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Abstract

Understanding the decoding algorithm for
hidden Markov models is a difficult task
for many students. A comprehensive un-
derstanding is difficult to gain from static
state transition diagrams and tables of ob-
servation production probabilities. We
have built a number of visualizations de-
picting a hidden Markov model for part-
of-speech tagging and the operation of the
Viterbi algorithm. The visualizations are
designed to help students grasp the oper-
ation of the HMM. In addition, we have
found that the displays are useful as de-
bugging tools for experienced researchers.

1 Introduction

Hidden Markov Models (HMMs) are an important
part of the natural language processing toolkit and
are often one of the first stochastic generation mod-
els that students1 encounter. The corresponding
Viterbi algorithm is also often the first example
of dynamic programming that students encounter.
Thus, HMMs provide an opportunity to start stu-
dents on the correct path of understanding stochas-
tic models,not simply treating them as black boxes.
Unfortunately, static state transition diagrams, ta-
bles of probability values, and lattice diagrams are
not enough for many students. They have a general
idea of how a HMM works but often have common

1The Introduction to Computational Linguistics course at
the University of Iowa has no prerequisites, and over half the
students are not CS majors.

misconceptions. For example, we have found that
students often believe that as the Viterbi algorithm
calculates joint state sequence observation sequence
probabilities, the best state sequence so far is always
a prefix of global best path. This is of course false.
Working a long example to show this is very tedious
and thus text books seldom provide such examples.

Even for practitioners, HMMs are often opaque
in that the cause of a mis-tagging error is often left
uncharacterized. A display would be helpful to pin-
point why an HMM chose an incorrect state se-
quence instead of the correct one.

Below we describe two displays that attempt to
remedy the above mentioned problems and we dis-
cuss a Java implementation of these displays in the
context of a part-of-speech tagging HMM (Kupiec,
1992). The system is freely available and has an
XML model specification that allows models calcu-
lated by other methods to be viewed. (A standard
maximum likelihood estimation was implemented
and can be used to create models from tagged data.
A model is also provided.)

2 Displays

Figure 1 shows a snapshot of our first display. It
contains three kinds of information: most likely
path for input, transition probabilities, and history of
most likely prefixes for each observation index in the
Viterbi lattice. The user can input text at the bottom
of the display, e.g.,Pelham pointed out that Geor-
gia voters rejected the bill. The system then runs
Viterbi and animates the search through all possible
state sequences and displays the best state sequence
prefix as it works its way through the observation
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Figure 1: The system’s main display.Top pane: shows the state space and animates the derivation of the
most likely path for “Pelman pointed out that Georgia voters ...”;Middle pane: a mouse-over-triggered bar
graph of out transition probabilities for a state;Bottom pane: a history of most likely prefixes for each
observation index in the Viterbi lattice. Below the panes is the input text field.
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Figure 2: Contrast display: The user enters a sequence on the top text field and presses enter, the sequence
is tagged and displayed in both the top and bottom text fields. Finally, the user changes any incorrect tags in
the top text field and presses enter and the probability ratio bars are then displayed.
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sequence from left to right (these are lines connect-
ing the states in Figure 1). At any point, the stu-
dent can mouse-over a state to see probabilities for
transitions out of that state (this is the bar graph in
Figure 1). Finally, the history of most likely pre-
fixes is displayed (this history appears below the bar
graph in Figure 1). We mentioned that students often
falsely believe that the most likely prefix is extended
monotonically. By seeing the path through the states
reconfigure itself in the middle of the observation se-
quence and by looking at the prefix history, a student
has a good chance of dispelling the false belief of
monotonicity.

The second display allows the user to contrast two
state sequences for the same observation sequence.
See Figure 2. For each contrasting state pairs, it
shows the ratio of the corresponding transition to
each state and it shows the ratio of the generation of
the observation conditioned on each state. For exam-
ple, in Figure 2 the transition DT→JJ is less likely
than DT→NNP. The real culprit is generation proba-
bility P(Equal|JJ) which is almost 7 times larger than
P(Equal|NNP). Later in the sequence we see a simi-
lar problem with generatingopportunityfrom a NNP
state. These generation probabilities seem to drown
out any gains made by the likelihood of NNP runs.

To use this display, the user types in a sentence
in the box above the graph and presses enter. The
HMM is used to tag the input. The user then modi-
fies (e.g., corrects) the tag sequence and presses en-
ter and the ratio bars then appear.

Let us consider another example: in Figure 2, the
mis-tagging ofraisesas a verb instead of a noun at
the end of the sentence. The display shows us that
although NN→NNS is more likely than NN→VBZ,
the generation probability forraises as a verb is
over twice as high as a noun. (If this pattern of
mis-taggings caused by high generation probabil-
ity ratios was found repeatedly, we might consider
smoothing these distributions more aggressively.)

3 Implementation

The HMM part-of-speech tagging model and
corresponding Viterbi algorithm were implemented
based on their description in the updated version,
http://www.cs.colorado.edu/˜martin/
SLP/updated.html , of chapter 8 of (Jurafsky

and Martin, 2000). A model was trained using
Maximum Likelihood from the UPenn Treebank
(Marcus et al., 1993). The input model file is
encoded using XML and thus models built by other
systems can be read in and displayed.

The system is implemented in Java and requires
1.4 or higher to run. It has been tested on Linux and
Apple operating systems. We will release it under a
standard open source license.

4 Summary and future work

Students (and researchers) need to understand
HMMs. We have built a display that allow users
to probe different aspects of an HMM and watch
Viterbi in action. In addition, our system provides
a display that allows users to contrast state sequence
probabilities. To drive these displays, we have built
a standard HMM system including parameter esti-
mating and decoding and provide a part-of-speech
model trained on UPenn Treebank data. The system
can also read in models constructed by other sys-
tems.

This system was built during this year’s offering
of Introduction to Computational Linguisticsat the
University of Iowa. In the Spring of 2006 it will be
deployed in the classroom for the first time. We plan
on giving a demonstration of the system during a
lecture on HMMs and part-of-speech tagging. A re-
lated problem set using the system will be assigned.
The students will be given several mis-tagged sen-
tences and asked to analyze the errors and report
on precisely why they occurred. A survey will be
administered at the end and improvements will be
made to the system based on the feedback provided.

In the future we plan to implement Good-Turing
smoothing and a method for dealing with unknown
words. We also plan to provide an additional display
that shows the traditional Viterbi lattice figure, i.e.,
observations listed left-to-right, possible states listed
from top-to-bottom, and lines from left-to-right con-
necting states at observation indexi with the previ-
ous states,i-1, that are part of the most likely state
sequence toi. Finally, we would like to incorpo-
rate an additional display that will provide a visual-
ization of EM HMM training. We will use (Eisner,
2002) as a starting point.
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