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Abstract

In this paper, we describe our systems for
the CoNLL-2005 shared task. The aim of
the task is semantic role labeling using a
machine-learning algorithm. We apply the
Support Vector Machines to the task. We
added new features based on full parses
and manually categorized words. We also
report on system performance and what
effect the newly added features had.

1 Introduction

The CoNLL-2005 shared task (Carreras and
Màrquez, 2005) concerns the recognition of au-
tomatic semantic roles for the English language.
Given a sentence, the task consists of analyzing the
propositions expressed by various target verbs of the
sentence. The semantic roles of constituents of the
sentence are extracted for each target verb. There
are semantic arguments such as Agent, Patient, and
Instrument and also adjuncts such as Locative and
Temporal. We performed the semantic role labeling
using Support Vector Machines (SVMs). Systems
that used SVMs achieved good performance in the
CoNLL-2004 shared task, and we added data on full
parses to it. We prepared a feature used by the full
parses, and we also categorized words that appeared
in the training set and added them as features. Here,
we report on systems for automatically labeling se-
mantic roles in a closed challenge in the CoNLL-
2005 shared task.

This paper is arranged as follows. Section 2 de-
scribes the SVMs. Our system is described Sec-

tion 3, where we also describe methods of data rep-
resentation, feature coding, and the parameters of
SVMs. The experimental results and conclusion are
presented in Sections 4 and 5.

2 Support Vector Machines

SVMs are one of the binary classifiers based on
the maximum margin strategy introduced by Vap-
nik (Vapnik, 1995). This algorithm has achieved
good performance in many classification tasks, e.g.
named entity recognition and document classifica-
tion. There are some advantages to SVMs in that
(i) they have high generalization performance inde-
pendent of the dimensions of the feature vectors and
(ii) learning with a combination of multiple features
is possible by using the polynomial kernel func-
tion (Yamada and Matsumoto, 2003). SVMs were
used in the CoNLL-2004 shred task and achieved
good performance (Hacioglu et al., 2004) (Kyung-
Mi Park and Rim, 2004). We used YamCha (Yet
Another Multipurpose Chunk Annotator) 1 (Kudo
and Matsumoto, 2001), which is a general purpose
SVM-based chunker. We also used TinySVM2 as a
package for SVMs.

3 System Description

3.1 Data Representation

We changed the representation of original data ac-
cording to Hacioglu et al. (Hacioglu et al., 2004) in
our system.

1http://chasen.org/˜ taku/software/yamcha/
2http://chasen.org/˜ taku/software/TinySVM/
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� Bracketed representation of roles was con-
verted into IOB2 representation (Ramhsaw and
Marcus, 1995) (Sang and Veenstra, 1999).

� Word-by-word was changed to the phrase-by-
phrase method (Hacioglu et al., 2004).

Word tokens were collapsed into base phrase (BP)
tokens. The BP headwords were rightmost words.
Verb phrases were not collapsed because some in-
cluded more the one predicate.

3.2 Feature Coding

We prepared the training and development set by us-
ing files corresponding to: words, predicated partial
parsing (part-of-speech, base chunks), predicate full
parsing trees (Charniak models), and named entities.
We will describe feature extraction according to Fig.
1. Figure 1 shows an example of an annotated sen-
tence.

1st Words (Bag of Words): All words appearing in
the training data.

2nd Part of Speech (POS) Tags

3rd Base Phrase Tags: Partial parses (chunks +
clauses) predicted with UPC processors.

4th Named Entities

5th Token Depth : This means the degree of depth
from a predicate (see Fig. 2). We used full
parses predicted by the Charniak parser. In this
figure, the depth of paid , which is a predicate,

is zero and the depth of April is -2.

6th Words of Predicate

7th Position of Tokens: The position of the current
word from the predicate. This has three value
of “before”, “after”, and “-” (for the predicate).

8th Phrase Distance on Flat Path: This means the
distance from the current token to the predi-
cate as a number of the phrase on flat path.
For example, the phrase distance of “April” is
4, because two “NP” and one “PP” exist from
“paid”(predicate) to “April” (see 3rd column in
Fig.1).

Table 1: Five most frequently categorized BP head-
words appearing in training set.

Class Examples
Person he, I, people, investors, we
Organization company, Corp., Inc., companies, group
Time year, years, time, yesterday, months
Location Francisco, York, California, city, America
Number %, million, billion, number, quarter
Money price, prices, cents, money, dollars

9th Flat Path: This means the path from the current
word to the predicate as a chain of the phrases.
The chain begins from the BP of the current
word to the BP of the predicate.

10th Semantic Class : We collected the most fre-
quently occurring 1,000 BP headwords appear-
ing in the training set and tried to manually
classified. The five classes (person, organiza-
tion, time, location, number and money) were
relatively easy to classify. In the 1,000 words,
the 343 words could be classified into the five
classes. Remainder could not be classified. The
details are listed in Table 1.

Preceding class: The class (e.g. B-A0 or I-A1) of
the token(s) preceding the current token. The
number of preceding tokens is dependent on the
window size. In this paper, the left context con-
sidered is two.
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Figure 2: Parsing results obtained with Charniak
parser and token depth.

3.3 Machine learning with YamCha

YamCha (Kudo and Matsumoto, 2001) is a general
purpose SVM-based chunker. After inputting the
training and test data, YamCha converts them for
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Figure 1: Example annotated sentence. Input features are words (1st), POS tags (2nd), base phrase chunks
(3rd), named entities (4th), token depth (5th), predicate (6th), position of tokens (7th), phrase distance (8th),
flat paths (9th), semantic classes (10th), argument classes (11th).

the SVM. The YamCha format for an example sen-
tence is shown in Fig. 1. Input features are writ-
ten in each column as words (1st), POS tags (2nd),
base phrase chunks (3rd), named entities (4th), token
depth (5th), predicate (6th), the position of tokens
(7th), the phrase distance (8th), flat paths (9th), se-
mantic classes (10th), and argument classes (11th).
The boxed area in Fig. 1 shows the elements of
feature vectors for the current word, in this case
“share”. The information from the two preceding
and two following tokens is used for each vector.

3.4 Parameters of SVM
� Degree of polynomial kernel (natural number):

We can only use a polynomial kernel in Yam-
Cha. In this paper, we adopted the degree of
two.

� Range of window (integer): The SVM can use
the information on tokens surrounding the to-
ken of interest as illustrated in Fig. 1. In this
paper, we adopted the range from the left two
tokens to the right two tokens.

� Method of solving a multi-class problem: We
adopted the one-vs.-rest method. The BIO
class is learned as (B vs. other), (I vs. other),
and (O vs. other).

� Cost of constraint violation (floating number):
There is a trade-off between the training error
and the soft margin for the hyper plane. We
adopted a default value (1.0).

4 Results

4.1 Data

The data provided for the shared task consisted of
sections from the Wall Street Journal (WSJ) part of
Penn TreeBank II. The training set was WSJ Sec-
tions 02-21, the development set was Section 24, and
the test set was Section 23 with the addition of fresh
sentences. Our experiments were carried out using
Sections 15-18 for the training set, because the en-
tire file was too large to learn.

4.2 Experiments

Our final results for the CoNLL-2005 shared task are
listed in Table 2. Our system achieved 74.15% pre-
cision, 68.25% recall and 71.08 F hbi � on the overall
results of Test WSJ. Table 3 lists the effects of the
token-depth and semantic-class features. The token-
depth feature had a larger effect than that for the se-
mantic class.
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Precision Recall F ��� �
Development 71.68% 64.93% 68.14
Test WSJ 74.15% 68.25% 71.08
Test Brown 63.24% 54.20% 58.37
Test WSJ+Brown 72.77% 66.37% 69.43

Test WSJ Precision Recall F ��� �
Overall 74.15% 68.25% 71.08
A0 81.38% 76.93% 79.09
A1 73.16% 70.87% 72.00
A2 64.53% 59.01% 61.65
A3 61.16% 42.77% 50.34
A4 68.18% 58.82% 63.16
A5 100.00% 80.00% 88.89
AM-ADV 55.09% 43.87% 48.84
AM-CAU 60.00% 28.77% 38.89
AM-DIR 45.10% 27.06% 33.82
AM-DIS 72.70% 69.06% 70.83
AM-EXT 70.59% 37.50% 48.98
AM-LOC 55.62% 50.41% 52.89
AM-MNR 51.40% 42.73% 46.67
AM-MOD 97.04% 95.28% 96.15
AM-NEG 96.92% 95.65% 96.28
AM-PNC 56.00% 36.52% 44.21
AM-PRD 0.00% 0.00% 0.00
AM-REC 0.00% 0.00% 0.00
AM-TMP 73.39% 62.93% 67.76
R-A0 81.31% 71.88% 76.30
R-A1 59.69% 49.36% 54.04
R-A2 60.00% 18.75% 28.57
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 0.00% 0.00% 0.00
R-AM-EXT 0.00% 0.00% 0.00
R-AM-LOC 85.71% 28.57% 42.86
R-AM-MNR 100.00% 16.67% 28.57
R-AM-TMP 72.34% 65.38% 68.69
V 97.55% 96.05% 96.80

Table 2: Overall results (top) and detailed results on
the WSJ test (bottom).

5 Conclusion

This paper reported on semantic role labeling using
SVMs. Systems that used SVMs achieved good per-
formance in the CoNLL-2004 shared task, and we
added data on full parses to it. We applied a token-
depth feature to SVM learning and it had a large ef-
fect. We also added a semantic-class feature and it
had a small effect. Some classes were similar to the
named entities, e.g., the PERSON or LOCATION
of the named entities. Our semantic class feature
also included not only proper names but also com-
mon words. For example, “he” and “she” also in-
cluded the PERSON semantic class. Furthermore,
we added a time, number, and money class. The

Table 3: Effects Token Depth (TD) and Semantic
Class (SC) had on feature development set.

Precision Recall F ��� �
Without DF and SC 68.07% 59.71% 63.62
With DF 71.36% 64.13% 67.55
With DF and SC 71.68% 64.93% 68.14

semantic class feature was manually categorized on
the most frequently occurring 1,000 words in the
training set. More effort of the categorization may
improve the performance of our system.
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