
Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 181–184, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Generalized Inference with Multiple Semantic Role Labeling Systems

Peter Koomen Vasin Punyakanok Dan Roth Wen-tau Yih
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

{pkoomen2,punyakan,danr,yih}@uiuc.edu

Abstract

We present an approach to semantic role
labeling (SRL) that takes the output of
multiple argument classifiers and com-
bines them into a coherent predicate-
argument output by solving an optimiza-
tion problem. The optimization stage,
which is solved via integer linear pro-
gramming, takes into account both the rec-
ommendation of the classifiers and a set
of problem specific constraints, and is thus
used both to clean the classification results
and to ensure structural integrity of the fi-
nal role labeling. We illustrate a signifi-
cant improvement in overall SRL perfor-
mance through this inference.

1 SRL System Architecture

Our SRL system consists of four stages:prun-
ing, argument identification, argument classifica-
tion, andinference. In particular, the goal of pruning
and argument identification is to identify argument
candidates for a given verb predicate. The system
only classifies the argument candidates into their
types during the argument classification stage. Lin-
guistic and structural constraints are incorporated
in the inference stage to resolve inconsistent global
predictions. The inference stage can take as its input
the output of the argument classification of a single
system or of multiple systems. We explain the infer-
ence for multiple systems in Sec. 2.

1.1 Pruning

Only the constituents in the parse tree are considered
as argument candidates. In addition, our system ex-

ploits the heuristic introduced by (Xue and Palmer,
2004) to filter out very unlikely constituents. The
heuristic is a recursive process starting from the verb
whose arguments are to be identified. It first returns
the siblings of the verb; then it moves to the parent of
the verb, and collects the siblings again. The process
goes on until it reaches the root. In addition, if a con-
stituent is aPP (propositional phrase), its children
are also collected. Candidates consisting of only a
single punctuation mark are not considered.

This heuristic works well with the correct parse
trees. However, one of the errors by automatic
parsers is due to incorrectPP attachment leading to
missing arguments. To attempt to fix this, we con-
sider as arguments the combination of any consec-
utive NP andPP, and the split ofNP andPP inside
theNP that was chosen by the previous heuristics.

1.2 Argument Identification

The argument identification stage utilizes binary
classification to identify whether a candidate is an
argument or not. We train and apply the binary clas-
sifiers on the constituents supplied by the pruning
stage. Most of the features used in our system are
standard features, which include

• Predicate and POS tag of predicateindicate the lemma
of the predicate and its POS tag.

• Voice indicates tbe voice of the predicate.

• Phrase typeof the constituent.

• Head word and POS tag of the head wordinclude head
word and its POS tag of the constituent. We use rules
introduced by (Collins, 1999) to extract this feature.

• First and last words and POS tagsof the constituent.

• Two POS tags before and afterthe constituent.

• Position feature describes if the constituent is before or
after the predicate relative to the position in the sentence.

181



• Path records the traversal path in the parse tree from the
predicate to the constituent.

• Subcategorizationfeature describes the phrase structure
around the predicate’s parent. It records the immediate
structure in the parse tree that expands to its parent.

• Verb classfeature is the class of the active predicate de-
scribed in PropBank Frames.

• Lengthsof the target constituent, in the numbers of words
and chunks separately.

• Chunk tells if the target argument is, embeds, overlaps,
or is embedded in a chunk with its type.

• Chunk pattern length feature counts the number of
chunks from the predicate to the argument.

• Clause relative positionis the position of the target word
relative to the predicate in the pseudo-parse tree con-
structed only from clause constituent. There are four
configurations—target constituent and predicate share the
same parent, target constituent parent is an ancestor of
predicate, predicate parent is an ancestor of target word,
or otherwise.

• Clause coveragedescribes how much of the local clause
(from the predicate) is covered by the argument. It is
round to the multiples of1/4.

1.3 Argument Classification

This stage assigns the final argument labels to the ar-
gument candidates supplied from the previous stage.
A multi-class classifier is trained to classify the
types of the arguments supplied by the argument
identification stage. To reduce the excessive candi-
dates mistakenly output by the previous stage, the
classifier can also classify the argument asNULL
(“not an argument”) to discard the argument.

The features used here are the same as those used
in the argument identification stage with the follow-
ing additional features.

• Syntactic frame describes the sequential pattern of the
noun phrases and the predicate in the sentence. This is
the feature introduced by (Xue and Palmer, 2004).

• Propositional phrase headis the head of the first phrase
after the preposition insidePP.

• NEG and MOD feature indicate if the argument is a
baseline for AM-NEG or AM-MOD. The rules of the
NEG andMOD features are used in a baseline SRL sys-
tem developed by Erik Tjong Kim Sang (Carreras and
Màrquez, 2004).

• NE indicates if the target argument is, embeds, overlaps,
or is embedded in a named-entity along with its type.

1.4 Inference

The purpose of this stage is to incorporate some
prior linguistic and structural knowledge, such as
“arguments do not overlap” or “each verb takes at

most one argument of each type.” This knowledge is
used to resolve any inconsistencies of argument clas-
sification in order to generate final legitimate pre-
dictions. We use the inference process introduced
by (Punyakanok et al., 2004). The process is formu-
lated as an integer linear programming (ILP) prob-
lem that takes as inputs the confidences over each
type of the arguments supplied by the argument clas-
sifier. The output is the optimal solution that maxi-
mizes the linear sum of the confidence scores (e.g.,
the conditional probabilities estimated by the argu-
ment classifier), subject to the constraints that en-
code the domain knowledge.

Formally speaking, the argument classifier at-
tempts to assign labels to a set of arguments,S1:M ,
indexed from 1 toM . Each argumentSi can take
any label from a set of argument labels,P, and the
indexed set of arguments can take a set of labels,
c1:M ∈ PM . If we assume that the argument classi-
fier returns an estimated conditional probability dis-
tribution,Prob(Si = ci), then, given a sentence, the
inference procedure seeks an global assignment that
maximizes the following objective function,

ĉ1:M = argmax
c1:M∈PM

M∑

i=1

Prob(Si = ci),

subject to linguistic and structural constraints. In
other words, this objective function reflects the ex-
pected number of correct argument predictions, sub-
ject to the constraints. The constraints are encoded
as the followings.

• No overlapping or embedding arguments.

• No duplicate argument classes for A0-A5.

• Exactly one V argument per predicate considered.

• If there is C-V, then there has to be a V-A1-CV pattern.

• If there is an R-arg argument, then there has to be anarg
argument.

• If there is a C-arg argument, there must be anarg argu-
ment; moreover, the C-arg argument must occur afterarg.

• Given the predicate, some argument types are illegal (e.g.
predicate ‘stalk’ can take only A0 or A1). The illegal
types may consist of A0-A5 and their corresponding C-
arg and R-arg arguments. For each predicate, we look
for the minimum value ofi such that the class Ai is men-
tioned in its frame file as well as its maximum valuej.
All argument types Ak such thatk < i or k > j are
considered illegal.

182



2 Inference with Multiple SRL Systems

The inference process allows a natural way to com-
bine the outputs from multiple argument classi-
fiers. Specifically, givenk argument classifiers
which perform classification onk argument sets,
{S1, . . . , Sk}. The inference process aims to opti-
mize the objective function:

ĉ1:N = argmax
c1:N∈PN

N∑

i=1

Prob(Si = ci),

whereS1:N =
⋃k

i=1
Si, and

Prob(Si = ci) =
1

k

k∑

j=1

Probj(S
i = ci),

whereProbj is the probability output by systemj.
Note that all systems may not output with the

same set of argument candidates due to the pruning
and argument identification. For the systems that do
not output for any candidate, we assign the proba-
bility with a prior to thisphantomcandidate. In par-
ticular, the probability of theNULL class is set to be
0.6 based on empirical tests, and the probabilities of
the other classes are set proportionally to their oc-
currence frequencies in the training data.

For example, Figure 1 shows the two candidate
sets for a fragment of a sentence, “..., traders say,
unable tocool the selling panic in both stocks and
futures.” In this example, system A has two argu-
ment candidates,a1 = “traders” anda4 = “the sell-
ing panic in both stocks and futures”; system B has
three argument candidates,b1 = “traders”,b2 = “the
selling panic”, andb3 = “in both stocks and fu-
tures”. The phantom candidates are created fora2,
a3, andb4 of which probability is set to the prior.

Specifically for this implementation, we first train
two SRL systems that use Collins’ parser and Char-
niak’s parser respectively. In fact, these two parsers
have noticeably different output. In evaluation, we
run the system that was trained with Charniak’s
parser 5 times with the top-5 parse trees output by
Charniak’s parser1. Together we have six different
outputs per predicate. Per each parse tree output, we
ran the first three stages, namely pruning, argument

1The top parse tree were from the official output by CoNLL.
The 2nd-5th parse trees were output by Charniak’s parser.

cool

1

b1

b4

a4

a2

2b 3b

a3

..., traders say, unable to the selling panic in both stocks and futures.

a

Figure 1: Two SRL systems’ output (a1, a4, b1, b2,
andb3), and phantom candidates (a2, a3, andb4).

identification, and argument classification. Then a
joint inference stage is used to resolve the incon-
sistency of the output of argument classification in
these systems.

3 Learning and Evaluation

The learning algorithm used is a variation of the
Winnow update rule incorporated in SNoW (Roth,
1998; Roth and Yih, 2002), a multi-class classi-
fier that is tailored for large scale learning tasks.
SNoW learns a sparse network of linear functions,
in which the targets (argument border predictions
or argument type predictions, in this case) are rep-
resented as linear functions over a common feature
space. It improves the basic Winnow multiplicative
update rule with a regularization term, which has the
effect of trying to separate the data with a large mar-
gin separator (Grove and Roth, 2001; Hang et al.,
2002) and voted (averaged) weight vector (Freund
and Schapire, 1999).

Softmax function (Bishop, 1995) is used to con-
vert raw activation to conditional probabilities. If
there aren classes and the raw activation of classi

is acti, the posterior estimation for classi is

Prob(i) =
eacti

∑
1≤j≤n eactj

.

In summary, training used both full and partial
syntactic information as described in Section 1. In
training, SNoW’s default parameters were used with
the exception of the separator thickness 1.5, the use
of average weight vector, and 5 training cycles. The
parameters are optimized on the development set.

Training for each system took about 6 hours. The
evaluation on both test sets which included running

183



Precision Recall Fβ=1

Development 80.05% 74.83% 77.35
Test WSJ 82.28% 76.78% 79.44
Test Brown 73.38% 62.93% 67.75
Test WSJ+Brown 81.18% 74.92% 77.92

Test WSJ Precision Recall Fβ=1

Overall 82.28% 76.78% 79.44
A0 88.22% 87.88% 88.05
A1 82.25% 77.69% 79.91
A2 78.27% 60.36% 68.16
A3 82.73% 52.60% 64.31
A4 83.91% 71.57% 77.25
A5 0.00% 0.00% 0.00
AM-ADV 63.82% 56.13% 59.73
AM-CAU 64.15% 46.58% 53.97
AM-DIR 57.89% 38.82% 46.48
AM-DIS 75.44% 80.62% 77.95
AM-EXT 68.18% 46.88% 55.56
AM-LOC 66.67% 55.10% 60.33
AM-MNR 66.79% 53.20% 59.22
AM-MOD 96.11% 98.73% 97.40
AM-NEG 97.40% 97.83% 97.61
AM-PNC 60.00% 36.52% 45.41
AM-PRD 0.00% 0.00% 0.00
AM-REC 0.00% 0.00% 0.00
AM-TMP 78.16% 76.72% 77.44
R-A0 89.72% 85.71% 87.67
R-A1 70.00% 76.28% 73.01
R-A2 85.71% 37.50% 52.17
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 0.00% 0.00% 0.00
R-AM-EXT 0.00% 0.00% 0.00
R-AM-LOC 85.71% 57.14% 68.57
R-AM-MNR 0.00% 0.00% 0.00
R-AM-TMP 72.34% 65.38% 68.69
V 98.92% 97.10% 98.00

Table 1: Overall results (top) and detailed results on
the WSJ test (bottom).

with all six different parse trees (assumed already
given) and the joint inference took about 4.5 hours.

Precision Recall Fβ=1

Charniak-1 75.40% 74.13% 74.76
Charniak-2 74.21% 73.06% 73.63
Charniak-3 73.52% 72.31% 72.91
Charniak-4 74.29% 72.92% 73.60
Charniak-5 72.57% 71.40% 71.98
Collins 73.89% 70.11% 71.95
Joint inference 80.05% 74.83% 77.35

Table 2: The results of individual systems and the
result with joint inference on the development set.

Overall results on the development and test sets
are shown in Table 1. Table 2 shows the results of

individual systems and the improvement gained by
the joint inference on the development set.

4 Conclusions

We present an implementation of SRL system which
composed of four stages—1) pruning, 2) argument
identification, 3) argument classification, and 4) in-
ference. The inference provides a natural way to
take the output of multiple argument classifiers and
combines them into a coherent predicate-argument
output. Significant improvement in overall SRL per-
formance through this inference is illustrated.

Acknowledgments

We are grateful to Dash Optimization for the free
academic use of Xpress-MP. This research is sup-
ported by ARDA’s AQUAINT Program, DOI’s Re-
flex program, and an ONR MURI Award.

References
C. Bishop, 1995. Neural Networks for Pattern Recognition,

chapter 6.4: Modelling conditional distributions, page 215.
Oxford University Press.

X. Carreras and L. M̀arquez. 2004. Introduction to the conll-
2004 shared tasks: Semantic role labeling. InProc. of
CoNLL-2004.

M. Collins. 1999. Head-driven Statistical Models for Natural
Language Parsing.Ph.D. thesis, Computer Science Depart-
ment, University of Pennsylvenia, Philadelphia.

Y. Freund and R. Schapire. 1999. Large margin classifica-
tion using the perceptron algorithm.Machine Learning,
37(3):277–296.

A. Grove and D. Roth. 2001. Linear concepts and hidden vari-
ables.Machine Learning, 42(1/2):123–141.

T. Hang, F. Damerau, and D. Johnson. 2002. Text chunking
based on a generalization of winnow.Journal of Machine
Learning Research, 2:615–637.

V. Punyakanok, D. Roth, W. Yih, and D. Zimak. 2004. Seman-
tic role labeling via integer linear programming inference. In
Proc. of COLING-2004.

D. Roth and W. Yih. 2002. Probabilistic reasoning for entity &
relation recognition. InProc. of COLING-2002, pages 835–
841.

D. Roth. 1998. Learning to resolve natural language ambigui-
ties: A unified approach. InProc. of AAAI, pages 806–813.

N. Xue and M. Palmer. 2004. Calibrating features for semantic
role labeling. InProc. of the EMNLP-2004, pages 88–94,
Barcelona, Spain.

184


