lexical acquisition,
the DLR itself drives the incremental learning pro-
cess. Also somewhat related to this research is the
general-purpose verb feature set proposed by Joanis
and Stevenson (2003), which is shown to be appli-
cable in a range of DLA tasks relating to English
verbs.

2.1 English Resource Grammar

All experiments in this paper are targeted at the
English Resource Grammar (ERG; Flickinger
(2002), Copestake and Flickinger (2000)). The ERG
is an implemented open-source broad-coverage
precision Head-driven Phrase Structure Grammar
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Secondary LR type Description Preprocessor(s)

Word list∗∗∗ List of words with basic POS —
Morphological lexicon∗ Derivational and inflectional word relations —
Compiled corpus∗∗∗ Unannotated text corpus POS tagger∗∗

Chunk parser∗

Dependency parser∗

WordNet-style ontology∗ Lexical semantic word linkages —

Table 1: Secondary LR and tool types targeted in this research (∗∗∗ = high expectation of availability for a
given language;∗∗ = medium expectation of availability;∗ = low expectation of availability)

(HPSG) developed for both parsing and generation.
It contains roughly 10,500 lexical items, which,
when combined with 59 lexical rules, compile out
to around 20,500 distinct word forms.2 Each lex-
ical item consists of a unique identifier, a lexical
type (one of roughly 600 leaf types organized into
a type hierarchy with a total of around 4,000 types),
an orthography, and a semantic relation. The gram-
mar also contains 77 phrase structure rules which
serve to combine words and phrases into larger con-
stituents. Of the 10,500 lexical items, roughly 3,000
are multiword expressions.

To get a basic sense of the syntactico-semantic
granularity of the ERG, the noun hierarchy, for ex-
ample, is essentially a cross-classification of count-
ability/determiner co-occurrence, noun valence and
preposition selection properties. For example, lex-
ical entries ofn mass count ppof le type can
be either countable or uncountable, and optionally
select for a PP headed byof (example lexical items
arechoiceandadministration).

As our target lexical type inventory for DLA, we
identified all open-class lexical types with at least
10 lexical entries, under the assumption that: (a)
the ERG has near-complete coverage of closed-class
lexical entries, and (b) the bulk of new lexical entries
will correspond to higher-frequency lexical types.
This resulted in the following breakdown:3

2All statistics and analysis relating to the ERG in this paper
are based on the version of 11 June, 2004.

3Note that all results are over simplex lexemes only, and that
we choose to ignore multiword expressions in this research.

Word class Lexical types Lexical items
Noun 28 3,032
Verb 39 1,334
Adjective 17 1,448
Adverb 26 721
Total 110 5,675

Note that it is relatively common for a lexeme to
occur with more than one lexical type in the ERG:
22.6% of lexemes have more than one lexical type,
and the average number of lexical types per lexeme
is 1.12.

In evaluation, we assume we have prior knowl-
edge of the basic word classes each lexeme belongs
to (i.e. noun, verb, adjective and/or adverb), infor-
mation which could be derived trivially from pre-
existing shallow lexicons and/or the output of a tag-
ger.

Recent development of the ERG has been tightly
coupled with treebank annotation, and all major ver-
sions of the grammar are deployed over a common
set of treebank data to help empirically trace the
evolution of the grammar and retrain parse selection
models (Oepen et al., 2002). We treat this as a held-
out dataset for use in analysis of thetokenfrequency
of each lexical item, to complement analysis oftype-
level learning performance (see Section 6).

2.2 Classifier design

The proposed procedure for DLA is to generate a
feature signature for each word contained in a given
secondary LR, take the subset of lexemes contained
in the original DLR as training data, and learn lex-
ical items for the remainder of the lexemes through
supervised learning. In order to maximise compara-
bility between the results for the different DLRs, we
employ a common classifier design wherever possi-
ble (in all cases other than ontology-based DLA),
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using TiMBL 5.0 (Daelemans et al., 2003); we
used the IB1k-NN learner implementation within
TiMBL, with k = 9 throughout.4 We additionally
employ the feature selection method of Baldwin and
Bond (2003b), which generates a combined ranking
of all features in descending order of “informative-
ness” and skims off the top-N features for use in
classification;N was set to 100 in all experiments.

As observed above, a significant number of lex-
emes in the ERG occur in multiple lexical items. If
we were to take all lexical type combinations ob-
served for a single lexeme, the total number of lex-
ical “super”-types would be 451, of which 284 are
singleton classes. Based on the sparseness of this
data and also the findings of Baldwin and Bond
(2003b) over a countability learning task, we choose
to carry out DLA via a suite of 110 binary classifiers,
one for each lexical type.

We deliberately avoid carrying out extensive fea-
ture engineering over a given secondary LR, choos-
ing instead to take a varied but simplistic set of fea-
tures which is parallelled as much as possible be-
tween LRs (see Sections 3–5 for details). We addi-
tionally tightly constrain the feature space to a max-
imum of 3,900 features, and a maximum of 50 fea-
ture instances for each feature type; in each case,
the 50 feature instances are selected by taking the
features with highest saturation (i.e. the highest ra-
tio of non-zero values) across the full lexicon. This
is in an attempt to make evaluation across the differ-
ent secondary LRs as equitable as possible, and get
a sense of the intrinsic potential of each secondary
LR in DLA. Each feature instance is further trans-
lated into two feature values: the raw count of the
feature instance for the target word in question, and
the relative occurrence of the feature instance over
all target word token instances.

One potential shortcoming of our classifier archi-
tecture is that a given word can be negatively clas-
sified by all unit binary classifiers and thus not as-
signed any lexical items. In this case, we fall back
on the majority-class lexical type for each word class
the word has been pre-identified as belonging to.

4We also experimented with bsvm and SVMLight, and a
maxent toolkit, but found TiMBL to be superior overall, we hy-
pothesise due to the tight integration of continuous features in
TiMBL.

3 Morphology-based Deep Lexical
Acquisition

We first perform DLA based on the following mor-
phological LRs: (1) word lists, and (2) morphologi-
cal lexicons with a description of derivational word
correspondences. Note that in evaluation, we pre-
suppose that we have access to word lemmas al-
though in the first instance, it would be equally pos-
sible to run the method over non-lemmatised data.5

3.1 Charactern-grams

In line with our desire to produce DLA methods
which can be deployed over both low- and high-
density languages, our first feature representation
takes a simple word list and converts each lexeme
into a charactern-gram representation.6 In the case
of English, we generated all 1- to 6-grams for each
lexeme, and applied a series of filters to: (1) filter out
all n-grams which occurred less than 3 times in the
lexicon data; and (2) filter out alln-grams which oc-
cur with the same frequency as largern-grams they
are proper substrings of. We then select the 3,900
charactern-grams with highest saturation across the
lexicon data (see Section 2.2).

The charactern-gram-based classifier is the sim-
plest of all classifiers employed in this research, and
can be deployed on any language for which we have
a word list (ideally lemmatised).

3.2 Derviational morphology

The second morphology-based DLA method makes
use of derivational morphology and analysis of the
process of word formation. As an example of how
derivational information could assist DLA, know-
ing that the nounachievementis deverbal and in-
corporates the-mentsuffix is a strong predictor of
it being optionally uncountable and optionally se-
lecting for a PP argument (i.e. being of lexical type
n mass count ppof le ).

We generate derivational morphological features
for a given lexeme by determining its word clus-
ter in CATVAR7 (Habash and Dorr, 2003) and then
for each sister lexeme (i.e. lexeme occurring in the

5Although this would inevitably lose lexical generalisations
among the different word forms of a given lemma.

6We also experimented with syllabification, but found the
charactern-grams to produce superior results.

7In the case that the a given lemma is not in CATVAR, we
attempt to dehyphenate and then deprefix the word to find a
match, failing which we look for the lexeme of smallest edit
distance.
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same cluster as the original lexeme with the same
word stem), determine if there is a series of edit
operations over suffixes and prefixes which maps
the lexemes onto one another. For each sister lex-
eme where such a correspondence is found to ex-
ist, we output the nature of the character transforma-
tion and the word classes of the lexemes involved.
E.g., the sister lexemes forachievementN in CAT-
VAR are achieveV, achieverN, achievableAdj and
achievabilityN; the mapping betweenachievementN

andachieverN, e.g., would be analysed as:

N −ment$ → N +r$

Each such transformation is treated as a single fea-
ture.

We exhaustively generate all such transformations
for each lexeme, and filter the feature space as for
charactern-grams above.

Clearly, LRs which document derivational mor-
phology are typically only available for high-density
languages. Also, it is worth bearing in mind that
derivational morphology exists in only a limited
form for certain language families, e.g. agglutinative
languages.

4 Syntax-based Deep Lexical Acquisition

Syntax-based DLA takes a raw text corpus and pre-
processes it with either a tagger, chunker or depen-
dency parser. It then extracts a set of 39 feature types
based on analysis of the token occurrences of a given
lexeme, and filters over each feature type to produce
a maximum of 50 feature instances of highest satura-
tion (e.g. if the feature type is the word immediately
proceeding the target word, the feature instances are
the 50 words which proceed the most words in our
lexicon). The feature signature associated with a
word for a given preprocessor type will thus have
a maximum of 3,900 items (39× 50× 2).8

4.1 Tagging

The first and most basic form of syntactic pre-
processing is part-of-speech (POS) tagging. For
our purposes, we use a Penn treebank-style tagger
custom-built using fnTBL 1.0 (Ngai and Florian,
2001), and further lemmatise the output of the tagger
using morph (Minnen et al., 2000).

8Note that we will have less than 50 feature instances for
some feature types, e.g. the POS tag of the target word, given
that the combined size of the Penn POS tagset is 36 elements
(not including punctuation).

The feature types used with the tagger are detailed
in Table 2, where the position indices are relative to
the target word (e.g. the word at position−2 is two
words to the left of the target word, and the POS
tag at position0 is the POS of the target word). All
features are relative to the POS tags and words in the
immediate context of each token occurrence of the
target word. “Bi-words” are word bigrams (e.g. bi-
word (1, 3) is the bigram made up of the words one
and three positions to the right of the target word);
“bi-tags” are, similarly, POS tag bigrams.

4.2 Chunking

The second form of syntactic preprocessing, which
builds directly on the output of the POS tagger, is
CoNLL 2000-style full text chunking (Tjong Kim
Sang and Buchholz, 2000). The particular chun-
ker we use was custom-built using fnTBL 1.0 once
again, and operates over the lemmatised output of
the POS tagger.

The feature set for the chunker output includes a
subset of the POS tagger features, but also makes
use of the local syntactic structure in the chunker in-
put in incorporating both intra-chunk features (such
as modifiers of the target word if it is the head of a
chunk, or the head if it is a modifier) and inter-chunk
features (such as surrounding chunk types when the
target word is chunk head). See Table 2 for full de-
tails.

Note that while chunk parsers are theoretically
easier to develop than full phrase-structure or tree-
bank parsers, only high-density languages such as
English and Japanese have publicly available chunk
parsers.

4.3 Dependency parsing

The third and final form of syntactic preprocessing
is dependency parsing, which represents the pinna-
cle of both robust syntactic sophistication and inac-
cessibility for any other than the highest-density lan-
guages.

The particular dependency parser we use is
RASP9 (Briscoe and Carroll, 2002), which outputs
head–modifier dependency tuples and further classi-
fies each tuple according to a total of 14 relations;
RASP also outputs the POS tag of each word to-
ken. As our features, we use both local word and
POS features, for comparability with the POS tagger

9RASP is, strictly speaking, a full syntactic parser, but we
use it in dependency parser mode
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Feature type Positions/description Total

TAGGER 39
POS tag (−4,−3,−2,−1, 0, 1, 2, 3, 4) 9
Word (−4,−3,−2,−1, 1, 2, 3, 4) 8
POS bi-tag ( (−4,−1), (−4, 0), (−3,−2), (−3,−1), (−3, 0), (−2,−1), (−2, 0),

(−1, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 3) ) 16
Bi-word ((−3,−2), (−3,−1), (−2,−1), (1, 2), (1, 3), (2, 3)) 6

CHUNKER 39
Modifierhead Chunk heads when target word is modifier 1
Modifierchunk Chunk types when target word is modifier 1
Modifieeword Modifiers when target word is chunk head 1
ModifieePOS POS tag of modifiers when target word is chunk head 1
Modifieeword+POS Word+ POS tag of modifiers when target word is chunk head 1
POS tag (−3,−2,−1, 0, 1, 2, 3) 7
Word (−3,−2,−1, 1, 2, 3) 6
Chunk (−4,−3,−2,−1, 0, 1, 2, 3, 4) 9
Chunk head (−3,−2,−1, 1, 2, 3) 6
Bi-chunk ((−2,−1), (−2, 0), (−1, 0), (0, 1), (0, 2), (1, 2)) 6

DEPENDENCY PARSER 39
POS tag (−2,−1, 0, 1, 2) 5
Word (−2,−1, 1, 2) 4
Conjword Words the target word coordinates with 1
ConjPOS POS of words the target word coordinates with 1
Head Head word when target word modifier in dependency relation (× 14) 14
Modifier Modifier when target word head of dependency relation (× 14) 14

Table 2: Feature types used in syntax-based DLA for the different preprocessors

and chunker, and also dependency-derived features,
namely the modifier of all dependency tuples the tar-
get word occurs as head of, and conversely, the head
of all dependency tuples the target word occurs as
modifier in, along with the dependency relation in
each case. See Table 2 for full details.

4.4 Corpora

We ran the three syntactic preprocessors over a to-
tal of three corpora, of varying size: the Brown cor-
pus (∼460K tokens) and Wall Street Journal corpus
(∼1.2M tokens), both derived from the Penn Tree-
bank (Marcus et al., 1993), and the written compo-
nent of the British National Corpus (∼98M tokens:
Burnard (2000)). This selection is intended to model
the effects of variation in corpus size, to investigate
how well we could expect syntax-based DLA meth-
ods to perform over both smaller and larger corpora.

Note that the only corpus annotation we make use
of is sentence tokenisation, and that all preproces-
sors are run automatically over the raw corpus data.
This is in an attempt to make the methods maximally
applicable to lower-density languages where anno-
tated corpora tend not to exist but there is at least the
possibility of accessing raw text collections.

5 Ontology-based Deep Lexical
Acquisition

The final DLA method we explore is based on the
hypothesis that there is a strong correlation between
the semantic and syntactic similarity of words, a
claim which is best exemplified in the work of Levin
(1993) on diathesis alternations. In our case, we
take word similarity as given and learn the syntactic
behaviour of novel words relative to semantically-
similar words for which we know the lexical types.
We use WordNet 2.0 (Fellbaum, 1998) to determine
word similarity, and for each sense of the target
word in WordNet: (1) construct the set of “seman-
tic neighbours” of that word sense, comprised of all
synonyms, direct hyponyms and direct hypernyms;
and (2) take a majority vote across the lexical types
of the semantic neighbours which occur in the train-
ing data. Note that this diverges from the learning
paradigm adopted for the morphology- and syntax-
based DLA methods in that we use a simple voting
strategy rather than relying on an external learner to
carry out the classification. The full set of lexical
entries for the target word is generated by taking the
union of the majority votes across all senses of the
word, such that a polysemous lexeme can potentially
give rise to multiple lexical entries. This learning
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procedure is based on the method used by van der
Beek and Baldwin (2004) to learn Dutch countabil-
ity.

As for the suite of binary classifiers, we fall back
on the majority class lexical type as the default in
the instance that a given lexeme is not contained in
WordNet 2.0 or no classification emerges from the
set of semantic neighbours. It is important to re-
alise that WordNet-style ontologies exist only for the
highest-density languages, and that this method will
thus have very limited language applicability.

6 Evaluation

We evaluate the component methods over the 5,675
open-class lexical items of the ERG described in
Section 2.1 using 10-fold stratified cross-validation.
In each case, we calculate thetype precision (the
proportion of correct hypothesised lexical entries)
andtype recall (the proportion of gold-standard lex-
ical entries for which we get a correct hit), which
we roll together into thetype F-score(the harmonic
mean of the two) relative to the gold-standard ERG
lexicon. We also measure thetoken accuracy for
the lexicon derived from each method, relative to
the Redwoods treebank of Verbmobil data associ-
ated with the ERG (see Section 2.1).10 The token ac-
curacy represents a weighted version of type preci-
sion, relative to the distribution of each lexical item
in a representative text sample, and provides a crude
approximation of the impact of each DLA method
on parser coverage. That is, it gives more credit for a
method having correctly hypothesised a commonly-
occurring lexical item than a low-frequency lexical
item, and no credit for having correctly identified a
lexical item not occurring in the corpus.

The overall results are presented in Figure 1,
which are then broken down into the four open
word classes in Figures 2–5. The baseline method
(Base) in each case is a simple majority-class classi-
fier, which generates a unique lexical item for each
lexeme pre-identified as belonging to a given word
class of the following type:

Word class Majority-class lexical type
Noun n intr le
Verb v np trans le
Adjective adj intrans le
Adverb adv int vp le

10Note that the token accuracy is calculated only over the
open-class lexical items, not the full ERG lexicon.

In each graph, we present the type F-score and to-
ken accuracy for each method, and mark the best-
performing method in terms of each of these evalua-
tion measures with a star (?). The results for syntax-
based DLA (SPOS, SCHUNK andSPARSE) are based
on the BNC in each case. We return to investigate
the impact of corpus size on the performance of the
syntax-based methods below.

Looking first at the combined results over all lex-
ical types (Figure 1), the most successful method
in terms of type F-score is syntax-based DLA,
with chunker-based preprocessing marginally out-
performing tagger- and parser-based preprocessing
(type F-score = 0.641). The most successful method
in terms of token accuracy is ontology-based DLA
(token accuracy = 0.544).

The figures for token accuracy require some qual-
ification: ontology-based DLA tends to be liberal
in its generation of lexical items, giving rise to
over 20% more lexical items than the other meth-
ods (7,307 vs. 5-6000 for the other methods) and
proportionately low type precision. This correlates
with an inherent advantage in terms of token ac-
curacy, which we have no way of balancing up in
our token-based evaluation, as the treebank data of-
fers no insight into the true worth of false nega-
tive lexical items (i.e. have no way of distinguishing
between unobserved lexical items which are plain
wrong from those which are intuitively correct and
could be expected to occur in alternate sets of tree-
bank data). We leave investigation of the impact of
these extra lexical items on the overall parser perfor-
mance (in terms of chart complexity and parse se-
lection) as an item for future research.

The morphology-based DLA methods were
around baseline performance overall, with charac-
tern-grams marginally more successful than deriva-
tional morphology in terms of both type F-score and
token accuracy.

Turning next to the results for the proposed meth-
ods over nouns, verbs, adjectives and adverbs (Fig-
ures 2–5, respectively), we observe some interest-
ing effects. First, morphology-based DLA hovers
around baseline performance for all word classes
except adjectives, where charactern-grams produce
the highest F-score of all methods, and nouns, where
derivational morphology seems to aid DLA slightly
(providing weak support for our original hypothesis
in Section 3.2 relating to deverbal nouns and affixa-
tion).
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Figure 1: Results for the proposed deep lexical ac-
quisition methods overALL lexical types
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Figure 2: Results for the proposed deep lexical ac-
quisition methods overNOUN lexical types
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Figure 3: Results for the proposed deep lexical ac-
quisition methods overVERB lexical types
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Figure 4: Results for the proposed deep lexical ac-
quisition methods overADJECTIVE lexical types
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Figure 5: Results for the proposed deep lexical ac-
quisition methods overADVERB lexical types
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Figure 6: Results for the syntax-based deep lexical
acquisition methods over corpora of differing size

Note: Base = baseline, MCHAR = morphology-based DLA with charactern-grams, MDERIV = derivational
morphology-based DLA, SPOS = syntax-based DLA with POS tagging, SCHUNK = syntax-based DLA with
chunking, SPARSE = syntax-based DLA with dependency parsing, and Ont = ontology-based DLA
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Syntax-based DLA leads to the highest type F-
score for nouns, verbs and adverbs, and the highest
token accuracy for adjectives and adverbs. The dif-
ferential in results between syntax-based DLA and
the other methods is particularly striking for ad-
verbs, with a maximum type F-score of 0.544 (for
chunker-based preprocessing) and token accuracy of
0.340 (for tagger-based preprocessing), as compared
to baseline figures of 0.471 and 0.017 respectively.
There is relatively little separating the three styles
of preprocessing in syntax-based DLA, although
chunker-based preprocessing tends to have a slight
edge in terms of type F-score, and tagger-based pre-
processing generally produces the highest token ac-
curacy.11 This suggests that access to a POS tagger
for a given language is sufficient to make syntax-
based DLA work, and that syntax-based DLA thus
has moderately high applicability across languages
of different densities.

Ontology-based DLA is below baseline in terms
of type F-score for all word classes, but results in
the highest token accuracy of all methods for nouns
and verbs (although this finding must be taken with
a grain of salt, as noted above).

Another noteworthy feature of Figures 2–5 is the
huge variation in absolute performance across the
word classes: adjectives are very predictable, with a
majority class-based baseline type F-score of 0.832
and token accuracy of 0.847; adverbs, on the other
hand, are similar to verbs and nouns in terms of their
baseline type F-score (at 0.471), but the adverbs that
occur commonly in corpus data appear to belong to
less-populated lexical types (as seen in the baseline
token accuracy of a miniscule 0.017). Nouns appear
the hardest to learn in terms of the relative incre-
ment in token accuracy over the baseline. Verbs are
extremely difficult to get right at the type level, but it
appears that ontology-based DLA is highly adept at
getting the commonly-occurring lexical items right.

To summarise these findings, adverbs seem to
benefit the most from syntax-based DLA. Adjec-
tives, on the other hand, can be learned most effec-
tively from simple charactern-grams, i.e. similarly-
spelled adjectives tend to have similar syntax, a
somewhat surprising finding. Nouns are surpris-
ingly hard to learn, but seem to benefit to some de-
gree from corpus data and also ontological similar-
ity. Lastly, verbs pose a challenge to all methods

11This trend was observed across all three corpora, although
we do no present the full results here.

at the type level, but ontology-based DLA seems to
be able to correctly predict the commonly-occurring
lexical entries.

Finally, we examine the impact of corpus size on
the performance of syntax-based DLA with tagger-
based preprocessing.12 In Figure 6, we examine
the relative change in type F-score and token ac-
curacy across the four word classes as we increase
the corpus size (from 0.5m words to 1m and fi-
nally 100m words, in the form of the Brown cor-
pus, WSJ corpus and BNC, respectively). For verbs
and adjectives, there is almost no change in either
type F-score or token accuracy when we increase
the corpus size, whereas for nouns, the token ac-
curacy actually drops slightly. For adverbs, on the
other hand, the token accuracy jumps up from 0.020
to 0.381 when we increase the corpus size from
1m words to 100m words, while the type F-score
rises only slightly. It thus seems to be the case that
large corpora have a considerable impact on DLA
for commonly-occurring adverbs, but that for the
remaining word classes, it makes little difference
whether we have 0.5m or 100m words. This can
be interpreted either as evidence that modestly-sized
corpora are good enough to perform syntax-based
DLA over (which would be excellent news for low-
density languages!), or alternatively that for the sim-
plistic syntax-based DLA methods proposed here,
more corpus data is not the solution to achieving
higher performance.

Returning to our original question of the “bang
for the buck” associated with individual LRs, there
seems to be no simple answer: simple word lists are
useful in learning the syntax of adjectives in particu-
lar, but offer little in terms of learning the other three
word classes. Morphological lexicons with deriva-
tional information are moderately advantageous in
learning the syntax of nouns but little else. A POS
tagger seems sufficient to carry out syntax-based
DLA, and the word class which benefits the most
from larger amounts of corpus data is adverbs, other-
wise the proposed syntax-based DLA methods don’t
seem to benefit from larger-sized corpora. Ontolo-
gies have the greatest impact on verbs and, to a lesser
degree, nouns. Ultimately, this seems to lend weight
to a “horses for courses”, or perhaps “resources for
courses” approach to DLA.

12The results for chunker- and parser-based preprocessing are
almost identical, and this omitted from the paper.
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7 Conclusion

We have proposed three basic paradigms for deep
lexical acquisition, based on morphological, syntac-
tic and ontological language resources, and demon-
strated the effectiveness of each strategy at learn-
ing lexical items for the lexicon of a precision En-
glish grammar. We discovered surprising variation
in the results for the different DLA methods, with
each learning method performing particularly well
for at least one basic word class, but the best overall
methods being syntax- and ontology-based DLA.

The results presented in this paper are based on
one particular language (English) and a very spe-
cific style of DLR (a precision grammar, namely the
English Resource Grammar), so some caution must
be exercised in extrapolating the results too liberally
over new languages/DLA tasks. In future research,
we are interested in carrying out experiments over
other languages and alternate DLRs to determine
how well these results generalise and formulate al-
ternate strategies for DLA.
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Abstract

This paper discusses the role of morpho-
logical and syntactic information in the
automatic acquisition of semantic classes
for Catalan adjectives, using decision trees
as a tool for exploratory data analysis.
We show that a simple mapping from
the derivational type to the semantic class
achieves 70.1% accuracy; syntactic func-
tion reaches a slightly higher accuracy of
73.5%. Although the accuracy scores are
quite similar with the two resulting classi-
fications, the kinds of mistakes are quali-
tatively very different. Morphology can be
used as a baseline classification, and syn-
tax can be used as a clue when there are
mismatches between morphology and se-
mantics.

1 Introduction

This paper fits into a broader effort addressing the
automatic acquisition of semantic classes for Cata-
lan adjectives. So far, no established standard of
such semantic classes is available in theoretical or
empirical linguistic research. Our aim is to reach a
classification that is empirically adequate and the-
oretically sound, and we use computational tech-
niques as a means to explore large amounts of data
which would be impossible to explore by hand to
help us define and characterise the classification.

In previous research (Boleda et al., 2004), we de-
veloped a three-way classification according to gen-
erally accepted adjective properties (see Section 2),

and applied a cluster analysis to further examine the
classes. While the cluster analysis confirmed our
classification to a large extent, it was clear that one
of the classes needed further exploration. Also, we
used only syntactic features modelled as pairs of
POS-bigrams; we explored neither other syntactic
features nor the role of morphological evidence for
the classification.

In this paper we apply a supervised classification
technique, decision trees, for exploratory data analy-
sis. Our aim is to explore the linguistic features and
description levels that are relevant for the semantic
classification, focusing on morphology and syntax.
We check how far we get with morphological infor-
mation, and whether syntax is helpful to overcome
the ceiling reached with morphology.

Decision trees are appropriate for our task, to test
and compare sets of features, based on our gold stan-
dard. They are also known for their easy interpre-
tation, by reading feature combinations off the tree
paths. This property will help us get insight into rel-
evant characteristics of our adjective classes, and in
the error analysis.

The paper is structured as follows: Section 2
presents the adjective classification and the gold
standard used for the experiments. Sections 3 and 4
explore the morphology-semantics interface and the
syntax-semantics interface with respect to the classi-
fication proposed, and Section 5 focuses on the dif-
ferences in the kind of information each level pro-
vides for the classification. Sections 6 and 7 are de-
voted to discussion of related work and conclusions.
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2 Classification and gold standard

2.1 Classification proposal

To date, no semantic classification of adjectives is
generally accepted in theoretical linguistics. Much
research in formal semantics has focused on entail-
ment properties , while other kinds of lexical seman-
tic properties are left uncovered. Standard descrip-
tive grammars propose broader classifications (see
Picallo (2002) for Catalan), but these usually do not
follow a single classification parameter: they mix
morphological, syntactic and semantic criteria and
end up with classifications that are not consistent.

We are interested in properties of the lexical se-
mantics of adjectives that have a bearing on their
syntactic behaviour. This property makes the seman-
tic distinctions traceable at another linguistic level,
which is desirable to ensure falsability of the classi-
fication criteria. On more practical terms, it also al-
lows the exploitation of the syntax-semantics inter-
face as is usual in Lexical Acquisition, to automate
the acquisition of the relevant classes.

Our proposal is largely inspired by the Ontolog-
ical Semantics framework (Raskin and Nirenburg,
1995). The assumption of an ontology as a model of
the world allows us to distinguish linguistic aspects
(e.g. syntactic properties) from the actual content of
the lexical entries, formalised as a link to an ele-
ment the ontology. We assume an ontology of basic
denotations composed of properties (or attributes),
objects (or entities), and events. Adjectives partici-
pate in each of these possible denotations, and can
be basic, object-related or event-related, depending
on their lexical meaning.1 We next characterise each
class.

Basic adjectives are the prototypical adjectives,
which denote attributes or properties which can-
not be decomposed (bonic ‘beautiful’, sòlid ‘solid’).
Event adjectives have an event component in their
meaning. For instance, if something is tangible
(‘tangible’), then it can be touched: tangible nec-
essarily evokes a potential event of touching which
is embedded in the meaning of the adjective. Other
examples are alterat (‘altered’) and ofensiu (‘offen-
sive’). Similarly, object adjectives have an embed-

1Raskin and Nirenburg (1995) account separately for other
kinds of adjectives, such as membership adjectives (‘fake’). We
will abstract away from these less numerous classes.

ded object component in their meaning: deformació
nasal (‘nasal deformity’) can be paraphrased as de-
formity that affects the nose, so that nasal evokes the
object nose. Other examples are peninsular (‘penin-
sular’) and sociolingüístic (‘sociolinguistic’).

This proposal shares many aspects with discus-
sions in descriptive grammar (2002) and proposals
in other lexical resources, such as WordNet (Miller,
1998). In particular, the distinction between pro-
totypical, attribute-denoting adjectives and object-
related adjectives is found both in descriptive gram-
mar and in WordNet. As for event-related adjectives,
they are not usually found as a class in Romance de-
scriptive grammar, and in WordNet they are distin-
guished but only if they are participial; other kinds
of deverbal adjectives are considered basic (in our
terminology). More on the morphology-semantics
relationship in Section 3.

Our classification focuses on the semantic content
of adjectives, rather than on formal properties such
as entailment patterns (contrary to the tradition in
formal semantics). The semantic distinctions pro-
posed have an effect on the syntactic distribution of
adjectives, as will be shown throughout the paper,
and can be exploited in low-level NLP tasks (POS-
tagging), and also in more demanding tasks, such as
paraphrase detection and generation (e.g. exploiting
the relationship tangible → can be touched, or de-
formació nasal→ deformity affecting the nose).

2.2 Gold standard

To perform the experiments, we built a set of anno-
tated data based on this classification (gold standard
from now on). We extracted the lemmata and data
for the gold standard from a 16.5 million word Cata-
lan corpus (Rafel, 1994), lemmatised, POS-tagged
and shallow parsed with the CatCG tool (Alsina et
al., 2002). The shallow parser gives information on
the syntactic function of each word (subject, object,
etc.), not on phrase structure.

186 lemmata were randomly chosen among all
2564 adjectives occuring more than 25 times in the
corpus. 86 of the 186 lemmata were classified by 3
human judges into each of the classes (basic, object,
event).2 In case of polysemy affecting the class as-

2The 3 human judges were PhD students with training in
linguistics, one of which had done research on adjectives. As
it was defined, the level of training in linguistics needed for the
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signment, the judges were instructed to return the
class for the most frequent sense as the primary
class, and a secondary class for the other sense.

Polysemy typically arises in cases where an adjec-
tive has developed a noncompositional sense. One
of these cases would be the adjective puntual, a de-
nominal adjective (derived from punt, ‘point’). Its
most frequent sense is ‘punctual’ as in ‘I expect
Mary to be punctual for this meeting’. This is a basic
meaning, noncompositional in the sense that it can-
not be predicted from the meaning of the originating
noun in combination with the suffix.

The adjective has a compositional sense, namely,
‘related to a point’ (usually, a point in time), as in
això va ser un esdeveniment puntual, ‘this was a
once-occuring event’. This is the meaning we would
expect from the derivation punt (‘point’) + al, and is
an object meaning. In this case, the judge should
assign the adjective to two classes, primary basic,
secondary object. Compositional meanings are thus
those corresponding to active morphological pro-
cesses, and can be predicted from the meaning of
the noun and the derivation with the suffix (be it de-
nominal, deverbal or participial).

The judges had an acceptable 0.74 mean κ agree-
ment (Carletta, 1996) for the assignment of the pri-
mary class, but a meaningless 0.21 for the secondary
class (they did not even agree on which lemmata
were polysemous). As a reaction to the low agree-
ment about polysemy, we incorporated polysemy in-
formation from a Catalan dictionary (DLC, 1993).
This information was incorporated only in addition
to the gathered gold standard: In many cases the dic-
tionary only lists the compositional sense. We added
it as a second reading if our judges considered the
noncompositional one as most frequent.

One of the authors of the paper classified the re-
maining 100 lemmata according to the same criteria.
For our experiment, we use the complete gold stan-
dard containing 186 lemmata (87 basic, 46 event,
and 53 object adjectives).

3 Morphological evidence

There is an obvious relationship between the deriva-
tional type of an adjective (whether it is denomi-
nal, deverbal, or not derived) and the semantic clas-

task was quite high.

sification we have put forth: Usually, a denominal
adjective has an object embedded in its meaning
(corresponding to the object denoted by the noun
from which it is derived). Similarly, a deverbal or
participial adjective tends to denote a relationship
with an event (the event denoted by the originating
verb), and a nonderived adjective tends to have a ba-
sic meaning. Therefore, the simplest classification
strategy is to associate each derivational type with a
semantic class: nonderived → basic, participial →
event, deverbal→ event, and denominal→ object.

Table 1 reflects the accuracy results of this theo-
retically defined mapping between morphology and
semantics, compared to our gold standard (cases cor-
responding to the predicted mapping in boldface).3

For instance, the first line of this table shows that 39
of the 42 nonderived adjectives, predicted to be ba-
sic by the morphology-semantics mapping, are ac-
tually deemed basic by the human judges, while the
remaining 3 are classified as object adjectives.

basic event object Total
nonderived (basic) 39 0 3 42
deverbal (event) 12 11 2 25
participial (event) 12 35 0 47
denominal (object) 24 0 48 72
Total 87 46 53 186

precision .93 .64 .67 .74
recall .45 1 .91 .78
f-score (α = 0.5) .69 .82 .79 .76

Table 1: Morphology-semantics mapping: results

Note that the table correctly reflects the general
tendencies just outlined: This simple classification
achieves 0.76 f-score. However, there are obvious
mismatches. Most of these mismatches are concen-
trated in the first column, namely many of the dever-
bal, participial and denominal adjectives (predicted
to denote event or object meanings) actually have
a basic meaning as their most frequent sense. This
fact is reflected in the low recall score for basic ad-
jectives (0.45), and in precision being much lower
than recall for the other two classes (0.64 vs. 1 for
event, 0.67 vs. 0.91 for object adjectives).

3The morphological information was obtained from a man-
ually constructed electronic database of adjectives, kindly pro-
vided by Roser Sanromà (2003).
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The mismatches usually correspond to polysemy
due to noncompositional senses of the adjectives,
such as the denominal adjective puntual discussed
above. Another case is the participial abatut, which
compositionally means ‘shot-down’, but is most fre-
quently used as a synonym to ‘depressed, down-
cast’, and therefore is classified as basic. Similarly,
a deverbal adjective such as radiant most frequently
means ‘happy’, but also has a compositional sense,
‘irradiating’.

Sometimes the compositional meaning is com-
pletely lost, as with most deverbal adjectives clas-
sified as basic. In some cases the underlying
verb no longer exists in Catalan (horrible-*horrir,
compatible-*compatir), and they are not perceived
as derived.4 In other cases, although the verb exists,
it is a stative predicate (e.g. inestable, ‘unstable’,
from estar ‘stand/be’; pudent ‘stinking’, from pudir,
‘stink’), and thus are much more similar to basic ad-
jectives than deverbal adjectives deriving from dy-
namic predicates, such as ofensiu (‘offensive’). As-
pectuality of the deriving verb is a factor that has to
be examined more carefully in the future.

To summarise, the results for the morphology-
semantics mapping indicate that there is a clear rela-
tionship between these two levels: Morphology does
most of the job right, because each morphological
rule has an associated semantic operation. However,
this level of information has a clear performance
ceiling. In case of noncompositional meanings the
morphological class will systematically be mislead-
ing, which cannot be overcome unless other kinds of
information are let into play.

4 Syntactic evidence

If we adhere to the hypothesis that semantics has
a reflection in syntactic distribution (basis for most
work in Lexical Acquisition), we can expect that
syntax gives us a better clue to semantics than mor-
phology, particularly in cases of noncompositional
meanings. We expect that adjectives with a noncom-

4The question may arise of whether these adjectives are re-
ally deverbal. In the current version of the adjective database,
all adjectives bearing a suffix that is active in the Catalan deriva-
tional system are classified as derived. The problem is that Cata-
lan shares suffixes with Latin, so that fixed forms from Latin
that have been incorporated into Catalan cannot be superficially
distinguished from active derived forms.

positional meaning behave in the syntax as basic ad-
jectives, not as event or object adjectives.

Before getting into the experiments using syntac-
tic information, we briefly present the syntax of ad-
jectives in Catalan and the predictions with respect
to the syntactic behaviour of each class.

4.1 Adjective syntax in Catalan

The default function of the adjective in Catalan is
that of modifying a noun; the default position is the
postnominal one (about 66% of adjective tokens in
the corpus modify nouns postnominally). Examples
are taula gran (‘big table’), arquitecte tècnic (‘tech-
nical architect’), and element constitutiu (‘constitu-
tive element’).

However, some adjectives can appear prenomi-
nally, mainly when used non-restrictively (so-called
“epithets”; 26% of the tokens occur in prenominal
position). In English, this epithetic use is not typi-
cally distinguished by position, but some adjectives
can epithetically modify proper nouns (‘big John’
vs. ‘*technical John’). ‘Big’ in ‘big John’ does
not restrict the reference of ‘John’, but highlights a
property. In Catalan and other Romance languages,
prenominal position is systematically associated to
this use, with proper or common nouns.

The other main function of the adjective is that
of predicate in a copular sentence (6% of the to-
kens), such as aquesta taula és gran (‘this table is
big’). Other predicative contexts, such as adjunct
predicates (as in la vaig veure borratxa, ‘I saw her
drunk’), are much less frequent: approx. 1% of the
adjectives in the corpus.

From empirical exploration and literature review,
we gathered the following tentative predictions as to
the syntactic behaviour of each class in Catalan:

Basic adjectives occur in predicative environments,
have scope over other adjectives modifying the
same head (most notably, object adjectives),
and can have epithetic uses and therefore occur
prenominally.

Event adjectives occur in predicative environments
and after object adjectives.

Object adjectives occur in a rigid position, directly
after their head noun; they do not allow pred-
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icative constructions nor epithetic uses (there-
fore not prenominal position).

4.2 Setup

We modelled the syntactic behaviour of adjectives
using three different representation strategies. The
values in the three cases were frequency counts, that
is, the percentage of occurrence of each adjective in
that syntactic environment. The frequency of the ad-
jectives from the gold standard in the corpus ranges
from 27 to 7154 (median: 129.5). All in all, 56,692
out of the approx 600,000 sentences in the corpus
were used as data for this experiment. We have
not analysed the influence of frequency on the re-
sults, but each adjective is represented by a reason-
able amount of data, so that the representation of the
syntactic evidence in terms of frequency is adequate.

The simplest modelling strategy is unigram repre-
sentation, taking the POS of the word to the left of
the adjective and the POS of the word to the right
as separate features. Adjectives have a limited syn-
tactic distribution (much more restricted than e.g.
verbs), so that even this simple representation should
provide relevant evidence. The second one is bigram
representation, with features consisting of the POS
of the word to the left of the adjective and the POS
of the word to the right as a single feature. This rep-
resentation results in a much larger number of fea-
tures (see Table 2), thus potentially leading to data
sparsenes, but it should be more informative, be-
cause left and right context are taken into account
at the same time.

The third one is the syntactic function, as given
by CatCG. For adjectives, these functions are noun
modifier (distinguishing between prenominal and
postnominal position), predicate in a copular sen-
tence, and predicative adjunct (more information
in Section 4.4). CatCG does not yield completely
disambiguated output, and the ambiguous functions
were also taken into account, so as not to miss any
potentially relevant source of evidence.

To perform the experiment, we used C5.0, a com-
mercial decision tree and rule induction engine de-
veloped by Ross Quinlan (Quinlan, 1993). We tried
several options, including the default, winnowing,
and adaptive boosting. Although the results varied
a bit within each representation strategy (boosting
tended to perform better, winnowing did not have

a homogeneous behaviour), the general picture re-
mained the same as to the relative performance of
each level of representation. Therefore, and for clar-
ity of exposure and exploration reasons, we will only
present and discuss results using the default options.

For comparison, we ran the tool on the 3 syntactic
representation levels and on morphological informa-
tion, using derivational type, a finer-grained deriva-
tional type, and the suffix.5

4.3 Results

The results of the experiment, obtained averaging
ten 10-fold cross-validation runs, are depicted in Ta-
ble 2. In this table, #f is the number of features for
each representation strategy, size the size of the trees
(number of leaves), accuracy the accuracy rate of the
classifiers (in percentage), and SE the standard error
of each parameter. We currently assume a majority
baseline, that of assigning all adjectives to the most
numerous class (basic). Given that there are 87 ba-
sic adjectives and 186 items in the gold standard (see
Table 1), this baseline results in 46.8% accuracy.

size accuracy
#f mean SE mean SE

baseline - - - 46.8 -
morphology 3 4.3 0.1 70.1 0.3
unigram 24 19.1 0.2 68.8 0.6
bigram 135 18.8 0.4 67.4 0.8
synt. funct. 14 3.5 0.1 73.8 0.3

Table 2: Decision Tree experiment

Note that all four classifiers are well above the
majority baseline (46.8%). The best results are ob-
tained with the lowests number of features (3 for
morphology, 14 for syntactic function, vs. 24 and
135 for unigram and bigram), and correspondingly,
with the smallest trees (average 4.3 and 3.5 leaves
for morphology and function, 19.1 and 18.8 for n-
grams). We interpret this result as indicating that
the levels of description of morphology and syn-
tactic function are more adequate than the n-gram
representation, although this is only a tentative con-
clusion, because the differences in accuracy are not
large. Function abstracts away from particular POS

5The finer-grained derivational type states whether the ad-
jective is derived from a noun or verb that still exists in Catalan
or not.
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syntactic function basic event object
postnominal modifier .69 +/-.16 .68 +/-.19 .94 +/-.06
prenominal modifier .07 +/-.09 .02 +/-.04 .01 +/-.03
predicative adjunct .09 +/-.08 .19 +/-.16 .02 +/-.03
predicate in a copular sentence .10 +/-.10 .08 +/-.07 .01 +/-.02

Table 3: Average values for the syntactic functions in each adjective class.

environments, and summarises the most relevant in-
formation without the data sparseness problems in-
herent in n-gram representation.

Also noteworthy is that the accuracy rates for syn-
tax are lower than we would have expected, ac-
cording to the hypothesis that it better reflects syn-
chronic meaning. For the first two syntactic repre-
sentations, unigrams and bigrams, results are worse
than using the simple morphological mapping ex-
plained above (respectively 68.8% and 67.4% ac-
curacy, compared to 70.1% accuracy achieved with
morphology).6 Only syntactic function improves
upon the morphological results, and only slightly
(73.8% average accuracy). However, as will be ex-
plored in the rest of the Section, the mistakes of
the morphological classifier are qualitatively differ-
ent from those of the syntactic classifiers, which can
be used to gain insight into the nature of the problem
handled, and to build better classifiers.

4.4 Error analysis

For the analysis of the results, we will focus on the
syntactic function features, because it is the best sys-
tem and allows clearer exploration of the hypotheses
stated so far than the n-gram representation.

Table 3 contains the data for the 4 main syntactic
functions for adjectives. For each class (all adjec-
tives classified as basic, event or object in the gold
standard), it contains the average percentage of oc-
curence with each syntactic function, along with the
standard deviation. A set of 10 remaining syntac-
tic features represented cases not disambiguated by
CatCG, which had really low mean values and were
rarely used in the DTs.

The values of the 4 syntactic functions confirm to
a large extent the predictions made with respect to
the syntactic behaviour of each adjective class, but

6When using morphological features, DTs used almost only
the main derivational type, according to the hypothesis stated in
Section 3.

also evidence an additional fact: basic and event ad-
jectives, in the current definition of the classes, have
only slight differences in their syntax.

Basic and event adjectives have similar mean val-
ues for the default adjective position in Catalan
(postnominal modifier; 0.69 and 0.68 mean values),
and also for the predicative function in a copular
sentence (0.10 and 0.084 mean values). The two-
sample t-test confirms that the differences in mean
are not significant (p=0.73 and p=0.88 at the 95%
confidence interval).7

Basic adjectives occur more frequently as
prenominal modifiers (0.07 compared to 0.02), but
note the large standard deviation (0.09 and 0.04)),
which means that there is a large within-class vari-
ability. In addition, event adjectives have a larger
mean value for the predicative adjunct function (0.19
vs. 0.09), but again, the standard deviation of both
classes is very large (0.16 and 0.08). Nevertheless,
a t-test returns significant p values (< 0.001, 95%
conf. int.) for the differences in mean of these two
features, so that they can be used as a clue to the
characterisation of the event class.8 The bias of
event adjectives towards predicative uses can be at-
tributed to participials – the most frequent kind of
adjectives in the event class (35 vs. 11).

Object adjectives do present a distinct syntactic
behaviour: They act (as expected) as rigid postnom-
inal modifiers (mean value 0.94), and cannot be used
as prenominal modifiers (mean value 0.01) or as
predicates (mean values 0.018 and 0.008 for pred-
icative functions). Also note that the standard devi-
ation for each feature is lower in the case of object
adjectives than in the case of basic and event adjec-
tives, which indicates a higher homogeneity of the
object class. T-tests for the difference in means with

7Alternatives “not equal” and “basic smaller than event” re-
spectively.

8Alternatives: “basic greater than event” for prenominal
modification, “event greater than basic” for predicative adjunct.
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respect to the basic and event class return signifi-
cant p values (< 0.001) except for the difference in
prenominal modification values between event and
object adjectives (p=0.26).9

Decision trees built with this feature set use the in-
formation consistent with the observations just out-
lined. In general, they characterise object adjectives
as postnominal modifiers (usual threshold: 0.9), ba-
sic adjectives as prenominal modifiers (usual thresh-
old: 0.01), and event adjectives as not being prenom-
inal modifiers. In some trees, information about
predicativity is also included (event adjectives act as
predicative adjuncts; usual threshold: 0.04).

From the discussion of the feature values, it is to
be expected that most of the mistakes when using the
syntactic function feature set are due to basic-event
confusion, and this is indeed the case. For the er-
ror analysis, we divided the gold standard into three
equal sets, and successively trained on two sets and
classified the third. The classification of the gold
standard that resulted is reflected in Table 4 (cor-
rectly classified items in boldface).

true class→ basic event object Total
basic 56 7 5 68
event 18 35 4 57
object 13 4 44 61
Total 87 46 53 186

precision .82 .61 .72 .72
recall .64 .76 .83 .69
f-score .73 .69 .78 .73

Table 4: Syntax-semantics mapping: results

Table 4 shows that the object class is best charac-
terised (0.78 f-score), followed by the basic (0.73)
and event (0.69) classes. Particularly low are preci-
sion for event (0.61) and recall for basic (0.64) ad-
jectives. This distribution indicates that many adjec-
tives are classified as event while belonging to other
classes (18 to basic, 4 to object), and many basic ad-
jectives are classified into other classes (18 as event,
13 as object).

The basic-event confusion mainly takes place
with basic adjectives not used as epithets (in

9Alternatives: all means of basic and event greater than
those of object, except for postnominal modification, testing
against a greater mean for object.

prenominal position; curull ‘full’, dispers ‘scat-
tered’) and event adjectives used as epithets (inter-
minable ‘endless’, ofensiu ‘offensive’). Although
more analysis is needed, in many of these cases
(such as interminable) the underlying verb is sta-
tive, which makes the adjectives very similar to basic
adjectives, as mentioned in Section 3. The judges
reported difficulties particularly in distinguishing
event from basic adjectives, which matches the re-
sults of the experiments. The classification is fuzzy
in this point, and we intend to develop clearer crite-
ria to distinguish adjectives with an “active” event in
their lexical meaning from basic adjectives.

As for the basic-object confusion, it is due to two
factors. The first one is basic being the default class:
In the gold standard, if an adjective does not fit into
the other 2 classes, it is considered basic, even if
it does not denote a prototypical kind of attribute
or property. Examples are radioactiu (‘radioactive’)
and recíproc ‘reciprocal’. These tend to be used less
in predicative and epithetic functions.

The second one is polysemy. 4 adjectives clas-
sified in the gold standard as polysemous between
a basic (primary) and an object (secondary) read-
ing are classified by C5.0 as object because they
almost only (> 90% of the time) occur postnomi-
nally: artesanal, mecànic, moral, ornamental (‘arte-
sanal, mechanical, moral, ornamental’). All of these
cases have a compositional meaning paraphrasable
by ‘related-to X’, where X is the derived noun, and
a noncompositional meaning such as ‘automatic’ for
mecànic. The syntactic behaviour of the adjective is
mixed according to the two classes, so that the val-
ues for environments typical of basic adjectives are
too low to meet the thresholds.10

To sum up, event adjectives do not seem to have
consistent syntactic characteristics that tell them
apart from basic adjectives, while object adjectives
have a consistent behaviour distinct from the other
two classes. This result backs up previous exper-
imentation with clustering (Boleda et al., 2004),
where half of the event adjectives were systemati-
cally clustered together with basic adjectives.11 Pol-

10Note, however, that in 6 other cases with the same poly-
semy, syntax does tell them apart from typical object adjectives,
and are classified as basic (such as the puntual case discussed
above; see discussion in next Section).

11The ones that were distinguished from basic adjectives
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ysemy plays a tricky role, because depending on the
uses of the adjective it leads to a continuum in the
feature values which sometimes does not allow a
clear identification of the most frequent sense.

5 Differences between morphology and
syntax

A crucial point to understand the roles of morphol-
ogy and syntax for our semantic classification is
the differences in the kinds of mistakes that each
of the information level carries with it. From the
discussion up to this point, we would expect that
the default morphological classification causes less
mistakes with event vs. basic, because the deverbal
morphological rules carry the associated “related-
to-event” meaning. On the contrary, syntax should
handle better the cases where the relationship be-
tween morphology and semantics is lost, what we
have termed noncompositional meanings.

If we compare the mistakes made by each map-
ping, both morphology and syntax assign the ex-
pected class to 103 lemmata (55.4% of the gold
standard), and both coincide in assigning a wrong
class for 21 (11.3%). The cases where one map-
ping achieves the right classification and the other
one makes a mistake are reflected in Tables 5 and 6.

true class→ basic event object Total
basic 7 5 12
event 6 4 10
object 4 4 8
Total 10 11 9

Table 5: Morphology right, syntax wrong

true class→ basic event object Total
basic 2 3 3
event 10 12
object 17 17
Total 27 2 3

Table 6: Syntax right, morphology wrong

Cases where morphology achieves the right class
and syntax does not (Table 6) do not present a very
clear pattern, although the basic-event confusion in

were so due to their bearing complements, a parameter orthog-
onal to the targeted classification.

syntax is indeed reflected as the most numerous in
Table 5 (6+7 cases). In absence of a syntactic char-
acterisation of the class, applying the default map-
ping will yield better results.

As for the cases where syntax classifies correctly
and morphology does not (Table 6), they do present
a clear pattern: They correspond, as expected, to de-
verbal (8), participial (2) and denominal (17) adjec-
tives with a meaning that does not correspond to the
morphological rule. Among denominals, examples
are elemental and horrorós (‘elementary’ and ‘hor-
rifying’); among deverbals, raonable and present
(‘reasonable’ and ‘present’); among participials, in-
nat and inesperat (‘innate’ and ’unexpected’).

Note that syntax is most helpful in the identifi-
cation of basic denominal adjectives (17 cases), pro-
viding support for the hypothesis that adjectives with
a noncompositional meaning behave in the syntax as
basic adjectives, which can be exploited in a lexi-
cal acquisition setting. In contrast, event and basic
classes not having a clearly distinct syntactic distri-
bution, the syntactic features do not help in telling
these two classes apart. This problem accounts for
the little overall accuracy improvement from mor-
phology (70.1%) to syntax (73.8%): It improves the
object vs. basic distinction, but it does not consis-
tently improve the event vs. basic distinction.

5.1 Combining morphological and syntactic
features

The next logical step in building a better classifier
for adjectives is to use both morphological and syn-
tactic function information. When doing that, a
slightly better result is obtained, although no dra-
matic jump in improvement: 74.7% mean accuracy
averaged across ten 10-fold cross-validation runs,
with trees of average 8 leaves (mean accuracy being
70.1% with morphology and 73.8% with syntactic
function; see Table 2).

In most of the partitions of the data when using
this feature set, the first node uses syntactic evidence
(high values for postnominal position for object ad-
jectives vs. the rest), and the second level nodes use
the derivational type. The remaining morphological
features (suffix, fine-grained derivational type; see
footnote 4.2) are seldom used.

In all the decision trees, nonderived adjectives are
directly assigned to the basic class, and in 80% par-
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ticipial adjectives are classified as event. The last
rule causes a large number of errors, because 12 out
of 47 participles were classified as basic in the gold
standard. For the other two derivational types, syn-
tactic evidence is used again in almost all decision
trees (99% for deverbal, 80% for denominal adjec-
tives). Deverbal or denominal adjectives that occur
prenominally are deemed basic, according to expec-
tation. Contrary to expectation, however, deverbal
adjectives that occur predicatively are classified as
basic. This result confirms the suspicion that fre-
quent predicative use is associated with participial,
but not with other kinds of deverbal adjectives, as
stated in Section 4.4.

6 Related work

In recent years much research (Merlo and Steven-
son, 2001; Schulte im Walde and Brew, 2002; Ko-
rhonen et al., 2003) has aimed at exploiting the
syntax-semantics interface for classification tasks,
mostly based on verbs. In particular, Merlo and
Stevenson (2001) present a classification experiment
which bears similarities to ours. They use deci-
sion trees to classify intransitive English verbs into
three semantic classes: unergatives, unaccusatives,
and object-drop. As in our experiments, they define
three classes, and use only 60 verbs for the experi-
ments. Merlo and Stevenson identify linguistic fea-
tures referring to verb argument structure (crucially
involving thematic relations), and classify the verbs
into the three classes with an accuracy of 69.8%.
They compare their results with a random baseline
of 33%.

There has been much less research in Lexical Ac-
quisition for adjectives. Early efforts include Hatzi-
vassiloglou and McKeown (1993), a cluster analysis
directed to the automatic identification of adjectives
belonging to the same scale (such as cold-tempered-
hot). More recently, Bohnet et al. (2002) used
bootstrapping to assign German adjectives to “func-
tional” classes (of a more traditional sort, based on
a German descriptive grammar). They relied on or-
dering restrictions and coordination data which can
be adapted to Catalan.

As for Romance languages, the only related work
we are aware of is Carvalho and Ranchod (2003),
who developed a finite-state approach to disam-

biguating homograph adjectives and nouns in Por-
tuguese. They manually classified the adjectival
uses of the homographs into six syntactic classes
with characteristics used in our classification (pred-
icative uses, position with respect to the head noun,
etc.). They used that information to build finite state
transducers aimed at determinining the POS of the
homographs in each context, with a high accuracy
(99.3%) and coverage (94%). The research under-
gone in this paper leads to the automatic acquisition
of the classes, defined however at a semantic rather
than syntactic level.

7 Conclusion and future work

In this paper, we have presented and discussed the
role of two sources of evidence for the automatic
classification of adjectives into ontological seman-
tic classes: morphology and syntax. Both levels
provide relevant information, as indicated by their
respective accuracy results (70.1% for morphology,
73.8% for syntax), both well above a majority base-
line (46.8%). Morphology fails in cases of noncom-
positional meaning, when the relationship to the de-
riving word has been lost, cases that syntax tends to
correctly classify. In contrast, syntax systematically
confuses event and basic adjectives due to the lack
of a sufficiently distinct syntactic profile of the event
class. Therefore, the default morphology-semantics
mapping handles these cases better.

Not suprisingly, the best classifier is obtained
combining both kinds of information (74.7%), al-
though it is not even 1% better than the syntactic
classifier. More research is needed to achieve better
ways of combining both levels of description.

We can summarise our results as indicating that
morphology can give a reliable initial hypothesis
with respect to the semantic class of an adjective,
which syntax can refine in cases of noncomposi-
tional meaning, particularly for object adjectives.
Therefore, morphology can be used as a baseline in
future classification experiments.

The experiments presented in this paper also shed
light on the characteristics of each class. In particu-
lar, we have shown that event adjectives do not have
a homogeneous and distinct syntactic profile. One
factor to take into account is that the morphologi-
cal variability within the class (suffixes -ble, iu, nt,
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participles) is associated with a high semantic vari-
ability. This semantic variability is not found in the
object class, where the several suffixes (al, ic, à, etc.)
all have a similar semantic effect. Another factor
which seems to play a role, and which has been iden-
tified in the error analysis, is the aspectuality of the
deriving verb, particularly whether it is stative or dy-
namic. In the near future, we intend to use the best
classifier to automatically classify more adjectives
of our database, so as to allow further exploration of
the data and a clearer definition of the class.

A major issue we leave for future research is pol-
ysemy detection. Up to now, we have only aimed at
single-class classification, and not attempted to cap-
ture multiple uses of an adjective. E.g. the approach
in Bohnet et al. (2002) could be adapted to Cata-
lan: We can use data on coordination and ordering
for polysemy detection, once the class of the most
frequent sense is established with the methodology
explained in this paper.

Finally, the results presented in this paper seem
to point in a fruitful direction for the study of ad-
jective semantics: Adjectives that are flexibly used,
those that fully exploit the syntactic possibilities of
the language (in Catalan, being used predicatively
and as epithets), tend to correspond to adjectives
with a basic meaning, that is, tend to be viewed as
a compact attribute, as a prototypical adjective. In
contrast, derived adjectives which retain much of
the semantic link to the noun or verb from which
they derive do not behave like prototypical adjec-
tives, are tied to certain positions, and do not exhibit
the full range of syntactic possibilities of adjectives
as a class. We intend to explore the consequences of
this hypothesis in more detail in the future.
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Abstract

Distributional similarity requires large
volumes of data to accurately represent
infrequent words. However, the nearest-
neighbour approach to finding synonyms
suffers from poor scalability. The Spa-
tial Approximation Sample Hierarchy
(SASH), proposed by Houle (2003b), is
a data structure for approximate nearest-
neighbour queries that balances the effi-
ciency/approximation trade-off. We have
intergrated this into an existing distribu-
tional similarity system, tripling efficiency
with a minor accuracy penalty.

1 Introduction

With the development of WordNet (Fellbaum, 1998)
and large electronic thesauri, information from lex-
ical semantic resources is regularly used to solve
NLP problems. These problems include collocation
discovery (Pearce, 2001), smoothing and estimation
(Brown et al., 1992; Clark and Weir, 2001) and ques-
tion answering (Pasca and Harabagiu, 2001).

Unfortunately, these resources are expensive and
time-consuming to create manually, and tend to suf-
fer from problems of bias, inconsistency, and limited
coverage. In addition, lexicographers cannot keep
up with constantly evolving language use and can-
not afford to build new resources for the many sub-
domains thatNLP techniques are being applied to.
There is a clear need for methods to extract lexical
semantic resources automatically or tools that assist
in their manual creation and maintenance.

Much of the existing work on automatically ex-
tracting resources is based on thedistributional hy-
pothesisthat similar words appear in similar con-
texts. Existing approaches differ primarily in their
definition of “context”, e.g. the surrounding words
or the entire document, and their choice of distance
metric for calculating similarity between the vector
of contexts representing each term. Finding syn-
onyms using distributional similarity involves per-
forming a nearest-neighbour search over the context
vectors for each term. This is very computation-
ally intensive and scales according to the vocabulary
size and the number of contexts for each term. Cur-
ran and Moens (2002b) have demonstrated that dra-
matically increasing the quantity of text used to ex-
tract contexts significantly improves synonym qual-
ity. Unfortunately, this also increases the vocabulary
size and the number of contexts for each term, mak-
ing the use of huge datasets infeasible.

There have been many data structures and ap-
proximation algorithms proposed to reduce the com-
putational complexity of nearest-neighbour search
(Chávez et al., 2001). Many of these approaches re-
duce the search space by using clustering techniques
to generate an index of near-neighbours. We use the
Spacial Approximation Sample Hierarchy (SASH)
data structure developed by Houle (2003b) as it al-
lows more control over the efficiency-approximation
trade-off than other approximation methods.

This paper describes integrating theSASH into
an existing distributional similarity system (Cur-
ran, 2004). We show that replacing the nearest-
neighbour search improves efficiency by a factor of
three with only a minor accuracy penalty.
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2 Distributional Similarity

Distributional similarity systems can be separated
into two components. The first component extracts
the contexts from raw text and compiles them into a
statistical description of the contexts each term ap-
pears in. The second component performs nearest-
neighbour search or clustering to determine which
terms are similar, based on distance calculations be-
tween their context vectors. The approach used in
this paper follows Curran (2004).

2.1 Extraction Method

A context relationis defined as a tuple (w, r,w′)
wherew is a term, which occurs in some grammati-
cal relationr with another wordw′ in some sentence.
We refer to the tuple (r,w′) as anattributeof w. For
example,(dog, diect-obj, walk) indicates thatdog
was the direct object ofwalk in a sentence.

Context extraction begins with a Maximum En-
tropy POS tagger and chunker (Ratnaparkhi, 1996).
The Grefenstette (1994) relation extractor produces
context relations that are then lemmatised using the
Minnen et al. (2000) morphological analyser. The
relations for each term are collected together and
counted, producing a context vector of attributes and
their frequencies in the corpus.

2.2 Measures and Weights

Both nearest-neighbour and cluster analysis meth-
ods require a distance measure that calculates the
similarity between context vectors. Curran (2004)
decomposes this measure intomeasureand weight
functions. Themeasurefunction calculates the sim-
ilarity between two weighted context vectors and the
weightfunction calculates a weight from the raw fre-
quency information for each context relation.

The SASH requires a distance measure that pre-
serves metric space (see Section 4.1). For these ex-
periments we use the JACCARD (1) measure and the
TTEST (2) weight, as Curran and Moens (2002a)
found them to have the best performance in their
comparison of many distance measures.
∑

(r,w′) min(wgt(wm, ∗r , ∗w′),wgt(wn, ∗r , ∗w′))
∑

(r,w′) max(wgt(wm, ∗r , ∗w′),wgt(wn, ∗r , ∗w′))
(1)

p(w, r,w′) − p(∗, r,w′)p(w, ∗, ∗)
√

p(∗, r,w′)p(w, ∗, ∗)
(2)

3 Nearest-neighbour search

The simplest algorithm for finding synonyms is
nearest-neighbour search, which involves pairwise
vector comparison of the target term with every term
in the vocabulary. Given ann term vocabulary and
up tomattributes for each term, the asymptotic time
complexity of nearest-neighbour search isO(n2m).
This is very expensive with even a moderate vocab-
ulary and small attribute vectors making the use of
huge datasets infeasible.

3.1 Heuristic

Using cutoff to remove low frequency terms can sig-
nificantly reduce the value ofn. In these experi-
ments, we used a cutoff of 5. However, a solution
is still needed to reduce the factorm. Unfortunately,
reducingm by eliminating low frequency contexts
has a significant impact on the quality of the results.

Curran and Moens (2002a) propose an initial
heuristic comparison to reduce the number of
full O(m) vector comparisons. They introduce a
bounded vector (lengthk) of canonical attributes,
selected from the full vector, to represent the
term. The selected attributes are the most strongly
weighted verb attributes: Curran and Moens chose
these relations as they generally constrain the se-
mantics of the term more and partake in fewer id-
iomatic collocations.

If a pair of terms share at least one canonical
attribute then a full similarity comparison is per-
formed, otherwise the terms are not considered sim-
ilar. If a maximum ofp positive results are returned,
our complexity becomesO(n2k+npm), which, since
k is constant, isO(n2

+ npm).

4 The SASH

The SASH approximates a nearest-neighbour search
by pre-computing some of the near-neighbours of
each node (terms in our case). It is arranged as a
multi-leveled pyramid, where each node is linked
to its (approximate) near-neighbours on the levels
above and below. This produces multiple paths be-
tween nodes, allowing theSASH to shape itself to
the data set (Houle, 2003a). This graph is searched
by finding the near-neighbours of the target node
at each level. The following description is adapted
from Houle (2003b).
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Figure 1: ASASH, wherep = 2, c = 3 andk = 2

4.1 Metric Spaces

The SASH organises nodes that can be measured in
metric space. Although it is not necessary for the
SASH to work, only in this space can performance
be guaranteed. Our meaures produce ametric-like
space for the terms derived from large datasets.

A domain D is a metric spaceif there exists a
functiondist : D × D→ R≥0 such that:

1. dist(p, q) ≥ 0 ∀ p, q ∈ D (non-negativity)

2. dist(p, q) = 0 iff p = q ∀ p, q ∈ D (equality)

3. dist(p, q) = dist(q, p) ∀ p, q ∈ D (symmetry)

4. dist(p, q) + dist(q, r) ≥ dist(p, r)
∀ p, q, r ∈ D (triangle inequality)

We invert the similarity measure to produce a dis-
tance, resulting in condition 2 not being satisfied
sincedist(p, p) = x, x > 0. For most measuresx
is constant, sodist(p, q) > dist(p, p) if p , q andp
andq do not occur in exactly the same contexts. For
some measures, e.g. DICE, dist(p, p) > dist(p, q),
that is, p is closer toq than it is to itself. These do
not preserve metric space in any way, so cannot be
used with theSASH.

Chávez et al. (2001) divides condition 2 into:

5. dist(p, p) = 0 ∀ p ∈ D (reflexivity)

6. dist(p, q) > 0 iff p , q ∀ p, q ∈ D
(strict positiveness)

If strict positiveness is not satisfied the space is
calledpseudometric. In theory, our measures do not
satisfy this condition, however in practice most large
datasets will satisfy this condition.

4.2 Structure

The SASH is a directed, edge-weighted graph with
the following properties:

• Each term corresponds to a unique node.

• The nodes are arranged into a hierarchy of lev-
els, with the bottom level containingn2 nodes
and the top containing a single root node. Each
level, except the top, will contain half as many
nodes as the level below. These are numbered
from 1 (top) toh.

• Edges between nodes are linked from consecu-
tive levels. Each node will have at mostp par-
entnodes in the level above, andc child nodes
in the level below.

• Every node must have at least one parent so that
all nodes are reachable from the root.

Figure 1 shows aSASH which will be used below.

4.3 Construction

The SASH is constructed iteratively by finding the
nearest parents in the level above. The nodes are
first randomly distributed to reduce any clustering
effects. They are then split into the levels described
above, with levelh having n

2 nodes, level 2 at mostc
nodes and level 1 having a single root node.

The root node has all nodes at level 2 as children
and each node at level 2 has the root as its sole par-
ent. Then for each node in each leveli from 3 to
h, we find the set ofp nearest parent nodes in level
(i − 1). The node then asks that parent if it can be
a child. As only the closestc nodes can be children
of a node, it may be the case that a requested parent
rejects a child.
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DIST c LOAD TIME

RANDOM 16 21.0hr
RANDOM 64 15.6hr
RANDOM 128 21.1hr
FOLD1500 16 50.2hr
FOLD1500 64 33.4hr
FOLD1500 128 25.7hr
SORT 16 75.5hr
SORT 64 23.8hr
SORT 128 33.8hr

Table 1: Load time distributions and values ofc

If a child is left without any parents it is said to be
orphaned. Any orphaned nodes must now find the
closest node in the above level that has fewer than
c children. Once all nodes have at least one parent,
we move to the next level. This proceeds iteratively
through the levels.

4.4 Search

Searching theSASH is also performed iteratively. To
find thek nearest neighbours of a nodeq, we first
find thek nearest neighbours at each level. At level 1
we take the single root node to be nearest. Then, for
each level after, we find thek nearest unique children
of the nodes found in the level above. When the
last level has been searched, we return the closestk
nodes from all the sets of near neighbours returned.

In Figure 1, the filled nodes demonstrate a search
for the near-neighbours of some nodeq, usingk = 2.
Our search begins with the root nodeA. As we are
usingk = 2, we must find the two nearest children of
A using our similarity measure. In this case,C and
D are closer thanB. We now find the closest two
children ofC andD. E is not checked as it is only
a child ofB. All other nodes are checked, including
F andG, which are shared as children byB andC.
From this level we choseG andH. We then consider
the fourth and fifth levels similarly.

At this point we now have the list of near nodes
A, C, D, G, H, I , J, K andL. From this we chose
the two nodes closest toq: H andI marked in black.
These are returned as the near-neighbours ofq.

k can also be varied at each level to force a larger
number of elements to be tested at the base of the

SASH using, for instance, the equation:

ki = max{ k1− h−i
log2 n ,

1
2

pc} (3)

We use this geometric function in our experiments.

4.5 Complexity

When measuring the time complexity, we consider
the number of distance measurements as these dom-
inate the computation. If we do not consider the
problem of assigning parents to orphans, forn
nodes,p parents per child, at mostc children per
parent and a search returningk elements, the loose
upper bounds are:
SASH construction

pcnlog2 n (4)

Approx. k-NN query (uniform)

ck log2 n (5)

Approx. k-NN query (geometric)

k1+ 1
log2 n

k
1

log2 n−1
+

pc2

2
log2 n (6)

Since the average number of children per node is
approximately 2p, practical complexities can be de-
rived usingc = 2p.

In Houle’s experiments, typically less than 5% of
computation time was spent assigning parents to or-
phans, even for relatively smallc. In some of our
experiments we found that low values ofc produced
significantly worse load times that for higher values,
but this was highly dependant on the distribution of
nodes. Table 1 shows this with respect to several
distributions and values ofc.

5 Evaluation

The simplest method of evaluation is direct com-
parison of the extracted synonyms with a manually-
created gold standard (Grefenstette, 1994). How-
ever, on small corpora, rare direct matches provide
limited information for evaluation, and thesaurus
coverage is a problem. Our evaluation uses a com-
bination of three electronic thesauri: the Macquarie
(Bernard, 1990), Roget’s (Roget, 1911) and Moby
(Ward, 1996) thesauri.
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With this gold standard in place, it is possible
to use precision and recall measures to evaluate the
quality of the extracted thesaurus. To help overcome
the problems of direct comparisons we use several
measures of system performance: direct matches
(DIRECT), inverse rank (INVR), and precision of the
top n synonyms (P(n)), for n = 1, 5 and 10.

INVR is the sum of the inverse rank of each
matching synonym, e.g. matching synonyms at
ranks 3, 5 and 28 give an inverse rank score of
1
3+

1
5+

1
28, and with at most 100 synonyms, the max-

imum INVR score is 5.187. Precision of the topn is
the percentage of matching synonyms in the topn
extracted synonyms.

The same 70 single-word nouns were used for the
evaluation as in Curran and Moens (2002a). These
were chosen randomly from WordNet such that they
covered a range over the following properties:

frequency Penn Treebank andBNC frequencies;

number of sensesWordNet and Macquarie senses;

specificity depth in the WordNet hierarchy;

concretenessdistribution across WordNet subtrees.

For each of these terms, the closest 100 terms and
their similarity score were extracted.

6 Experiments

The contexts were extracted from the non-speech
portion of the British National Corpus (Burnard,
1995). All experiments used the JACCARD measure
function, the TTEST weight function and a cutoff
frequency of 5. TheSASH was constructed using the
geometric equation forki described in Section 4.4.
When the heuristic was applied, the TTESTLOG

weight function was used with a canonical set size
of 100 and a maximum frequency cutoff of 10,000.

The values 4–16, 8–32, 16–64, and 32–128 were
chosen forp andc. This gives a range of branch-
ing factors to test the balance betweensparseness,
where there is potential for erroneous fragmentation
of large clusters, andbushiness, where more tests
must be made to find near children. Thec = 4p re-
lationship is derived from the simple hashing rule
of thumb that says that a hash table should have
roughly twice the size required to store all its ele-
ments (Houle, 2003b).

DIST FREQUENCY # RELATIONS

Mean Median Mean Median

RANDOM 342 18 126 13
FOLD500 915 865.5 500 500
FOLD1000 2155 1970.5 1001 1001.5
FOLD1500 3656 3444 1506 1510.5
SORT 44753 37937.5 8290 7583.5

Table 2: Top 3SASH level averages withc = 128
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Figure 2: INVR against average search time

Our initial experiments showed that the random
distribution of nodes (RANDOM) in SASH construc-
tion caused the nearest-neighbour approximation to
be very inaccurate for distributional similarity. Al-
though the speed was improved by two orders of
magnitude whenc = 16, it achieved only 13% of the
INVR of the naı̈ve implementation. The bestRAN-
DOM result was less than three times faster then the
naı̈ve solution and only 60% INVR.

In accordance with Zipf’s law the majority of
terms have very low frequencies. Similarity mea-
surements made against these low frequency terms
are less reliable, as accuracy increases with the num-
ber of relations and their frequencies (Curran and
Moens, 2002b). This led to the idea that ordering
the nodes by frequency before generating theSASH

would improve accuracy.
The SASH was then generated with the highest

frequency terms were near the root so that the initial
search paths would be more accurate. This has the
unfortunate side-effect of slowing search by up to
four times because comparisons with high frequency
terms take longer than with low frequency terms as
they have a larger number of relations.
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DIST c DIRECT P(1) P(5) P(10) INVR SEARCH TIME

NAIVE 2.83 49% 41% 32% 1.43 12217ms
RANDOM 16 0.17 9% 6% 3% 0.18 13% 120ms
RANDOM 64 1.09 30% 21% 15% 0.72 50% 1388ms
RANDOM 128 1.53 31% 24% 20% 0.86 60% 4488ms
SORT 16 1.51 33% 25% 20% 0.90 63% 490ms
SORT 64 2.55 47% 38% 31% 1.34 94% 2197ms
SORT 128 2.81 49% 41% 33% 1.43 100% 6960ms

Table 3: Evaluation of different random and fully sorted distributions

This led to updating our original frequency order-
ing idea by recognising that we did not need themost
accurately comparable terms at the top of theSASH,
only more accurately comparable terms than those
randomly selected.

As a first attempt, we constructedSASHs with fre-
quency orderings that werefolded about a chosen
number of relationsM. For each term, if its num-
ber of relationsmi was greater thanM, it was given
a new ranking based on the scoreM

2

mi
. In this way,

very high and very low frequency terms were pushed
away from the root. The folding points this was
tested for were 500, 1000 and 1500. There are many
other node organising schemes we are yet to explore.

The frequency distributions over the top three lev-
els for each ordering scheme are shown in Table 2.
Zipf’s law results in a large difference between the
mean and median frequency values in theRANDOM

results: most of the nodes have low frequency, but
some high frequency results push the mean up. The
four-fold reduction in efficiency forSORT (see Ta-
ble 3) is a result of the mean number of relations
being over 65 times that ofRANDOM.

Experiments covering the full set of permutations
of these parameters were run, with and without the
heuristic applied. In the cases where the heuristic
rejected pairs of terms, theSASH treated the rejected
pairs as being as infinitely far apart. In addition, the
brute force solutions were generated with (NAIVE

HEURISTIC) and without (NAIVE ) the heuristic.
We have assumed that all weights and measures

introduce similar distribution properties into the
SASH, so that the best weight and measure when per-
forming a brute-force search will also produce the
best results when combined with theSASH. Future
experiments will exploreSASH behaviour with other
similarity measures.

7 Results

Table 3 presents the results for the initial experi-
ments. SORT was consistently more accurate than
RANDOM, and whenc = 128, performed as well as
NAIVE for all evaluation measures except for direct
matches. BothSASH solutions outperformedNAIVE

in efficiency.
The trade-off between efficiency and approxima-

tion accuracy is evident in these results. The most
efficient result is 100 times faster thanNAIVE , but
only 13% accurate on INVR, with 6% of direct
matches. The most accurate result is 100% accu-
rate on INVR, with 99% of direct matches, but is
less than twice as fast.

Table 4 shows the trade-off for folded distribu-
tions. The least accurateFOLD500 result is 30%
accurate but 50 times faster thanNAIVE , while the
most accurate is 87% but less than two times faster.
The least accurateFOLD1500 result is 43% accurate
but 71 times faster thanNAIVE , while the most ac-
curate is 101% and two and half times faster. These
results show the impact of moving high frequency
terms away from the root.

Figure 2 plots the trade-off using search time and
INVR atc = 16, 32, 64 and 128. Forc = 16 every
SASH has very poor accuracy. Byc = 64 their ac-
curacy has improved dramatically, but their search
time also increased somewhat. Atc = 128, there
is only a small improvement in accuracy, coinciding
with a large increase in search time. The best trade-
off between efficiency and approximation accuracy
occurs at the knee of the curve wherec = 64.

Whenc = 128 bothSORTandFOLD1500 perform
as well as, or slightly outperformNAIVE on some
evaluation measures. These evaluation measures in-
volve the rank of correct synonyms, so if theSASH
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DIST c DIRECT P(1) P(5) P(10) INVR SEARCH TIME

FOLD500 16 0.53 23% 11% 8% 0.43 30% 243ms
FOLD500 64 1.69 49% 29% 23% 1.09 76% 2880ms
FOLD500 128 2.29 50% 35% 27% 1.25 87% 6848ms
FOLD1000 16 0.61 29% 14% 9% 0.51 35% 228ms
FOLD1000 64 2.07 49% 36% 26% 1.21 84% 3192ms
FOLD1000 128 2.57 50% 39% 31% 1.40 98% 4330ms
FOLD1500 16 0.90 30% 17% 13% 0.62 43% 171ms
FOLD1500 64 2.36 57% 39% 30% 1.36 95% 3193ms
FOLD 1500 128 2.67 53% 42% 32% 1.44 101% 4739ms

Table 4: Evaluation of folded distributions

approximation was to fail to find some incorrectly
proposed synonyms ranked above some other cor-
rect synonyms, those correct synonyms would have
their ranking pushed up. In this way, the approxima-
tion can potentially outperform the original nearest-
neighbour algorithm.

From Tables 3 and 4 we also see that as the value
of c increases, so does the accuracy across all of
the experiments. This is because asc increases the
number of paths between nodes increases and we
have a solution closer to a true nearest-neighbour
search, that is, there are more ways of finding the
true nearest-neighbour nodes.

Table 5 presents the results of combining the
canonical attributes heuristic (see Section 3.1) with
theSASH approximation. ThisNAIVE HEURISTIC is
14 times faster thanNAIVE and 97% accurate, with
96% of direct matches. The combination has com-
parable accuracy and is much more efficient than the
best of theSASH solutions. The best heuristicSASH

results used theSORT ordering withc = 16, which
was 37 times faster thanNAIVE and 2.5 times faster
thanNAIVE HEURISTIC. Its performance was statis-
tically indistinguishable fromNAIVE HEURISTIC.

Using the heuristic changes the impact of the
number of childrenc on theSASHperformance char-
acteristics. It seems that beyondc = 16 the only
significant effect is toreducethe efficiency (often to
slower thanNAIVE HEURISTIC).

The heuristic interacts in an interesting way with
the ordering of the nodes in theSASH. This is most
obvious with theRANDOM results. TheRANDOM

heuristic INVR results are eight times better than the
full RANDOM results. Similar, though less dramatic,

results are seen with other orderings. It appears that
using the heuristic changes the clustering of nearest-
neighbours within theSASH so that better matching
paths are chosen and more noisy matches are elimi-
nated entirely by the heuristic.

It may seem that there are no major advantages
to using theSASH with the already efficient heuris-
tic matching method. However, our experiments
have used small canonical attribute vectors (maxi-
mum length 100). Increasing the canonical vector
size allows us to increase the accuracy of heuristic
solutions at the cost of efficiency. Using aSASH so-
lution would offset some of this efficiency penalty.
This has the potential for a solution that is more than
an order of magnitude faster thanNAIVE and is al-
most as accurate.

8 Conclusion

We have integrated a nearest-neighbour approxima-
tion data structure, the Spacial Approximation Sam-
ple Hierarchy (SASH), with a state-of-the-art distri-
butional similarity system. In the process we have
extended the originalSASH construction algorithms
(Houle, 2003b) to deal with the non-uniform distri-
bution of words within semantic space.

We intend to test other similarity measures and
node ordering strategies, including a more linguistic
analysis using WordNet, and further explore the in-
teraction between the canonical vector heuristic and
the SASH. The larger 300 word evaluation set used
by Curran (2004) will be used, and combined with a
more detailed analyis. Finally, we plan to optimise
our SASH implementation so that it is comparable
with the highly optimised nearest-neighbour code.
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DIST c DIRECT P(1) P(5) P(10) INVR SEARCH TIME

NAIVE HEURISTIC 2.72 49% 40% 32% 1.40 827ms
RANDOM 16 2.61 50% 40% 31% 1.39 99% 388ms
RANDOM 64 2.72 49% 40% 32% 1.40 100% 1254ms
RANDOM 128 2.71 49% 40% 32% 1.40 100% 1231ms
FOLD1500 16 2.53 49% 40% 31% 1.36 97% 363ms
FOLD1500 64 2.72 49% 40% 32% 1.40 100% 900ms
FOLD1500 128 2.72 49% 40% 32% 1.40 100% 974ms
SORT 16 2.78 49% 40% 32% 1.41 100% 323ms
SORT 64 2.73 49% 40% 32% 1.40 100% 1238ms
SORT 128 2.73 49% 40% 32% 1.40 100% 1049ms

Table 5: Evaluation of different distributions using the approximation

The result is distributional similarity calculated
three times faster than existing systems with only a
minor accuracy penalty.
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José L. Marroquı́n. 2001. Searching in metric spaces.ACM
Computing Surveys, 33(3):273–321, September.

Stephen Clark and David Weir. 2001. Class-based probability
estimation using a semantic hierarchy. InProceedings of the
Second Meeting of the North American Chapter of the Asso-
ciation for Computational Linguistics, pages 95–102, Pitts-
burgh, PA USA, 2–7 June.

James R. Curran and Marc Moens. 2002a. Improvements
in automatic thesaurus extraction. InProceedings of the
Workshop of the ACL Special Interest Group on the Lexicon
(SIGLEX), pages 59–66, Philadelphia, USA, 12 July.

James R. Curran and Marc Moens. 2002b. Scaling context
space. InProceedings of the 40th annual meeting of the
Association for Computational Linguistics, pages 231–238,
Philadelphia, USA, 7–12 July.

James R. Curran. 2004.From Distributional to Semantic Simi-
larity. Ph.D. thesis, University of Edinburgh.

Christiane Fellbaum, editor. 1998.WordNet: an electronic lex-
ical database. The MIT Press, Cambridge, MA USA.

Gregory Grefenstette. 1994.Explorations in Automatic The-
saurus Discovery. Kluwer Academic Publishers, Boston,
USA.

Michael E. Houle. 2003a. Navigating massive data sets via lo-
cal clustering. InProceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data
mining, pages 547–552, Washington, DC, USA, 24–27 Au-
gust.

Michael E. Houle. 2003b. SASH: a saptial approximation
sample hierarchy for similarity search. Technical Report
RT0517, IBM Reasearch, Tokyo Research Laboratory, Yam-
ato Kanagawa, Japan, March.

Guido Minnen, John Carroll, and Darren Pearce. 2000. Ro-
bust applied morphological generation. InProceedings of
the First International Natural Language Generation Con-
ference, pages 201–208, Mitzpe Ramon, Israel, 12–16 June.

Marius Pasca and Sanda Harabagiu. 2001. The informative
role of wordnet in open-domain question answering. InPro-
ceedings of the Workshop on WordNet and Other Lexical
Resources: Applications, Extensions and Customizations,
pages 138–143, Pittsburgh, PA USA, 2–7 June.

Darren Pearce. 2001. Synonymy in collocation extraction. In
Proceedings of the Workshop on WordNet and Other Lex-
ical Resources: Applications, Extensions and Customiza-
tions, pages 41–46, Pittsburgh, PA USA, 2–7 June.

Adwait Ratnaparkhi. 1996. A maximum entropy part-of-
speech tagger. InProceedings of the Conference on Empir-
ical Methods in Natural Language Processing, pages 133–
142, 17–18 May.

Peter Roget. 1911.Thesaurus of English words and phrases.
Longmans, Green and Co., London, UK.

Grady Ward. 1996.Moby Thesaurus. Moby Project.

104



Author Index

Almuhareb, Abdulrahman,18
Araki, Kenji, 87

Badia, Toni,77
Baldwin, Timothy,67
Basili, Roberto,10
Boleda, Gemma,77

Cimiano, Philipp,28
Curran, James,97

Dorow, Beate,48
Dorr, Bonnie,57

Echizen-ya, Hiroshi,87

Fazly, Afsaneh,38

Gorman, James,97
Green, Rebecca,57

Kwong, Oi Yee,1

Momouchi, Yoshio,87
Moschitti, Alessandro,10

North, Ryan,38

Poesio, Massimo,18

Schulte im Walde, Sabine,77
Stevenson, Suzanne,38

Tsou, Benjamin K.,1

Wenderoth, Johanna,28
Widdows, Dominic,48

105


	Program
	Data Homogeneity and Semantic Role Tagging in Chinese
	Verb Subcategorization Kernels for Automatic Semantic Labeling
	Identifying Concept Attributes Using a Classifier
	Automatically Learning Qualia Structures from the Web
	Automatically Distinguishing Literal and Figurative usages of Highly Polysemous Verbs
	Automatic Extraction of Idioms using Graph Analysis and Asymmetric Lexicosyntactic Patterns
	Frame Semantic Enhancement of Lexical-Semantic Resources
	Bootstrapping Deep Lexical Resources: Resources for Courses
	Morphology vs. Syntax in Adjective Class Acquisition
	Automatic Acquisition of Bilingual Rules for Extraction of Bilingual Word Pairs from Parallel Corpora
	Approximate Searching for Distributional Similarity

