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Abstract

Both Middle English and Old French had
a syntactic property called verb-second or
V2 that disappeared. In this paper de-
scribes a simulation being developed to
shed light on the question of why V2 is
stable in some languages, but not oth-
ers. The simulation, based on a Markov
chain, uses fuzzy grammars where speak-
ers can use an arbitrary mixture of ideal-
ized grammars. Thus, it can mimic the
variable syntax observed in Middle En-
glish manuscripts. The simulation sup-
ports the hypotheses that children use the
topic of a sentence for word order acqui-
sition, that acquisition takes into account
the ambiguity of grammatical information
available from sample sentences, and that
speakers prefer to speak with more regu-
larity than they observe in the primary lin-
guistic data.

1 Introduction

The paradox of language change is that on the one
hand, children seem to learn the language of their
parents very robustly, and yet for example, the En-
glish spoken in 800 AD is foreign to speakers of
Modern English, and Latin somehow diverged into
numerous mutually foreign languages. A number of
models and simulations have been studied using his-
torical linguistics and acquisition studies to build on
one another (Yang, 2002; Lightfoot, 1999; Niyogi
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and Berwick, 1996). This paper describes the ini-
tial stages of a long term project undertaken in con-
sultation with Anthony Kroch, designed to integrate
knowledge from these and other areas of linguistics
into a mathematical model of the entire history of
English. As a first step, this paper examines the
verb-second phenomenon, which has caused some
difficulty in other simulations. The history of En-
glish and other languages requires simulated popu-
lations to have certain long-term behaviors. Assum-
ing that syntax can change without a non-syntactic
driving force, these requirements place informative
restrictions on the acquisition algorithm. Specifi-
cally, the behavior of this simulation suggests that
children are aware of the topic of a sentence and use
it during acquisition, that children take into account
whether or not a sentence can be parsed by multiple
hypothetical grammars, and that speakers are aware
of variety in their linguistic environment but do not
make as much use of it individually.

As discussed in (Yang, 2002) and (Kroch, 1989),
both Middle English and Old French had a syntac-
tic rule, typical of Germanic languages, known as
verb-second or V2, in which top-level sentences are
re-organized: The finite verb moves to the front, and
the topic moves in front of that. These two lan-
guages both lost V2 word order. Yang (2002) also
states that other Romance languages once had V2
and lost it. However, Middle English is the only Ger-
manic language to have lost V2.

A current hypothesis for how V2 is acquired sup-
poses that children listen for cue sentences that can-
not be parsed without V2 (Lightfoot, 1999). Specifi-
cally, sentences with an initial non-subject topic and
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finite verb are the cues for V2:

(1) [cp TopicXP oV [;p Subject ...]]

(2) [[On pis geer] wolde [pe king Stephne tze-
cen...]]
[[in this year] wanted [the king Stephen
seize...]]
‘During this year king Stephen wanted to
seize...’
(Fischer et al., 2000, p. 130)

This hypothesis suggests that the loss of V2 can be
attributed to a decline in cue sentences in speech.
Once the change is actuated, feedback from the
learning process propels it to completion.

Several questions immediately arise: Can the ini-
tial decline happen spontaneously, as a consequence
of purely linguistic factors? Specifically, can a
purely syntactic force cause the decline of cue sen-
tences, or must it be driven by a phonological or
morphological change? Alternatively, given the ro-
bustness of child language acquisition, must the ini-
tial decline be due to an external event, such as con-
tact or social upheaval? Finally, why did Middle
English and Old French lose V2, but not German,
Yiddish, or Icelandic? And what can all of this say
about the acquisition process?

Yang and Kroch suggest the following hypothesis
concerning why some V2 languages, but not all, are
unstable. Middle English (specifically, the southern
dialects) and Old French had particular features that
obscured the evidence for V2 present in the primary
linguistic data available for children:

e Both had underlying subject-verb-object
(SVO) word order. For a declarative sentence
with topicalized subject, an SVO+V2 grammar
generates the same surface word order as
an SVO grammar without V2. Hence, such
sentences are uninformative as to whether
children should use V2 or not. According to
estimates quoted in (Yang, 2002) and (Light-
foot, 1999), about 70% of sentences in modern
V2 languages fall into this category.

e Both allowed sentence-initial adjuncts, which
came before the fronted topic and verb.
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e Subject pronouns were different from full NP
subjects in both languages. In Middle English,
subject pronouns had clitic-like properties that
caused them to appear to the left of the finite
verhb, thereby placing the verb in third position.
Old French was a pro-drop language, so subject
pronouns could be omitted, leaving the verb
first.

The Middle English was even more complex due to
its regional dialects. The northern dialect was heav-
ily influenced by Scandinavian invaders: Sentence-
initial adjuncts were not used, and subject pronouns
were treated the same as full NP subjects.

Other Germanic languages have some of these
factors, but not all. For example, Icelandic has un-
derlying SVO order but does not allow additional
adjuncts. It is therefore reasonable to suppose that
these confounds increase the probability that natural
variation or an external influence might disturb the
occurrence rate of cue sentences enough to actuate
the loss of V2.

An additional complication, exposed by
manuscript data, is that the population seems
to progress as a whole. There is no indication that
some speakers use a V2 grammar exclusively and
the rest never use V2, with the decline in V2 coming
from a reduction in the number of exclusively V2
speakers. Instead, manuscripts show highly variable
rates of use of unambiguously V2 sentences, sug-
gesting that all individuals used V2 at varying rates,
and that the overall rate decreased from generation
to generation. Furthermore, children seem to use
mixtures of adult grammars during acquisition
(YYang, 2002). These features suggest that modeling
only idealized adult speech may not be sufficient;
rather, the mixed speech of children and adults in
a transitional environment is crucial to formulating
a model that can be compared to acquisition and
manuscript data.

A number of models and simulations of language
learning and change have been formulated (Niyogi
and Berwick, 1996; Niyogi and Berwick, 1997;
Briscoe, 2000; Gibson and Wexler, 1994; Mitchener,
2003; Mitchener and Nowak, 2003; Mitchener and
Nowak, 2004; Komarova et al., 2001) based on the
simplifying assumption that speakers use one gram-
mar exclusively. Frequently, V2 can never be lost in



such simulations, perhaps because the learning al-
gorithm is highly sensitive to noise. For example,
a simple batch learner that accumulates sample sen-
tences and tries to pick a grammar consistent with
all of them might end up with a V2 grammar on the
basis of a single cue sentence.

The present work is concerned with developing
an improved simulation framework for investigating
syntactic change. The simulated population consists
of individual simulated people called agentsthat can
use arbitrary mixtures of idealized grammars called
fuzzy grammars. Fuzzy grammars enable the sim-
ulation to replicate smooth, population-wide transi-
tions from one dominant idealized grammar to an-
other. Fuzzy grammars require a more sophisticated
learning algorithm than would be required for an
agent to acquire a single idealized grammar: Agents
must acquire usage rates for the different idealized
grammars rather than a small set of discrete param-
eter values.

2 Linguistic specifics of the simulation

The change of interest is the loss of V2 in Middle
English and Old French, in particular why V2 was
unstable in these languages but not in others. There-
fore, the idealized grammars allowed in this simu-
lation will be limited to four: All have underlying
subject-verb-object word order, and allow sentence-
initial adjuncts. The options are V2 or not, and pro-
drop or not. Thus, a grammar is specified by a pair
of binary parameter values. For simplicity, the pro-
drop parameter as in Old French is used rather than
trying to model the clitic status of Middle English
subject pronouns.

Sentences are limited to a few basic types of
declarative statements, following the degree-0 learn-
ing hypothesis (Lightfoot, 1999): The sentence may
or may not begin with an adjunct, the subject may
be either a full noun phrase or a pronoun, and the
verb may optionally require an object or a subject.
A verb, such as rain, that does not require a subject
is given an expletive pronoun subject if the grammar
is not pro-drop. Additionally, either the adjunct, the
subject, or the object may be topicalized. For a V2
grammar, the topicalized constituent appears just be-
fore the verb; otherwise it is indicated only by spo-
ken emphasis.
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A fuzzy grammar consists of a pair of beta distri-
butions with parameters « and £, following the con-
vention from (Gelman et al., 2004) that the density
for Beta(a, ) is

Tt h) .
@ = far@

(1-2)to<z<l.
3)
Each beta distribution controls one parameter in the
idealized grammar.® The special case of Beta(1,1)
is the uniform distribution, and two such distribu-
tions are used as the initial state for the agent’s fuzzy
grammar. The density for Beta(1 +m,1 4+ n) is a
bump with peak at m/(m + n) that grows sharper
for larger values of m and n. Thus, it incorporates a
natural critical period, as each additional data point
changes the mean less and less, while allowing for
variation in adult grammars as seen in manuscripts.

To produce a sentence, an agent with fuzzy gram-
mar (Beta(aq, 31), Beta(ase, 82)) constructs an ide-
alized grammar from a pair of random parameter
settings, each 0 or 1, selected as follows. The agent
picks a random number @Q; ~ Beta(a;,3;), then
sets parameter j to 1 with probability @ ; and 0 with
probability 1 — @;. An equivalent and faster opera-
tion is to set parameter j to 1 with probability 1.; and
0 with probability 1 — 1;, where p1; = o /(vj + 3;)
is the mean of Beta(a;, 5;).

To learn from a sentence, an agent first con-
structs a random idealized grammar as before. If the
grammar can parse the sentence, then some of the
agent’s beta distributions are adjusted to increase the
probability that the successful grammar is selected
again. If the grammar cannot parse the sentence,
then no adjustment is made. To adjust Beta(a, (3)
to favor 1, the agent increments the first parame-
ter, yielding Beta(a + 1,3). To adjust it to favor
0, the agent increments the second parameter, yield-
ing Beta(a, 3+ 1).

Within this general framework, many variations
are possible. For example, the initial state of an
agent, the choice of which beta distributions to up-
date for particular sentences, and the social structure
(who speaks to who) may all be varied.

1The beta distribution is the conjugate prior for using
Bayesian inference to estimate the probability abiased coin will
come up heads: If the prior distribution is Beta(c, 3), the pos-
terior after m heads and n tailsis Beta(a + m, 8 + n).



The simulation in (Briscoe, 2002) also makes use
of Bayesian learning, but within an algorithm for
which learners switch abruptly from one idealized
grammar to another as estimated probabilities cross
certain thresholds. The smoother algorithm used
here is preferable because children do not switch
abruptly between grammars (Yang, 2002). Further-
more, this algorithm allows simulations to include
children’s highly variable speech. Children learn-
ing from each other is thought be an important force
in certain language changes; for example, a recent
change in the Icelandic case system, known as da-
tive sickness, is thought to be spreading through this
mechanism.

3 Adaptation for Markov chain analysis

To the learning model outlined so far, we add the fol-
lowing restrictions. The social structure is fixed in a
loop: There are n agents, each of which converses
with its two neighbors. The parameters o; and /3;
are restricted to be between 1 and N. Thus, the pop-
ulation can be in one of N*" possible states, which
is large but finite.

Time is discrete with each time increment rep-
resenting a single sentence spoken by some agent
to a neighbor. The population is represented by a
sequence of states (X¢);cz. The population is up-
dated as follows by a transition function X;,; =
o(Xy, Uy) that is fed the current population state plus
a tuple of random numbers U;. One agent is selected
uniformly at random to be the hearer. With probabil-
ity p,., that agent dies and is replaced by a baby in an
initial state (Beta(1, 1), Beta(1,1)). With probabil-
ity 1 — p,, the agent survives and hears a sentence
spoken by a randomly selected neighbor.

Two variations of the learning process are ex-
plored here. The first, called LEARN-ALWAYS,
serves as a base line: The hearer picks an idealized
grammar according to its fuzzy grammar, and tries
to parse the sentence. If it succeeds, it updates any
one beta distribution selected at random in favor of
the parameter that led to a successful parse. If the
parse fails, no update is made. This algorithm is sim-
ilar to Naive Parameter Learning with Batch (Yang,
2002, p. 24), but adapted to learn a fuzzy grammar
rather than an idealized grammar, and to update the
agent’s knowledge of only one syntactic parameter
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at a time.

The second, called PARAMETER-CRUCIAL, is the
same except that the parameter is only updated if
it is crucial to the parse: The agent tries to parse
the sentence with that parameter in the other set-
ting. If the second parse succeeds, then the param-
eter is not considered crucial and is left unchanged,
but if it fails, then the parameter is crucial and the
original setting is reinforced. This algorithm builds
on LEARN-ALWAYS by restricting learning to sen-
tences that are more or less unambiguous cues for
the speaker’s setting for one of the syntactic param-
eters. The theory of cue-based learning assumes that
children incorporate particular features into their
grammar upon hearing specific sentences that unam-
biguously require them. This process is thought to
be a significant factor in language change (Lightfoot,
1999) as it provides a feedback mechanism: Once a
parameter setting begins to decline, cues for it will
become less frequent in the population, resulting in
further decline in the next generation. A difficulty
with the theory of cue-based learning is that it is un-
clear what exactly “unambiguous” should mean, be-
cause realistic language models generally have cases
where no single sentence type is unique to a particu-
lar grammar or parameter setting (Yang, 2002, p. 34,
39). The definition of a crucial parameter preserves
the spirit of cue-based learning while avoiding po-
tential difficulties inherent in the concept of “unam-
biguous.”

These modifications result in a finite-state Markov
chain with several useful properties. Itisirreducible,
which means that there is a strictly positive proba-
bility of eventually getting from any initial state to
any other target state. To see this, observe that there
is a tiny but strictly positive probability that in the
next several transitions, all the agents will die and
the following sentence exchanges will happen just
right to bring the population to the target state. This
Markov chain is also aperiodic, which means that
at any time ¢ far enough into the future, there is a
strictly positive probability that the chain will have
returned to its original state. Aperiodicity is a con-
sequence of irreducibility and the fact that there is
a strictly positive probability that the chain does not
change states from one time step to the next. That
happens when a hearer fails to parse a sentence, for
example. An irreducible aperiodic Markov chain al-



ways has a stationary distribution. This is a proba-
bility distribution on its states, normally denoted m,
such that the probability that X; = x converges to
m(x) as t — oo no matter what the initial state X,
is. Furthermore, the transition function preserves m,
which means that if X is distributed according to ,
then so is ¢(X, U). The stationary distribution rep-
resents the long term behavior of the Markov chain.

Agents have a natural partial ordering > defined

by

(Beta(ai, 81), Beta(ag, 52))
= (Beta(a}, 31), Beta(ah, 35))
if and only if
ay > ay, B < B,a0 > o, and B < By, (4)

This ordering means that the left-hand agent is
slanted more toward 1 in both parameters. Not all
pairs of agent states are comparable, but there are
unique maximum and minimum agent states under
this partial ordering,

Amax = (Beta(N, 1), Beta(N, 1)),
Anin = (Beta(1, N), Beta(1, N)),

such that all agent states A satisfy A = A =
Amin. Let us consider two population states X and
Y and denote the agents in X by A; and the agents
inY by B;j, where 1 < j < n. The population
states may also be partially ordered, as we can define
X > Y to mean all corresponding agents satisfy
A; = Bj. There are also maximum and minimum
population states X ., and X,,;,, defined by setting
all agent states t0 A . and Apin, respectively.

A Markov chain is monaotonic if the set of states
has a partial ordering with maximum and minimum
elements and a transition function that respects that
ordering. There is a perfect sampling algorithm
called monotonic coupling from the past (MCFTP)
that generates samples from the stationary distribu-
tion 7 of a monotonic Markov chain without requir-
ing certain properties of it that are difficult to com-
pute (Propp and Wilson, 1996). The partial ordering
= on population states was constructed so that this
algorithm could be used. The transition function ¢
mostly respects this partial ordering, that is, if X >
Y, then with high probability ¢(X,U) = ¢(Y,U).
This monotonicity property is why ¢ was defined to
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change only one agent per time step, and why the
learning algorithms change that agent’s knowledge
of at most one parameter per time step. However,
¢ does not quite respect =, because one can con-
struct X, Y, and U such that X > Y but ¢(X,U)
and ¢(Y,U) are not comparable. So, MCFTP does
not necessarily produce correctly distributed sam-
ples. However, it turns out to be a reasonable heuris-
tic, and until further theory can be developed and ap-
plied to this problem, it is the best that can be done.

The MCFTP algorithm works as follows. We sup-
pose that (U,).cz is a sequence of tuples of random
numbers, and that (X;):cz is a sequence of random
states such that each X, is distributed according to =
and X;1 = ¢(Xy, Uy). We will determine X and
return it as the random sample from the distribution
7. To determine X, we start at time 7" < 0 with a
list of all possible states, and compute their futures
using ¢ and the sequence of U;. If ¢ has been cho-
sen properly, many of these paths will converge, and
with any luck, at time 0 they will all be in the same
state. If this happens, then we have found a time T°
such that no matter what X is, there is only one
possible value for X, and that random state is dis-
tributed according to =« as desired. Otherwise, we
continue, starting twice as far back at time 27, and
so on. This procedure is generally impractical if the
number of possible states is large. However, if the
Markov chain is monotonic, we can take the short-
cut of only looking at the two paths starting at X .«
and X, at time 7. If these agree at time 0, then all
other paths are squeezed in between and must agree
as well.

4  Tweaking

Since this simulation is intended to be used to study
the loss of V2, certain long term behavior is desir-
able. Of the four idealized grammars available in
this simulation, three ought to be fairly stable, since
there are languages of these types that have retained
these properties for a long time: SVO (French,
English), SVO+V2 (Icelandic), and SVO+pro-drop
(Spanish). The fourth, SVO+V2+pro-drop, ought to
be unstable and give way to SVO+pro-drop, since
it approximates Old French before it changed. In
any case, the population ought to spend most of its
time in states where most of the agents use one of



the four grammars predominantly, and neighboring
agents should have similar fuzzy grammars.

In preliminary experiments, the set of possible
sentences did not contain expletive subject pro-
nouns, sentence initial adverbs, or any indication of
spoken stress. Thus, the simulated SVO language
was a subset of all the others, and SVO+pro-drop
was a subset of SVO+V2+pro-drop. Consequently,
the PARAMETER-CRUCIAL learning algorithm was
unable to learn either of these languages because the
non-V2 setting was never crucial: Any sentence that
could be parsed without V2 could also be parsed
with it. In later experiments, the sentences and
grammars were modified to include expletive pro-
nouns, thereby ensuring that SVO is not a subset of
SVO+pro-drop or SVO+V2+pro-drop. In addition,
marks were added to sentences to indicate spoken
stress on the topic. In the simulated V2 languages,
topics are always fronted, so such stress can only
appear on the initial constituent, but in the simulated
non-V2 languages it can appear on any constituent.
This modification ensures that no language within
the simulation is a subset of any of the others.

The addition of spoken stress is theoretically plau-
sible for several reasons. First, the acquisition of
word order and case marking requires children to
infer the subject and object of sample sentences,
meaning that such thematic information is available
from context. It is therefore reasonable to assume
that the thematic context also allows for inference
of the topic. Second, Chinese allows topics to be
dropped where permitted by discourse, a feature also
observed in the speech of children learning English.
These considerations, along with the fact that the
simulation works much better with topic markings
than without, suggests that spoken emphasis on the
topic provides positive evidence that children use to
determine that a language is not V2.

It turns out that the maximum value N allowed
for o; and 3; must be rather large. If it is too
small, the population tends to converge to a satu-
rated state where all the agents are approximately
A = (Beta(N, N),Beta(N, N)). This state repre-
sents an even mixture of all four grammars and is
clearly unrealistic. To see why this happens, imag-
ine a fixed linguistic environment and an isolated
agent learning from this environment with no birth-
and-death process. This process is a Markov chain

15

with a single absorbing state A, meaning that once
the learner reaches state A it cannot change to any
other state: Every learning step requires increasing
one of the numerical parameters in the agent’s state,
and if they are all maximal, then no further change
can take place. Starting from any initial state, the
agent will eventually reach the absorbing state. The
number of states for an agent must be finite for prac-
tical and theoretical reasons, but by making N very
large, the time it takes for an agent to reach A be-
comes far greater than its life span under the birth-
and-death process, thereby avoiding the saturation
problem. With p,, = 0.001, it turns out that 5000 is
an appropriate value for IV, and effectively no agents
come close to saturation.

After some preliminary runs, the LEARN-
ALWAY s algorithm seemed to produce extremely in-
coherent populations with no global or local con-
sensus on a dominant grammar.  Furthermore,
MCFTP was taking an extremely long time un-
der the PARAMETER-CRUCIAL algorithm. An ad-
ditional modification was put in place to encour-
age agents toward using predominantly one gram-
mar. The best results were obtained by modify-
ing the speaking algorithm so that agents prefer to
speak more toward an extreme than the linguistic
data would indicate. For example, if the data sug-
gests that they should use V2 with a high probability
of 0.7, then they use V2 with some higher probabil-
ity, say, 0.8. If the data suggests a low value, say 0.3,
then they use an even lower value, say 0.2. The orig-
inal algorithm used the mean 4; of beta distribution
Beta(c;, 8;) as the probability of using 1 for pa-
rameter j. The biased speech algorithm uses f(;)
instead, where f is a sigmoid function

1
© 1+ exp(2k — 4kp)

that satisfies f(1/2) = 1/2 and f’(1/2) = k. The
numerical parameter k£ can be varied to exagger-
ate the effect. This modification leads to some in-
crease in coherence with the LEARN-ALWAYS al-
gorithm; it has minimal effect on the samples ob-
tained with the PARAMETER-CRUCIAL algorithm,
however MCFTP becomes significantly faster.

The biased speech algorithm can be viewed as a
smoother form of the thresholding operation used in
(Briscoe, 2002), discussed earlier. An alternative in-
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terpretation is that the acquisition process may in-
volve biased estimates of the usage frequencies of
syntactic constructions. Language acquisition re-
quires children to impose regularity on sample data,
leading to creoles and regularization of vocabulary,
for instance (Bickerton, 1981; Kirby, 2001). This
addition to the simulation is therefore psychologi-
cally plausible.

5 Results

In all of the following results, the bound on «; and
Bj is N = 5000, the sigmoid slope is £ = 2, the
probability that an agent is replaced when selected
is p, = 0.001, and there are 40 agents in the pop-
ulation configured in a loop where each agent talks
to its two neighbors. See Figure 1 for a key to the
notation used in the figures.

First, let us consider the base line LEARN-
ALWAYs algorithm. Typical sample populations,
such as the one shown in Figure 2, tend to be glob-
ally and locally incoherent, with neighboring agents
favoring completely different grammars. The results
are even worse without the biased speech algorithm.

A sample run using the PARAMETER-CRUCIAL
learning algorithm is shown in Figure 3. This pop-
ulation is quite coherent, with neighbors generally
favoring similar grammars, and most speakers us-
ing non-V2 languages. Remember that the picture
represents the internal data of each agent, and that
their speech is biased to be more regular than their
experience. There is a region of SVO+V2 spanning
the second row, and a region of SVO+pro-drop on
the fourth row with some SVO+V2+pro-drop speak-
ers. Another sample dominated by V2 with larger
regions of SVO+V2+pro-drop is shown in Figure 4.
A third sample dominated by non-pro-drop speakers
is shown in Figure 5. The MCFTP algorithm starts
with a population of all A,,.x and one of A,;, and
returns a sample that is a possible future of both;
hence, both V2 and pro-drop may be lost and gained
under this simulation.

In addition to sampling from the stationary distri-
bution 7 of a Markov chain, MCFTP estimates the
chain’s mixing time, which is how large ¢ must be
for the distribution of X to be e-close to = (in total
variation distance). The mixing time is roughly how
long the chain must run before it “forgets™ its initial
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state. Since this Markov chain is not quite mono-
tonic, the following should be considered a heuristic
back-of-the-napkin calculation for the order of mag-
nitude of the time it takes for a linguistic environ-
ment to forget its initial state. Figures 3 and 4 require
29 and 30 doubling steps in MCFTP, which indicates
a mixing time of around 22® steps of the Markov
chain. Each agent has a probability p, of dying and
being replaced if it is selected. Therefore, the proba-
bility of an agent living to age m is (1—p;.)™p;, with
amean of (1—p,)/p,. For p, = 0.001, this gives an
average life span of 999 listening interactions. Each
agent is selected to listen or be replaced with proba-
bility 1/40, so the average lifespan is approximately
40, 000 steps of the Markov chain, which is between
215 and 26, Hence, the mixing time is on the order
of 228-16 — 4096 times the lifespan of an individual
agent. In real life, taking a lifespan to be 40 years,
that corresponds to at least 160, 000 years. Further-
more, this is an underestimate, because true human
language is far more complex and should have an
even longer mixing time. Thus, this simulation sug-
gests that the linguistic transitions we observe in real
life taking place over a few decades are essentially
transient behavior.

6 Discussion and conclusion

With reasonable parameter settings, populations in
this simulation are able to both gain and lose V2, an
improvement over other simulations, including ear-
lier versions of this one, that tend to always converge
to SVO+V2+pro-drop. Furthermore, such changes
can happen spontaneously, without an externally im-
posed catastrophe. The simulation does not give rea-
sonable results unless learners can tell which com-
ponent of a sentence is the topic. Preliminary re-
sults suggest that the PARAMETER-CRUCIAL learn-
ing algorithm gives more realistic results than the
LEARN-ALWAY s algorithm, supporting the hypoth-
esis that much of language acquisition is based on
cue sentences that are in some sense unambiguous
indicators of the grammar that generates them. Tim-
ing properties of the simulation suggest that it takes
many generations for a population to effectively for-
get its original state, suggesting that further research
should focus on the simulation’s transient behavior
rather than on its stationary distribution.



In future research, this simulation will be ex-
tended to include other possible grammars, partic-
ularly approximations of Middle English and Ice-
landic. That should be an appropriate level of detail
for studying the loss of V2. For studying the rise
of V2, the simulation should also include V1 gram-
mars as in Celtic languages, where the finite verb
raises but the topic remains in place. According to
Kroch (personal communication) V2 is thought to
arise from V1 languages rather than directly from
SOV or SVO languages, so the learning algorithm
should be tuned so that V1 languages are more likely
to become V2 than non-V1 languages.

The learning algorithms described here do not in-
clude any bias in favor of unmarked grammatical
features, a property that is thought to be necessary
for the acquisition of subset languages. One could
easily add such a bias by starting newborns with
non-uniform prior information, such as Beta(1, 20)
for example. It is generally accepted that V2 is
marked based on derivational economy.? Pro-drop is
more complicated, as there is no consensus on which
setting is marked.® The correct biases are not obvi-
ous, and determining them requires further research.

Further extensions will include more complex
population structure and literacy, with the goal of
eventually comparing the results of the simulation to
data from the Pennsylvania Parsed Corpus of Middle
English.

References

Derek Bickerton. 1981. Roots of Language. Karoma
Publishers, Inc., Ann Arbor.

E. J. Briscoe. 2000. Grammatical acquisition: Induc-
tive bias and coevolution of language and the language
acquisition device. Language, 76(2):245-296.

E. J. Briscoe. 2002. Grammatical acquisition and lin-
guistic selection. In E. J. Briscoe, editor, Linguistic
Evolution through Language Acquisition: Formal and
Computational Models. Cambridge University Press.

2Although Hawaiian Creole English and other creoles front
topic and wh-word rather than leaving them in situ, so it isun-
clear to what degree movement is marked (Bickerton, 1981).

30n one hand, English-speaking children go through a pe-
riod of topic-drop before learning that subject pronouns are
obligatory, suggesting some form of pro-drop is the default
(Yang, 2002). On the other hand, creoles are thought to rep-
resent completely unmarked grammars, and they are generally
not pro-drop (Bickerton, 1981).

17

Olga Fischer, Ans van Kemenade, Willem Koopman, and
Wim van der Wurff. 2000. The Syntax of Early En-
glish. Cambridge University Press.

Andrew Gelman, John B. Carlin, Hal S. Stern, and Don-
ald B. Rubin. 2004. Bayesian Data Analysis. Chap-
man & Hall/CRC, second edition.

E. Gibson and K. Wexler. 1994. Triggers. Linguistic
Inquiry, 25:407-454.

Simon Kirby. 2001. Spontaneous evolution of linguistic
structure: an iterated learning model of the emergence
of regularity and irregularity. 1EEE Transactions on
Evolutionary Computation, 5(2):102-110.

Natalia L. Komarova, Partha Niyogi, and Martin A.
Nowak. 2001. The evolutionary dynamics of gram-
mar acquisition.  Journal of Theoretical Biology,
209(1):43-59.

Anthony Kroch. 1989. Reflexes of grammar in patterns
of language change. Language Variation and Change,
1:199-244.

David Lightfoot. 1999. The Development of Language:
Acquisition, Changes and Evolution. Blackwell Pub-
lishers.

W. Garrett Mitchener and Martin A. Nowak. 2003. Com-
petitive exclusion and coexistence of universal gram-
mars. Bulletin of Mathematical Biology, 65(1):67-93,
January.

W. Garrett Mitchener and Martin A. Nowak. 2004.
Chaos and language. Proceedings of the Royal Society
of London, Biological Sciences, 271(1540):701-704,
April. DOI 10.1098/rspb.2003.2643.

W. Garrett Mitchener. 2003. Bifurcation analysis of the
fully symmetric language dynamical equation. Jour-
nal of Mathematical Biology, 46:265-285, March.

Partha Niyogi and Robert C. Berwick. 1996. A language
learning model for finite parameter spaces. Cognition,
61:161-193.

Partha Niyogi and Robert C. Berwick. 1997. A dynami-
cal systems model for language change. Complex Sys-
tems, 11:161-204.

James Gary Propp and David Bruce Wilson. 1996. Ex-
act sampling with coupled Markov chains and applica-
tions to statistical mechanics. Random Structures and
Algorithms, 9(2):223-252.

Charles D. Yang. 2002. Knowledge and Learning in Nat-
ural Language. Oxford University Press, Oxford.



CTTTT o - V2 pro-drop
***** ey
-1 (Beta(ouy,B), Beta(oy,,))
y : % )
__________________ : o+, oy tB,
SVO SVO+V2 SVO SVO
+pro-drop +V2
+pro-drop

Figure 1: Key to illustrations. Each agent is drawn as a box, with a dot indicating its fuzzy grammar. The
means of its beta distributions are used as the coordinates of the dot. The distribution for the V2 parameter
is used for the horizontal component, and the distribution for the pro-drop parameter is used for the vertical
component. Agents using predominantly one of the four possible idealized grammars have their dot in one
of the corners as shown.
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Figure 2: A population of 40 under the LEARN-ALWAY S algorithm. Each agent speaks to its neighbors, and
the population should be read left to right and bottom to top. The rightmost agent in each row is neighbors
with the leftmost agent in the next row up. The bottom left agent is neighbors with the top right agent.
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Figure 3: A population of 40 under the PARAMETER-CRUCIAL algorithm. Each agent speaks to its neigh-
bors, and the population should be read left to right and bottom to top.
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Figure 4: A population of 40 under the PARAMETER-CRUCIAL algorithm. Each agent speaks to its neigh-
bors, and the population should be read left to right and bottom to top.
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Figure 5: A population of 40 under the PARAMETER-CRUCIAL algorithm. Each agent speaks to its neigh-
bors, and the population should be read left to right and bottom to top.
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