
Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 213–216, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Semantic Role Labeling Using Lexical Statistical Information

Simone Paolo PonzettoandMichael Strube
EML Research gGmbH

Schloss-Wolfsbrunnenweg 33
69118 Heidelberg, Germany

http://www.eml-research.de/nlp/

Abstract

Our system for semantic role labeling is
multi-stage in nature, being based on tree
pruning techniques, statistical methods for
lexicalised feature encoding, and a C4.5
decision tree classifier. We use both shal-
low and deep syntactic information from
automatically generated chunks and parse
trees, and develop a model for learning
the semantic arguments of predicates as a
multi-class decision problem. We evalu-
ate the performance on a set of relatively
‘cheap’ features and report an F1 score of
68.13% on the overall test set.

1 Introduction

This paper presents a system for the CoNLL 2005
Semantic Role Labeling shared task (Carreras &
Màrquez, 2005), which is based on the current re-
lease of the English PropBank data (Palmer et al.,
2005). For the 2005 edition of the shared task are
available both syntactic and semantic information.
Accordingly, we make use of both clausal, chunk
and deep syntactic (tree structure) features, named
entity information, as well as statistical representa-
tions for lexical item encoding.

The set of features and their encoding reflect the
necessity of limiting the complexity and dimension-
ality of the input space. They also provide the clas-
sifier with enough information. We explore here the
use of a minimal set of compact features for seman-
tic role prediction, and show that a feature-based

statistical encoding of lexicalised features such as
predicates, head words, local contexts and PoS by
means of probability distributions provides an effi-
cient way of representing the data, with the feature
vectors having a small dimensionality and allowing
to abstract from single words.

2 System description

2.1 Preprocessing

During preprocessing the predicates’ semantic argu-
ments are mapped to the nodes in the parse trees, a
set of hand-crafted shallow tree pruning rules are ap-
plied, probability distributions for feature represen-
tation are generated from training data1, and feature
vectors are extracted. Those are finally fed into the
classifier for semantic role classification.

2.1.1 Tree node mapping of semantic
arguments and named entities

Following Gildea & Jurafsky (2002), (i) labels
matching more than one constituent due to non-
branching nodes are taken as labels of higher con-
stituents, (ii) in cases of labels with no correspond-
ing parse constituent, these are assigned to the par-
tial match given by the constituent spanning the
shortest portion of the sentence beginning at the la-
bel’s span left boundary and lying entirely within it.
We drop the role or named entity label if such suit-
able constituent could not be found2.

1All other processing steps assume a uniform treatment of
both training and test data.

2The percentage of roles for which no valid tree node could
be found amounts to 3% for the training and 7% for the devel-
opment set. These results are compatible with the performance
of the employed parser (Collins, 1999).

213



2.1.2 Tree pruning

The tagged trees are further processed by applying
the following pruning rules:

• All punctuation nodes are removed. This is for
removing punctuation information, as well as
for aligning spans of the syntactic nodes with
PropBank constituents3.

• If a node is unary branching and its daughter is
also unary branching, the daughter is removed.
This allows to remove redundant nodes span-
ning the same tokens in the sentence.

• If a node has only preterminal children, these
are removed. This allows to internally collapse
base phrases such as base NPs.

Tree pruning was carried out in order to reduce the
number of nodes from which features were to be ex-
tracted later. This limits the number of candidate
constituents for role labeling, and removes redun-
dant information produced by the pipeline of previ-
ous components (i.e. PoS tags of preterminal labels),
as well as the sparseness and fragmentation of the
input data. These simple rules reduce the number
of constituents given by the parser output by 38.4%
on the training set, and by 38.7% on the develop-
ment set, at the cost of limiting the coverage of the
system by removing approximately 2% of the tar-
get role labeled constituents. On the development
set, the number of constituents remaining on top of
pruning is 81,193 of which 7,558 are semantic ar-
guments, with a performance upper-bound of 90.6%
F1.

2.1.3 Features

Given the pruned tree structures, we traverse the tree
bottom-up left-to-right. For each non-terminal node
whose span does not overlap the predicate we extract
the following features:

Phrase type: the syntactic category of the con-
stituent (NP, PP, ADVP, etc.). In order to reduce
the number of phrase labels, we retained only

3We noted during prototyping that in many cases no tree
node fully matching a role constituent could be found, as the
latter did not include punctuation tokens, whereas in Collins’
trees the punctuation terminals are included within the preced-
ing phrases. This precludesa priori the output to align to the
gold standard PropBank annotation and we use therefore prun-
ing as a recovery strategy.

those labels which account for at least 0.1% of
the overall available semantic arguments in the
training data. We replace the label for every
phrase type category below this threshold with
a genericUNKlabel. This reduces the number
of labels from 72 to 18.

Position: the position of the constituent with re-
spect to the target predicate (before or after).

Adjacency: whether the right (if before) or left (if
after) boundary of the constituent isadjacent,
non-adjacent or inside the predicate’s chunk.

Clause: whether the constituent belongs to the
clause of the predicate or not.

Proposition size: measures relative to the proposi-
tion size, such as (i) the number of constituents
and (ii) predicates in the proposition.

Constituent size: measures relative to the con-
stituent size, namely (i) the number of tokens
and (ii) subconstituents (viz., non-leaf rooted
subtrees) of the constituent.

Predicate: the predicate lemma, represented as the
probability distributionP (r|p) of the predicate
p of taking one of the availabler semantic
roles. For unseen predicates we assume a uni-
form distribution.

Voice: whether the predicate is inactive or passive
form. Passive voice is identified if the predi-
cate’s PoS tag isVBNand either it follows a
form of to be or to get, or it does not belong to
a VP chunk, or is immediately preceded by an
NP chunk.

Head word: the head word of the constituent,
represented as the probability distribution
P (r|hw) of the head wordhw of heading a
phrase filling one of the availabler seman-
tic roles. For unseen words we back off on a
phrasal model by using the probability distri-
butionP (r|pt) of the phrase typept of filling a
semantic slotr.

Head word PoS: the PoS of the head word of the
constituent, similarly represented as the proba-
bility distributionP (r|pos) of a PoSpos of be-
longing to a constituent filling one of the avail-
abler semantic roles.

Local lexical context: the words in the constituent
other than the head word, represented as the

214



averaged probability distributions of eachi-
th non-head wordwi of occurring in one
of the available r semantic roles, namely
1

m

∑
m

i=1
P (r|wi) for m non-head words in the

constituent. For each unseen word we back off
by using the probability distributionP (r|posi)
of the PoSposi of filling a semantic roler4.

Named entities: the label of the named entity
which spans the same words as the constituent,
as well as the label of the largest named en-
tity embedded within the constituent. Both val-
ues are set toNULL if such labels could not be
found.

Path: the number of intervening NPB, NP, VP, VP-
A, PP, PP-A, S, S-A and SBAR nodes along the
path from the constituent to the predicate.

Distance: the distance from the target predicate,
measured as (i) the number of nodes from the
constituent to the lowest node in the tree dom-
inating both the constituent and the predicate,
(ii) the number of nodes from the predicate to
the former common dominating node5, (iii) the
number of chunks between the base phrase of
the constituent’s head and the predicate chunk,
(iv) the number of tokens between the head of
the constituent and the predicate.

2.2 Classifier

We used the YaDT6 implementation of the C4.5 de-
cision tree algorithm (Quinlan, 1993). Parameter
selection (99% pruning confidence, at least 10 in-
stances per leaf node) was carried out by performing
10-fold cross-validation on the development set.

Data preprocessing and feature vector generation
took approximately 2.5 hours (training set, including
probability distribution generation), 5 minutes (de-
velopment) and 7 minutes (test) on a 2GHz Opteron

4This feature was introduced as the information provided by
lexical heads does not seem to suffice in many cases. This is
shown by head word ambiguities, such asLOC and TMPar-
guments occurring in similar prepositional syntactic configu-
rations — i.e. the prepositionin, which can be head of both
AM-TMPand AM-LOCconstituents, as inin October and in
New York. The idea is therefore to look at the words in the con-
stituents other than the head, and build up an overall constituent
representation, thus making use of statistical lexical information
for role disambiguation.

5These distance measures along the tree path between the
constituent and the predicate were kept separate, in order to in-
directly includeembedding level information into the model.

6
http://www.di.unipi.it/˜ruggieri/software.html

dual processor server with 2GB memory7. Training
time was of approximately 17 minutes. The final
system was trained using all of the available training
data from sections 2–21 of the Penn TreeBank. This
amounts to 2,250,887 input constituents of which
10% are non-NULL examples. Interestingly, during
prototyping we first limited ourselves to training and
drawing probability distributions for feature repre-
sentation from sections 15–18 only. This yielded
a very low performance (57.23% F1, development
set). A substantial performance increase was given
by still training on sections 15–18, but using the
probability distributions generated from sections 2–
21 (64.43% F1, development set). This suggests that
the system is only marginally sensitive to the train-
ing dataset size, but pivotally relies on taking proba-
bility distributions from a large amount of data.

In order to make the task easier and overcome the
uneven role class distribution, we limited the learner
to classify only those 16 roles accounting for at least
0.5% of the total number of semantic arguments in
the training data8.

2.3 Post-processing

As our system does not build an overall sen-
tence contextual representation, it systematically
produced errors such as embedded role labeling. In
particular, since no embedding is observed for the
semantic arguments of predicates, in case of (multi-
ple) embeddings the classifier output was automat-
ically post-processed to retain only the largest em-
bedding constituent. Evaluation on the development
set has shown that this does not significantly im-
prove performance, still it provides a much more
‘sane’ output. Besides, we make use of a simple
technique for avoiding multipleA0 or A1 role as-
signments within the same proposition, based on
constituent position and predicate voice. In case of
multipleA0 labels, if the predicate is in active form,
the secondA0 occurrence is replaced withA1, else
we replace the first occurrence. Similarly, in case of
multipleA1 labels, if the predicate is in active form,
the firstA1 occurrence is replaced withA0, else we

7We used only a single CPU at runtime, since the implemen-
tation is not parallelised.

8These include numbered arguments (A0 to A4), adjuncts
(ADV, DIS , LOC, MNR, MOD, NEG, PNC, TMP), and references
(R-A0 andR-A1 ).

215



Precision Recall Fβ=1

Development 71.82% 61.60% 66.32
Test WSJ 75.05% 64.81% 69.56
Test Brown 66.69% 52.14% 58.52
Test WSJ+Brown 74.02% 63.12% 68.13

Test WSJ Precision Recall Fβ=1

Overall 75.05% 64.81% 69.56
A0 78.52% 72.52% 75.40
A1 75.53% 65.39% 70.10
A2 62.28% 52.07% 56.72
A3 63.81% 38.73% 48.20
A4 73.03% 63.73% 68.06
A5 0.00% 0.00% 0.00
AM-ADV 60.00% 42.69% 49.88
AM-CAU 0.00% 0.00% 0.00
AM-DIR 0.00% 0.00% 0.00
AM-DIS 75.97% 73.12% 74.52
AM-EXT 0.00% 0.00% 0.00
AM-LOC 54.09% 47.38% 50.51
AM-MNR 58.67% 46.22% 51.71
AM-MOD 97.43% 96.37% 96.90
AM-NEG 97.78% 95.65% 96.70
AM-PNC 42.17% 30.43% 35.35
AM-PRD 0.00% 0.00% 0.00
AM-REC 0.00% 0.00% 0.00
AM-TMP 75.41% 71.11% 73.20
R-A0 82.09% 73.66% 77.65
R-A1 72.03% 66.03% 68.90
R-A2 0.00% 0.00% 0.00
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 0.00% 0.00% 0.00
R-AM-EXT 0.00% 0.00% 0.00
R-AM-LOC 0.00% 0.00% 0.00
R-AM-MNR 0.00% 0.00% 0.00
R-AM-TMP 0.00% 0.00% 0.00
V 98.63% 98.63% 98.63

Table 1: Overall results (top) and detailed results on
the WSJ test (bottom).

replace the second occurrence.

3 Results

Table 1 shows the results on the test set. Problems
are inherently related with the skewed distribution of
role classes, so that roles which have a limited num-
ber of occurrences are harder to classify correctly.
This explains the performance gap on theA0 and
A1 roles on one hand, and theA2, A3, A4, AM- ar-
guments on the other.

One advantage of using a decision tree learning
algorithm is that it outputs a model which includes a
feature ranking, since the most informative features
are those close to the root of the tree. In the present

case, the most informative features were both dis-
tance/position metrics (distance and adjacency) and
lexicalized features (head word and predicate).

4 Conclusion

Semantic role labeling is a difficult task, and accord-
ingly, how to achieve an accurate and robust perfor-
mance is still an open question. In our work we
used a limited set of syntactic tree based distance
and size metrics coupled with raw lexical statistics,
and showed that such ‘lazy learning’ configuration
can still achieve a reasonable performance.

We concentrated on reducing the complexity
given by the number and dimensionality of the in-
stances to be classified during learning. This is the
core motivation behind performing tree pruning and
statistical feature encoding. This also helped us to
avoid the use of sparse features such as the explicit
path in the parse tree between the candidate con-
stituent and the predicate, and the predicate’s sub-
categorization rule (cf. e.g. Pradhan et al. (2004)).

Future work will concentrate on benchmarking
this approach within alternative architectures (i.e.
two-phase with filtering) and different learning
schemes (i.e. vector-based methods such as Support
Vector Machines and Artificial Neural Networks).

Acknowledgements: This work has been funded
by the Klaus Tschira Foundation, Heidelberg, Ger-
many. The first author has been supported by a KTF
grant (09.003.2004).

References
Carreras, Xavier & Llúıs Màrquez (2005). Introduction to the

CoNLL-2005 Shared Task: Semantic Role Labeling. InPro-
ceedings of CoNLL-2005.

Collins, Michael (1999).Head-driven statistical models for nat-
ural language parsing, (Ph.D. thesis). Philadelphia, Penn.,
USA: University of Pennsylvania.

Gildea, Daniel & Daniel Jurafsky (2002). Automatic labeling of
semantic roles.Computational Linguistics, 28(3):245–288.

Palmer, Martha, Dan Gildea & Paul Kingsbury (2005). The
proposition bank: An annotated corpus of semantic roles.
Computational Linguistics, 31(1):71–105.

Pradhan, Sameer, Kadri Hacioglu, Valeri Krugler, Wayne Ward,
James H. Martin & Daniel Jurafsky (2004). Support vec-
tor learning for semantic argument classification.Journal
of Machine Learning, Special issue on Speech and Natural
Language Processing. To appear.

Quinlan, J. Ross (1993).C4.5: programs for machine learn-
ing. San Francisco, Cal., USA: Morgan Kaufmann Publish-
ers Inc.

216


