
Instance-Based Question Answering:
A Data-Driven Approach

Lucian Vlad Lita
Carnegie Mellon University
llita@cs.cmu.edu

Jaime Carbonell
Carnegie Mellon University

jgc@cs.cmu.edu

Abstract

Anticipating the availability of large question-
answer datasets, we propose a principled, data-
driven Instance-Based approach to Question An-
swering. Most question answering systems incor-
porate three major steps: classify questions accord-
ing to answer types, formulate queries for document
retrieval, and extract actual answers. Under our ap-
proach, strategies for answering new questions are
directly learned from training data. We learn mod-
els of answer type, query content, and answer ex-
traction from clusters of similar questions. We view
the answer type as a distribution, rather than a class
in an ontology. In addition to query expansion, we
learn general content features from training data and
use them to enhance the queries. Finally, we treat
answer extraction as a binary classification problem
in which text snippets are labeled as correct or in-
correct answers. We present a basic implementation
of these concepts that achieves a good performance
on TREC test data.

1 Introduction

Ever since Question Answering (QA) emerged as
an active research field, the community has slowly
diversified question types, increased question com-
plexity, and refined evaluation metrics - as reflected
by the TREC QA track (Voorhees, 2003). Starting
from successful pipeline architectures (Moldovan et
al., 2000; Hovy et al., 2000), QA systems have re-
sponded to changes in the nature of the QA task by
incorporating knowledge resources (Hermjakob et
al., 2000; Hovy et al., 2002), handling additional
types of questions, employing complex reasoning
mechanisms (Moldovan et al., 2003; Nyberg et al.,
2003), tapping into external data sources such as
the Web, encyclopedias, databases (Dumais et al.,
2002; Xu et al., 2003), and merging multiple agents
and strategies into meta-systems (Chu-Carroll et al.,
2003; Burger et al., 2002).

In recent years, learning components have started
to permeate Question Answering (Clarke et al.,

2003; Ravichandran et al., 2003; Echihabi and
Marcu, 2003). Although the field is still domi-
nated by knowledge-intensive approaches, compo-
nents such as question classification, answer extrac-
tion, and answer verification are beginning to be ad-
dressed through statistical methods. At the same
time, research efforts in data acquisition promise to
deliver increasingly larger question-answer datasets
(Girju et al., 2003; Fleischman et al., 2003). More-
over, Question Answering is expanding to different
languages (Magnini et al., 2003) and domains other
than news stories (Zweigenbaum, 2003). These
trends suggest the need for principled, statisti-
cally based, easily re-trainable, language indepen-
dent QA systems that take full advantage of large
amounts of training data.

We propose an instance-based, data-driven ap-
proach to Question Answering. Instead of classify-
ing questions according to limited, predefined on-
tologies, we allow training data to shape the strate-
gies for answering new questions. Answer mod-
els, query content models, and extraction models are
also learned directly from training data. We present
a basic implementation of these concepts and eval-
uate the performance.

2 Motivation
Most existing Question Answering systems classify
new questions according to static ontologies. These
ontologies incorporate human knowledge about the
expected answer (e.g. date, location, person), an-
swer type granularity (e.g. date, year, century), and
very often semantic information about the question
type (e.g. birth date, discovery date, death date).

While effective to some degree, these ontologies
are still very small, and inconsistent. Considerable
manual effort is invested into building and maintain-
ing accurate ontologies even though answer types
are arguably not always disjoint and hierarchical in
nature (e.g. “Where is the corpus callosum?” ex-
pects an answer that is both location and body part).

The most significant drawback is that ontologies
are not standard among systems, making individual

component evaluation very difficult and re-training
for new domains time-consuming.

2.1 Answer Modeling
The task of determining the answer type of a ques-
tion is usually considered a hard 1 decision prob-
lem: questions are classified according to an an-
swer ontology. The classification (location, per-
son’s name, etc) is usually made in the beginning
of the QA process and all subsequent efforts are
focused on finding answers of that particular type.
Several existing QA systems implement feedback
loops (Harabagiu et al., 2000) or full-fledged plan-
ning (Nyberg et al., 2003) to allow for potential an-
swer type re-classification.

However, most questions can have multiple an-
swer types as well as specific answer type distribu-
tions. The following questions can accommodate
answers of types: full date, year, and decade.

Question Answer
When did Glen lift off in Friendship7? Feb. 20, 1962
When did Glen join NASA? 1959
When did Glen have long hair? the fifties

However, it can be argued that date is the most
likely answer type to be observed for the first ques-
tion, year the most likely type for the second ques-
tion, and decade most likely for the third ques-
tion. In fact, although the three questions can be
answered by various temporal expressions, the dis-
tributions over these expressions are quite different.
Existing answer models do not usually account for
these distributions, even though there is a clear po-
tential for better answer extraction and more refined
answer scoring.

2.2 Document Retrieval
When faced with a new question, QA systems usu-
ally generate few, carefully expanded queries which
produce ranked lists of documents. The retrieval
step, which is very critical in the QA process,
does not take full advantage of context information.
However, similar questions with known answers do
share context information in the form of lexical and
structural features present in relevant documents.
For example all questions of the type “When was
X born?” find their answers in documents which
often contain words such as “native” or “record”,
phrases such as “gave birth to X”, and sometimes
even specific parse trees.

Most IR research in Question Answering is fo-
cused on improving query expansion and structur-

1the answer is classified into a single class instead of gener-
ating a probability distribution over answers

ing queries in order to take advantage of specific
document pre-processing. In addition to automatic
query expansion for QA (Yang et al., 2003), queries
are optimized to take advantage of expansion re-
sources and document sources. Very often, these
optimizations are performed offline, based on the
type of question being asked.

Several QA systems associate this type of infor-
mation with question ontologies: upon observing
questions of a certain type, specific lexical features
are sought in the retrieved documents. These fea-
tures are not always automatically learned in order
to be used in query generation. Moreover, systems
are highly dependent on specific ontologies and be-
come harder to re-train.

2.3 Answer Extraction

Given a set of relevant documents, the answer ex-
traction step consists of identifying snippets of text
or exact phrases that answer the question. Manual
approaches to answer extraction have been mod-
erately successful in the news domain. Regular
expressions, rule and pattern-based extraction are
among the most efficient techniques for information
extraction. However, because of the difficulty in ex-
tending them to additional types of questions, learn-
ing methods are becoming more prevalent.

Current systems (Ravichandran et al., 2003) al-
ready employ traditional information extraction and
machine learning for extracting answers from rel-
evant documents. Boundary detection techniques,
finite state transducers, and text passage classifica-
tion are a few methods that are usually applied to
this task.

The drawback shared by most statistical answer
extractors is their reliance on predefined ontologies.
They are often tailored to expected answer types and
require type-specific resources. Gazetteers, ency-
clopedias, and other resources are used to generate
type specific features.

3 Related Work

Current efforts in data acquisition for Question An-
swering are becoming more and more common.
(Girju et al., 2003) propose a supervised algorithm
for part-whole relations extraction. (Fleischman et
al., 2003) also propose a supervised algorithm that
uses part of speech patterns and a large corpus to ex-
tract semantic relations for Who-is type questions.
Such efforts promise to provide large and dense
datasets required by instance based approaches.

Several statistical approaches have proven to be
successful in answer extraction. The statistical
agent presented in (Chu-Carroll et al., 2003) uses

Test Question: When did John Glen start working at NASA?

When did Jay Leno get a job at the NBC?

When did Columbus arrive at his destination?

…

When did <NNP+> <VB> … at … ?

When did Jay Leno get a job at the NBC?

When did Columbus arrive at his destination?

…

When did <NNP+> <VB> … at … ?

When did Sony begin its VAIO campaign?

When did Tom Ridge initiate the terror alert system?

…

When did <NNP+> <SYNSET to_initiate> … ?

When did Sony begin its VAIO campaign?

When did Tom Ridge initiate the terror alert system?

…

When did <NNP+> <SYNSET to_initiate> … ?

When did Beethoven die?

When did Muhammad live?

…

When did <NNP> <VB> ?

When did the Raiders win their last game?

When did EMNLP celebrate its 5th anniversary?

…

When did <NNP+> … ?

When did dinosaurs walk the earth?

When did people discover fire?

…

When did <NN> <VB> <NP> ?

When did <NP> … ?

Figure 1: Neighboring questions are clustered according to features they share.

maximum entropy and models answer correctness
by introducing a hidden variable representing the
expected answer type. Large corpora such as the
Web can be mined for simple patterns (Ravichan-
dran et al., 2003) corresponding to individual ques-
tion types. These patterns are then applied to test
questions in order to extract answers. Other meth-
ods rely solely on answer redundancy (Dumais et
al., 2002): high performance retrieval engines and
large corpora contribute to the fact that the most re-
dundant entity is very often the correct answer.

Predictive annotation (Prager et al., 1999) is one
of the techniques that bring together corpus process-
ing and smarter queries. Twenty classes of objects
are identified and annotated in the corpus, and cor-
responding labels are used to enhance IR queries.
Along the same lines, (Agichtein et al., 2001) pro-
pose a method for learning query transformations
in order to improve answer retrieval. The method
involves learning phrase features for question clas-
sification. (Wen and Zhang, 2003) address the prob-
lem of query clustering based on semantic similar-
ity and analyze several applications such as query
re-formulation and index-term selection.

4 An Instance-Based Approach

This paper presents a data driven, instance-based
approach for Question Answering. We adopt the
view that strategies required in answering new ques-
tions can be directly learned from similar train-
ing examples (question-answer pairs). Consider
a multi-dimensional space, determined by features
extracted from training data. Each training question
is represented as a data point in this space. Features
can range from lexical n-grams to parse trees ele-
ments, depending on available processing.

Each test question is also projected onto the fea-
ture space. Its neighborhood consists of training
instances that share a number of features with the
new data point. Intuitively, each neighbor is similar

in some fashion to the new question. The obvious
next step would be to learn from the entire neigh-
borhood - similar to KNN classification. However,
due to the sparsity of the data and because different
groups of neighbors capture different aspects of the
test question, we choose to cluster the neighborhood
instead. Inside the neighborhood, we build individ-
ual clusters based on internal similarity. Figure 1
shows an example of neighborhood clustering. No-
tice that clusters may also have different granularity
- i.e. can share more or less features with the new
question.

Cluster
1

Models

Answer Set 1

Cluster
2

Models

Answer Set 2

Cluster
3

Models

Answer Set 3

Cluster
k

Models

Answer Set k

Neighborhood

Cluster
2

Cluster
3

Cluster
k

New Question
NE Tagging

POS
Parsing

Cluster
1

Figure 2: The new question is projected onto the multi-
dimensional feature space. A set of neighborhood clus-
ters are identified and a model is dynamically built for
each of them. Each model is applied to the test question
in order to produce its own set of candidate answers.

By clustering the neighborhood, we set the stage
for supervised methods, provided the clusters are
sufficiently dense. The goal is to learn models that
explain individual clusters. A model explains the
data if it successfully answers questions from its
corresponding cluster. For each cluster, a mod-
els is constructed and tailored to the local data.
Models generating high confidence answers are ap-
plied to the new question to produce answer candi-
dates (Figure 2) Since the test question belongs to

multiple clusters, it benefits from different answer-
seeking strategies and different granularities.

Answering clusters of similar questions involves
several steps: learning the distribution of the
expected answer type, learning the structure and
content of queries, and learning how to extract the
answer. Although present in most systems, these
steps are often static, manually defined, or based on
limited resources (section 2). This paper proposes a
set of trainable, cluster-specific models:

1. the Answer Model Ai learns the cluster-specific
distribution of answer types.

2. the Query Content Model Ui is trained to enhance
the keyword-based queries with cluster-specific
content conducive to better document retrieval.
This model is orthogonal to query expansion.

3. the Extraction Model Ei is dynamically built
for answer candidate extraction, by classifying
snippets of text whether they contain a correct
answer or not.

Answer Model

Query Content Model

Extraction Model

Cluster Models

Training

Samples

(Q, A)

Figure 3: Three cluster-specific components are learned
in order to better retrieve relevant documents, model the
expected answer, and then extract it from raw text. Local
question-answer pairs (Q,A) are used as training data.

These models are derived directly from cluster
data and collectively define a focused strategy for
finding answers to similar questions (Figure 3).

4.1 The Answer Model
Learning cluster-specific answer type distributions
is useful not only in terms of identifying answers
in running text but also in answer ranking. A prob-
abilistic approach has the advantage of postponing
answer type decisions from early in the QA process
until answer extraction or answer ranking. It also
has the advantage of allowing training data to shape
the expected structure of answers.

The answer modeling task consists of learning
specific answer type distributions for each cluster of
questions. Provided enough data, simple techniques
such as constructing finite state machines or learn-
ing regular expressions are sufficient. The principle
can also be applied to current answer ontologies by
replacing the hard classification with a distribution
over answer types.

For high-density clusters, the problem of learn-
ing the expected answer type is reduced to learn-
ing possible answer types and performing a reliable
frequency count. However, very often clusters are
sparse (e.g. are based on rare features) and a more
reliable method is required. k-nearest training data
points Q1..Qk can be used in order to estimate the
probability that the test question q will observe an
answer type αj :

P (αj , q) = µ ·
k∑

i=0

P (αj |Qi) · δ(q,Qi) (1)

where P (αj , Qi) is the probability of observing
an answer of type αj when asking question Qi.
δ(q,Qi) represents a distance function between q
and Qi, and µ is a normalizing factor over the set
of all viable answer types in the neighborhood of q.

4.2 The Query Content Model
Current Question Answering systems use IR in a
straight-forward fashion. Query terms are extracted
and then expanded using statistical and semantic
similarity measures. Documents are retrieved and
the top K are further processed. This approach de-
scribes the traditional IR task and does not take ad-
vantage of specific constraints, requirements, and
rich context available in the QA process.

The data-driven framework we propose takes ad-
vantage of knowledge available at retrieval time
and incorporates it to create better cluster-specific
queries. In addition to query expansion, the goal is
to learn content features: n-grams and paraphrases
(Hermjakob et al., 2002) which yield better queries
when added to simple keyword-based queries. The
Query Content Model is a cluster-specific collec-
tion of content features that generate the best docu-
ment set (Table 1).

Cluster: When did X start working for Y?
Simple Queries Query Content Model

X, Y “X joined Y in”
X, Y start working “X started working for Y”
X, Y “start working” “X was hired by Y”
... “Y hired X”

X, Y “job interview”
...

Table 1: Queries based only on X and Y question
terms may not be appropriate if the two entities share
a long history. A focused, cluster-specific content model
is likely to generate more precise queries.

For training, simple keyword-based queries are
run through a retrieval engine in order to produce
a set of potentially relevant documents. Features

(n-grams and paraphrases) are extracted and scored
based on their co-occurrence with the correct an-
swer. More specifically, consider a positive class:
documents which contain the correct answer, and a
negative class: documents which do not contain the
answer. We compute the average mutual informa-
tion I(C;Fi) between a class of a document, and
the absence or presence of a feature fi in the doc-
ument (McCallum and Nigam, 1998). We let C be
the class variable and Fi the feature variable:

I(C;Fi) = H(C) − H(C|Fi)

=
∑

c∈C

∑

fi∈0,1

P (c, fi) log
P (c, fi)

P (c)P (fi)

where H(C) is the entropy of the class variable and
H(C|Fi) is the entropy of the class variable condi-
tioned on the feature variable. Features that best dis-
criminate passages containing correct answers from
those that do not, are selected as potential candi-
dates for enhancing keyword-based queries.

For each question-answer pair, we generate can-
didate queries by individually adding selected fea-
tures (e.g. table 1) to the expanded word-based
query. The resulting candidate queries are subse-
quently run through a retrieval engine and scored
based on the number of passages containing cor-
rect answers (precision). The content features found
in the top u candidate queries are included in the
Query Content Model.

The Content Model is cluster specific and not in-
stance specific. It does not replace traditional query
expansion - both methods can be applied simulta-
neously to the test questions: specific keywords are
the basis for traditional query expansion and clus-
ters of similar questions are the basis for learning
additional content conducive to better document re-
trieval. Through the Query Content Model we al-
low shared context to play a more significant role in
query generation.

4.3 The Extraction Model
During training, documents are retrieved for each
question cluster and a set of one-sentence passages
containing a minimum number of query terms is
selected. The passages are then transformed into
feature vectors to be used for classification. The
features consist of n-grams, paraphrases, distances
between keywords and potential answers, simple
statistics such as document and sentence length, part
of speech features such as required verbs etc. More
extensive sets of features can be found in informa-
tion extraction literature (Bikel et al., 1999).

Under our data-driven approach, answer extrac-
tion consists of deciding the correctness of candi-

date passages. The task is to build a model that
accepts snippets of text and decides whether they
contain a correct answer.

A classifier is trained for each question cluster.
When new question instances arrive, the already
trained cluster-specific models are applied to new,
relevant text snippets in order to test for correctness.
We will refer to the resulting classifier scores as an-
swer confidence scores.

5 Experiments

We present a basic implementation of the instance-
based approach. The resulting QA system is fully
automatically trained, without human intervention.

Instance-based approaches are known to require
large, dense training datasets which are currently
under development. Although still sparse, the
subset of all temporal questions from the TREC
9-12 (Voorhees, 2003) datasets is relatively dense
compared to the rest of the question space. This
makes it a good candidate for evaluating our
instance-based QA approach until larger and denser
datasets become available. It is also broad enough
to include different question structures and varying
degrees of difficulty and complexity such as:

• “When did Beethoven die?”
• “How long is a quarter in an NBA game?”
• “What year did General Montgomery lead the Allies

to a victory over the Axis troops in North Africa?”

The 296 temporal questions and their correspond-
ing answer patterns provided by NIST were used
in our experiments. The questions were processed
with a part of speech tagger (Brill, 1994) and a
parser (Collins, 1999).

The questions were clustered using template-
style frames that incorporate lexical items, parser
labels, and surface form flags (Figure 1). Consider
the following question and several of its corre-
sponding frames:

“When did Beethoven die?”
when did <NNP> die
when did <NNP> <VB>
when did <NNP> <Q>
when did <NP> <Q>
when did <Q>

where <NNP>,<NP>,<VB>,<Q> denote:
proper noun, noun phrase, verb, and generic ques-
tion term sequence, respectively. Initially, frames
are generated exhaustively for each question. Each
frame that applies to more than three questions is
then selected to represent a specific cluster.

One hundred documents were retrieved
for each query through the Google API

(www.google.com/api). Documents containing
the full question, question number, references to
TREC, NIST, AQUAINT, Question Answering and
other similar problematic content were filtered out.

When building the Query Content Model
keyword-based queries were initially formulated
and expanded. From the retrieved documents a set
of content features (n-grams and paraphrases) were
selected through average mutual information. The
features were added to the simple queries and a
new set of documents was retrieved. The enhanced
queries were scored and the corresponding top 10 n-
grams/paraphrases were included in the Query Con-
tent Model. The maximum n-gram and paraphrase
size for these features was set to 6 words.

The Extraction Model uses a support vector ma-
chine (SVM) classifier (Joachims, 2002) with a lin-
ear kernel. The task of the classifier is to decide if
text snippets contain a correct answer. The SVM
was trained on features extracted from one-sentence
passages containing at least one keyword from the
original question. The features consist of: distance
between keywords and potential answers, keyword
density in a passage, simple statistics such as doc-
ument and sentence length, query type, lexical n-
grams (up to 6-grams), and paraphrases.

We performed experiments using leave-one-out
cross validation. The system was trained and tested
without any question filtering or manual input. Each
cluster produced an answer set with correspond-
ing scores. Top 5 answers for each instance were
considered by a mean reciprocal rank (MRR) met-
ric over all N questions: MRRN =

∑N
i=0

1

ranki

,
where ranki refers to the first correct occurrence in
the top 5 answers for question i. While not the fo-
cus of this paper, answer clustering algorithms are
likely to further improve performance.

6 Results

The most important step in our instance-based ap-
proach is identifying clusters of questions. Figure
4 shows the question distribution in terms of num-
ber of clusters. For example: 30 questions belong
to exactly 3 clusters. The number of clusters cor-
responding to a question can be seen as a measure
of how common the question is - the more clusters
a question has, the more likely it is to have a dense
neighborhood.

The resulting MRR is 0.447 and 61.5% ques-
tions have correct answers among the first five pro-
posed answers. This translates into results consis-
tently above the sixth highest score at each TREC
9-12. Our results were compared directly to the top
performing systems’ results on the same temporal

2 3 4 5 6 7 8 9 larger
0

10

20

30

40

50

60

70

80
 Question Distribution With Number of Clusters

clusters

qu

es
tio

ns

(avg)

Figure 4: Question distribution - each bar shows the
number of questions that belong to exactly c clusters.

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80
Cluster Contribution to Top 10 Answers

clusters

qu

es
tio

ns

Figure 5: Number of clusters that contribute with cor-
rect answers to the final answer set - only the top 10 an-
swers were considered for each question.

question test set.
Figure 5 shows the degree to which clusters pro-

duce correct answers to test questions. Very often,
more than one cluster contributes to the final answer
set, which suggests that there is a benefit in cluster-
ing the neighborhood according to different similar-
ity features and granularity.

It is not surprising that cluster size is not cor-
related with performance (Figure 6). The overall
strategy learned from the cluster “When did <NP>
die?” corresponds to an MRR of 0.79, while the
strategy learned from cluster “How <Q>?” corre-
sponds to an MRR of 0.13. Even if the two clusters
generate strategies with radically different perfor-
mance, they have the same size - 10 questions are
covered by each cluster.

Figure 7 shows that performance is correlated
with answer confidence scores. The higher the con-
fidence threshold the higher the precision (MRR)
of the predicted answers. When small, unstable
clusters are ignored, the predicted MRR improves
considerably. Small clusters tend to produce unsta-

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance And Cluster Size

cluster size

M
R

R

Figure 6: Since training data is not uniformly distributed
in the feature space, cluster size is not well correlated
with performance. A specific cardinality may represent a
small and dense part cluster, or a large and sparse cluster.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance And Confidence Thresholds

confidence threshold

M
R

R

Cardinality 2+
Cardinality 3+
Cardinality 4+
Cardinality 5+

Figure 7: MRR of predicted answers varies with answer
confidence thresholds. There is a tradeoff between confi-
dence threshold and MRR . The curves represent differ-
ent thresholds for minimum cluster size.

ble strategies and have extremely low performance.
Often times structurally different but semantically
equivalent clusters have a higher cardinality and
much better performance. For example, the cluster
“What year did <NP> die?” has cardinality 2 and
a corresponding MRR of zero. However, as seen
previously, the cluster “When did <NP> die?” has
cardinality 10 and a corresponding MRR of 0.79.

Table 2 presents an intuitive cluster and the top n-
grams and paraphrases with most information con-
tent. Each feature has also a corresponding average
mutual information score. These particular content
features are intuitive and highly indicative of a cor-
rect answer. However, in sparse clusters, the con-
tent features have less information content and are
more vague. For example, the very sparse cluster
“When was <Q>?” yields content features such as
“April”, “May”, “in the spring of”, “back in” which
only suggest broad temporal expressions.

Cluster: When did <QTERM> die?
N-grams Paraphrases

0.81 his death in 0.80 <Q> died in
0.78 died on 0.78 <Q> died
0.77 died in 0.68 <Q> died on
0.75 death in 0.58 <Q> died at
0.73 of death 0.38 <Q> , who died
0.69 to his death 0.38 <Q> dies
0.66 died 0.38 <Q> died at the age of
0.63 , born on 0.38 <Q> , born
0.63 date of death 0.35 <Q> ’s death on

Table 2: Query Content Model: learning n-grams and
paraphrases for class “When did <NP> die?”, where
<Q> refers to a phrase in the original question.

7 Conclusions
This paper presents an principled, statistically
based, instance-based approach to Question An-
swering. Strategies and models required for answer-
ing new questions are directly learned from training
data. Since training requires very little human ef-
fort, relevant context, high information query con-
tent, and extraction are constantly improved with
the addition of more question-answer pairs.

Training data is a critical resource for this ap-
proach - clusters with very few data points are not
likely to generate accurate models. However, re-
search efforts involving data acquisition are promis-
ing to deliver larger datasets in the near future and
solve this problem. We present an implementation
of the instance-based QA approach and we eval-
uate it on temporal questions. The dataset is of
reasonable size and complexity, and is sufficiently
dense for applying instance-based methods. We per-
formed leave-one-out cross validation experiments
and obtained an overall mean reciprocal rank of
0.447. 61.5% of questions obtained correct answers
among the top five which is equivalent to a score in
the top six TREC systems on the same test set.

The experiments show that strategies derived
from very small clusters are noisy and unstable.
When larger clusters are involved, answer confi-
dence becomes correlated with higher predictive
performance. Moreover, when ignoring sparse data,
answering strategies tend to be more stable. This
supports the need for more training data as means to
improve the overall performance of the data driven,
instance based approach to question answering.

8 Current & Future Work
Data is the single most important resource for
instance-based approaches. Currently we are ex-
ploring large-scale data acquisition methods that
can provide the necessary training data density for

most question types, as well as the use of trivia
questions in the training process.

Our data-driven approach to Question Answering
has the advantage of incorporating learning com-
ponents. It is very easy to train and makes use of
very few resources. This property suggests that lit-
tle effort is required to re-train the system for dif-
ferent domains as well as other languages. We plan
to apply instance-based QA to European languages
and test this hypothesis using training data acquired
through unsupervised means.

More effort is required in order to better integrate
the cluster-specific models. Strategy overlap analy-
sis and refinement of local optimization criteria has
the potential to improve overall performance under
time constraints.

References
E. Agichtein, S. Lawrence, and L. Gravano. 2001.

Learning search engine specific query transfor-
mations for question answering. WWW.

D. Bikel, R. Schwartz, and R. Weischedel. 1999.
An algorithm that learns what’s in a name. Ma-
chine Learning.

E. Brill. 1994. Some advances in rule-based part of
speech tagging. AAAI.

J. Burger, L. Ferro, W. Greiff, J. Henderson,
M. Light, and S. Mardis. 2002. Mitre’s qanda
at trec-11. TREC.

J. Chu-Carroll, K. Czuba, J. Prager, and A. Itty-
cheriah. 2003. In question answering, two heads
are better than one. HLT-NAACL.

C. Clarke, G. Cormack, G. Kemkes, M. Laszlo,
T. Lynam, E. Terra, and P. Tilker. 2003. Statis-
tical selection of exact answers. TREC.

M. Collins. 1999. Head-driven statistical models
for natural language parsing. Ph.D. Disertation.

S. Dumais, M. Banko, E. Brill, J. Lin, and A. Ng.
2002. Web question answering: Is more always
better? SIGIR.

A. Echihabi and D. Marcu. 2003. A noisy channel
approach to question answering. ACL.

M. Fleischman, E. Hovy, and A. Echihabi. 2003.
Offline strategies for online question answering:
Answering questions before they are asked. ACL.

R. Girju, D. Moldovan, and A. Badulescu. 2003.
Learning semantic constraints for the automatic
discovery of part-whole relations. HLT-NAACL.

S. Harabagiu, D. Moldovan, M. Pasca, R. Mihalcea,
R. Bunescu, R. Girju, V. Rus, and P. Morarescu.
2000. Falcon: Boosting knowledge for answer
engines. TREC.

U. Hermjakob, E. Hovy, and C. Lin. 2000.
Knowledge-based question answering. TREC.

Ulf Hermjakob, Abdessamad Echihabi, and Daniel
Marcu. 2002. Natural language based reformu-
lation resource and web exploitation for question
answering. TREC.

E. Hovy, L. Gerber, U. Hermjakob, M. Junk, and
C.Y. Lin. 2000. Question answering in webclo-
pedia. TREC.

E. Hovy, U. Hermjakob, C. Lin, and D. Ravichan-
dran. 2002. Using knowledge to facilitate factoid
answer pinpointing. COLING.

T. Joachims. 2002. Learning to classify text using
support vector machines. Disertation.

B. Magnini, S. Romagnoli, A. Vallin, J. Herrera,
A. Penas, V. Peiado, F. Verdejo, and M. de Rijke.
2003. The multiple language question answering
track at clef 2003. CLEF.

A. McCallum and K. Nigam. 1998. A comparison
of event models for naive bayes text classifica-
tion. AAAI, Workshop on Learning for Text Cate-
gorization.

D. Moldovan, S. Harabagiu, M. Pasca, R. Mihalcea,
R. Girju, R. Goodrum, and V. Rus. 2000. The
structure and performance of an open-domain
question answering system. ACL.

D. Moldovan, D. Clark, S. Harabagiu, and S. Maio-
rano. 2003. Cogex: A logic prover for question
answering. ACL.

E. Nyberg, T. Mitamura, J. Callan, J. Carbonell,
R. Frederking, K. Collins-Thompson, L. Hiyaku-
moto, Y. Huang, C. Huttenhower, S. Judy, J. Ko,
A. Kupsc, L.V. Lita, V. Pedro, D. Svoboda, and
B. Vand Durme. 2003. A multi strategy approach
with dynamic planning. TREC.

J. Prager, D. Radev, E. Brown, A. Coden, and
V. Samn. 1999. The use of predictive annotation
for question answering in trec8. TREC.

D. Ravichandran, A. Ittycheriah, and S. Roukos.
2003. Automatic derivation of surface text pat-
terns for a maximum entropy based question an-
swering system. HLT-NAACL.

E.M. Voorhees. 2003. Overview of the trec 2003
question answering track. TREC.

J.R. Wen and H.J. Zhang. 2003. Query clustering
in the web context. IR and Clustering.

J. Xu, A. Licuanan, and R. Weischedel. 2003. Trec
2003 qa at bbn: Answering definitional ques-
tions. TREC.

H. Yang, T.S. Chua, S. Wang, and C.K. Koh. 2003.
Structured use of external knowledge for event-
based open domain question answering. SIGIR.

P. Zweigenbaum. 2003. Question answering in
biomedicine. EACL.

