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Abstract

We describe work in progress aimed at devel-
oping methods for automatically constructing a
lexicon using only statistical data derived from
analysis of corpora, a problem we call lexical
optimization. Specifically, we use statistical
methods alone to obtain information equivalent
to syntactic categories, and to discover the se-
mantically meaningful units of text, which may
be multi-word units or polysemous terms-in-
context. Our guiding principle is to employ a
notion of “meaningfulness” that can be quanti-
fied information-theoretically, so that plausible
variants of a lexicon can be judged relative to
each other. We describe a technique of this na-
ture called information theoretic co-clustering
and give results of a series of experiments built
around it that demonstrate the main ingredi-
ents of lexical optimization. We conclude by
describing our plans for further improvements,
and for applying the same mathematical princi-
ples to other problems in natural language pro-
cessing.

1 Introduction

A lexicon is a key resource for natural language process-
ing, providing the link between the terms of a language
and the semantic and syntactic properties with which
they are associated. Like most resources of considerable
value, a good lexicon can be difficult or expensive to ob-
tain. This is particularly true if the lexicon needs to be
specialized to a technical subject, an obscure language or
dialect, or a highly idiomatic writing style. Motivated by
the practical importance of these cases as well as the the-
oretical interest inherent to the problem, we have set out
to develop methods for building a lexicon automatically,

given only a corpus of text representative of the domain
of interest.

We represent the semantics of a term by an associated
probability distribution over what we call a grounding
space, which we define in various relatively conventional
ways involving terms that occur in text in the vicinity of
the term in question. It is well-known that such distribu-
tions can represent meaning reasonably well, at least for
meaning-comparison purposes (Landauer and Dumais,
1997). We add to this framework the notion that the more
information such a distributional lexicon can capture, the
more useful it is. This provides us with a mathematical
concept of lexical optimization.

We begin the lexicon construction process by applying
a distributional clustering technique called information
theoretic co-clustering to make a first pass at grouping the
most frequent terms in the corpus according to their most
common syntactic part of speech category, as described
in Section 2 along with illustrative results. We briefly
describe the co-clustering algorithm in Section 2.1. In
Section 3.1, we show that novel terms can be sensibly
assigned to previously defined clusters using the same in-
formation theoretic criterion that the co-clustering uses.

Even though term clustering crudely ignores the fact
that a term’s part of speech generally varies with its con-
text, it is clear from inspection that the clusters them-
selves correspond to corpus-adapted part-of-speech cate-
gories, and can be used as such. In Section 3.2, we exam-
ine two approaches to incorporating context information.
The most direct is to partition the contexts in which a
term occurs into classes according to the informatic crite-
rion used in co-clustering, creating sense-disambiguated
word-with-context-class “pseudo-terms”. We also dis-
cuss the use of Hidden Markov Models (HMMs) to cap-
ture contextual information. In Section 3.3 we apply the
same principle “in reverse” to find multi-word units.

We conclude in Section 3.5 with a discussion of pos-
sible improvements to our approach, and possible exten-



sions of it.

2 Co-clustering to define surrogate
syntactic tags

Many applications of text processing rely on or benefit
from information regarding the parts of speech of indi-
vidual terms. While part of speech is a somewhat fluid
notion, the computational linguistics community has con-
verged on a handful of standard “tag sets,” and taggers
are now available in a number of languages. Since some
high-quality taggers are in the public domain, any appli-
cation that could benefit from part-of-speech information
should have access to it.

However, using a specific tagger and its tag set entails
adopting the assumptions it embodies, which may not be
appropriate for the target application. In the worst case,
the domain of interest may include text in a language
not covered by available taggers. Even when a tagger
is available, the domain may involve usages substantially
different from those in the corpus for which the tagger
was developed. Many current taggers are tuned to rela-
tively formal corpora, such as newswire, while many in-
teresting domains, such as email, netnews, or physicians’
notes, are replete with elisions, jargon, and neologisms.
Fortunately, using distributional characteristics of term
contexts, it is feasible to induce part-of-speech categories
directly from a corpus of sufficient size, as several pa-
pers have made clear (Brown et al., 1992; Schütze, 1993;
Clark, 2000).

Distributional information has uses beyond part of
speech induction. For example, it is possible to augment
a fixed syntactic or semantic taxonomy with such infor-
mation to good effect (Hearst and Schütze, 1993). Our
objective is, where possible, to work directly with the
inferred syntactic categories and their underlying distri-
butions. There are many applications of computational
linguistics, particularly those involving “shallow” pro-
cessing, such as information extraction, which can ben-
efit from such automatically derived information, espe-
cially as research into acquisition of grammar matures
(e.g., (Clark, 2001)).

2.1 The Co-clustering Algorithm.

Our approach to inducing syntactic clusters is closely re-
lated to that described in Brown, et al, (1992) which is
one of the earliest papers on the subject. We seek to find
a partition of the vocabulary that maximizes the mutual
information between term categories and their contexts.
We achieve this in the framework of information theo-
retic co-clustering (Dhillon et al., 2003), in which a space
of entities, on the one hand, and their contexts, on the
other, are alternately clustered in a way that maximizes
mutual information between the two spaces. By treating

the space of terms and the space of contexts as separate,
we part ways with Brown, et al. This allows us to experi-
ment with the notion of context, as well as to investigate
whether pooling contexts is useful, as has been assumed.

2.2 Definitions
Given a corpus, and some notion of term and context,
we derive co-occurrence statistics. More formally, the
input to our algorithm is two finite sets of symbols, say���������
	����	�������	��������

and � ��������	���� 	�������	�����!"�
, to-

gether with a set of co-occurrence count data consisting
of a non-negative integer #%$�&('*) for every pair of sym-
bols + ��,�	��.-�/ , that can be drawn from

�
and � . The

output is two sets of sets:
�102�3���0� 	�������	��40� �65 � and� 0 �7��� 0� 	�������	�� 0� !�5 � , where each

� 0, is a subset of
�

(a
“cluster”), none of the

� 0, intersect each other, the union
of all the

� 0, is
�

(similar remarks apply to the
� 0- and� ). The co-clustering algorithm chooses the partitions� 0

and � 0
to (locally) maximize the expected mutual

information between them.
The multinomial parameters 8$�' of a joint distribution

over
�

and � may be estimated from this co-occurrence
data as 8�$�' � #6$�'�9": $�; ' #6$�' , using the naive maximum
likelihood method. We follow a more fully Bayesian
procedure to obtain “pseudo-counts” <6$�' that are added
to the counts #6$�' to obtain “smoothed” estimates. Due
to space limitations, we define but do not fully discuss
our procedure here. We apply the “Evidence” method in
the “Dice Factory” setting of MacKay and Peto (1994),
to obtain a pseudo-count < $�= for every symbol

�?>@�
by treating each

��> � as a sample of (not from) a
random process AB+ �DC �E/ , in a Multinomial/Dirichlet set-
ting. By a symmetric procedure, we also obtain pseudo-
counts <%= ' for each

�F> � . These are combined ac-
cording to <$�' �HGI +J<LKNMO<P / +J<L$�=Q<R= ' / 9E+(<K�<4P / , and
then the totals #6$�'BMO<$�' are rescaled by #%9S+J<TM@# / ,
where <K � : $ <$�= , <4P � : ' <R= ' , < � : $�' <L$�' ,
and # � : $�' #6$�' .

The entropy or Shannon information of a discrete dis-
tribution is: U K �WVYX

$[Z + �L/]\�^ Z + �L/_� (1)

This quantifies average improvement in one’s knowledge
upon learning the specific value of an event drawn from�

. It is large or small depending on whether
�

has many
or few probable values.

The mutual information between random variables
�

and � can be written:

` KaP �bX
$�' Z + �R	��E/]\�^ Z + �%	��E/

Z + �L/ Z + �E/ (2)

This quantifies the amount that one expects to learn in-
directly about

�
upon learning the value of � , or vice



versa. The following relationship holds between the in-
formation of a joint distribution and the information of
the marginals and mutual information:U KaP �cU KdM U P Ve` KfP (3)

From this we see that the expected amount one can learn
upon hearing of a joint event + �%	��E/ is bounded by what
one can learn about

�
and � separately. Combined with

another elementary result, g KNhjikKaPlhlm and symmet-
rically g�P h@i KfP hOm , we see that a joint event + �R	��E/
yields at least as much information as either event alone,
and that one cannot learn more about an event

�
from �

by hearing about an event
�

from
�

than one would know
by hearing about

�
explicitly.

2.3 The Algorithm
The co-clustering algorithm seeks partitions

� 0
of

�
and� 0

of � with maximal mutual information i K 5 P 5 , un-
der a constraint limiting the total number of clusters in
each partition. The mutual information is computed from
the distributions estimated as discussed in Section 2.2, by
summing AB+ �%	��E/ over the elements within each cluster
to obtain AB+ � 0 	�� 0 / .

We perform an approximate maximization of inK 5 P 5
using a simulated annealing procedure in which each trial
move takes a symbol

�
or

�
out of the cluster to which

it is tentatively assigned and places it into another. It
is straightforward to obtain a formula for the change ini K 5 P 5 under this operation that does not involve its
complete re-computation. We use an ad hoc adaptive
cooling schedule that seeks to continuously reduce the re-
jection rate of trial moves from an initial level near 50%,
staying at each target rejection rate long enough to visit a
fixed fraction of the possible moves with high probability.
After achieving one rejection rate target for the required
number of moves, the target is lowered. The temperature
is also lowered, but will be raised again to an intermediate
value if the resulting rejection rate is below the next tar-
get, or lowered further if the rejection rate remains above
the next target.

Candidate moves are chosen by selecting a non-empty
cluster uniformly at random, randomly selecting one of
its members, then randomly selecting a destination clus-
ter other than the source cluster. When temperature 0 is
reached, all possible moves are repeatedly attempted until
no move leads to an increase in the objective function.

2.4 Co-clustering for Term Categorization
Applying co-clustering to the problem of part of speech
induction is straightforward. We define

�
to be the space

of terms under some tokenization of the corpus, and � to
be the space of contexts of those terms, which are a func-
tion of the close neighborhood of occurrences from

�
.

Members of � are also typically terms, but we have also

Experiment Time
No Conj. Clusters 74:17:31
Conj. Clusters 12:07:43

Table 1: Time to complete clustering, with and without
conjugate clusters in hours:minutes:seconds.

experimented with concatenations of terms, and more
complex definitions based on relative position. The re-
sults reported here are based on the simple context defi-
nition of one term to the left and one to the right, regarded
as separate events.

Given a particular tokenization and method for defin-
ing context, we can derive input for the co-clustering al-
gorithm. Sparse co-occurrence tables are created for each
term of interest; each entry in such a table records a con-
text identifier and the number of times the corresponding
context occurred with the reference term. For expediency,
and to avoid problems with sparse statistics, we retain
only the most frequent terms and contexts. (We chose the
top 5000 of each.) In Section 3.1, we show that we can
overcome this limitation through subsequent processing.

2.5 Experimental details and results

We conducted experiments with the Reuters-21578
corpus—a relatively tiny one for such experiments.
Clark (2000) reports results on a corpus containing 12
million terms, Schütze (1993) on one containing 25 mil-
lion terms, and Brown, et al, (1992) on one containing
365 million terms. In contrast, we count approximately
2.8 million terms in Reuters-21578.

Only the bodies of articles in the corpus were consid-
ered. Each such article was segmented into paragraphs,
but not sentences. Paragraphs were then converted into
token arrays, with each token corresponding to one of
the following: an unbroken string of alphabetic charac-
ters or hyphens, possibly terminated by an apostrophe
and additional alphabetic characters; a numeric expres-
sion; or a single occurrence and unit of punctuation pre-
sumed to be syntactically significant (e.g., periods, com-
mas, and question marks). Alphabetic tokens were case-
normalized, and all numeric expressions were replaced
with the special token <num>. For the purposes of con-
structing context distributions, special contexts (<bop>
and <eop>) were inserted at the beginnings and endings
of each such array.

We applied the co-clustering algorithm to the most fre-
quent 5000 terms and most frequent 5000 contexts in the
corpus, clustering each into 200 categories.

Co-clustering—alternately clustering terms and
contexts—is faster than simple clustering against the
full set of contexts. Table 1 presents computation times
for experiments with one grounding space on the same



Clust. Terms
37 may employs
71 because out ahead comprised consists ...
96 he she fitzwater mulford azpurua ...
145 reported announced showed follows owns ...
159 set available used asked given paid taken ...
161 are were am
179 operations funds figurers results issues ...
180 on until upon regarding governing
186 business investment development sugar ...
194 to
195 of
199 the japan’s today’s brazil’s canada’s ...

Table 2: Selected clusters from experiment on the full
corpus. Clusters are ordered according to their impact on
mutual information, least to greatest ascending. Within
each cluster, terms are ordered most frequent to least.

machine under similar loads. While the exact time
to completion is a function of particularities such as
machine speed, cluster count, and annealing schedule,
the relative durations (co-clustering finishes in 1/6 the
time) are representative. This may be counter-intuitive,
since co-clustering involves two parallel clustering runs,
instead of a single one. However, the savings in the
time it takes to compute the objective function (in this
case, mutual information with 200 contexts, instead of
5000) typically more than compensates for the additional
algorithmic steps.

Table 2 lists clusters that illustrate both strengths and
weaknesses of our approach. While many of the clus-
ters correspond unambiguously to some part of speech,
we can identify four phenomena that sometimes prevent
the clusters from corresponding to unique part-of-speech
tags:

1. Lack of distributional evidence. In several cases,
the grounding space chosen provides no evidence
for a distinction made by the tagger. Examples of
this are cluster 199, where “the” is equated with the
possessive form of many nouns; cluster 145, where
present tense and past tense verbs are both repre-
sented; and cluster 96, where personal pronouns are
equated with surnames.1

2. Predominant idioms and contexts. If a term
is used predominantly in a particular idiom, then
the context supplied by that idiom may have the
strongest influence on its cluster assignment, occa-

1Far from a bad thing, however, this last identification sug-
gests some avenues for research in unsupervised pronominal
reference resolution.

sionally leading to counter-intuitive clusters. An ob-
vious example of this is cluster 71. All of the terms
in this cluster are typically followed by the context
“of.”

3. Lexical ambiguity. If a term has two or more fre-
quent syntactic categories, the algorithm assigns it
(in the best case) to a cluster corresponding to its
more frequent sense, or (in the worst case) to a
“junk” or singleton cluster. This happens with the
word “may” (cluster 37, above) in all our experi-
ments.

4. Multi-token lexemes. In order to tally context dis-
tributions, we must commit to an initial fixed seg-
mentation of the corpus. While English orthography
insures that this is not difficult, there exist neverthe-
less fixed collocations (commonly called multi-word
units, MWUs), such as “New York,” which inject
statistical noise under the default segmentation.

Of these four “problems,” the last two are probably more
serious, since they give rise to specious distinctions. De-
pending on the application, problems 1 and 2 may not
be problems at all. In this corpus, for example, the term
“regarding” (cluster 180) may never be used in any but a
quasi-prepositional sense. And proper nouns in the pos-
sessive arguably do share a syntactic function with “the.”

3 Refinements
Lexical categorizations, such as those provided by a part
of speech tagger or a semantic resource like Wordnet, are
usually a means to an end, almost never applications in
their own right. While it is interesting to measure how
faithfully an unsupervised algorithm can reconstruct prior
categories, we neither expect to achieve anything like per-
fect performance on this task, nor believe that it is neces-
sary to do so. In fact, adherence to a specific tag set can
be seen as an impediment, inasmuch as it introduces brit-
tleness and susceptibility to noise in categorization.

It is nevertheless interesting to ignore the confounding
factors enumerated in Section 2.5 and measure the agree-
ment between term categories induced by co-clustering
and the tags assigned by a tagger. Using the tagger
from The XTag Project (Project, 2003), we measured
the agreement between our clusters and the tagger out-
put over the terms used in clustering. We found that the
clusters captured 85% of the information in the tagged
text (the tagged data had an entropy of 2.68, while mutual
information between clusters and tags is 2.23). In a the-
oretical optimal classifier, this yields a ninefold increase
in accuracy over the default rule of always choosing the
most frequent tag.

In order to make our distributional lexicon useful, how-
ever, we need to extend its reach beyond the few thou-



sand most frequent terms, on the one hand, and adjust for
phenomena that lead to sub-optimal performance, on the
other. We call the process of expanding and adjusting the
lexicon after its initial creation lexicon optimization.

3.1 Increasing Lexicon Coverage

For tractability, the initial classes are induced using only
the most frequent terms in a corpus. (While we cluster
using only the 5000 most frequent terms, the corpus con-
tains approximately 41,000 distinct word-forms.) This
yields consistent results and broad coverage of the cor-
pus, but leaves us unable to categorize about 5% of to-
kens. Clearly, in order for our automatically constructed
resource to be useful, we must introduce these uncovered
terms into the lexicon, or better still, find a way to apply
it to individual novel tokens.

3.1.1 HMM tagging
In light of the current state of the art in part of speech

tagging, the occurrence of these unknown terms does not
pose a significant problem. It has been known for some
years that good performance can be realized with par-
tial tagging and a hidden Markov model (Cutting et al.,
1992). Note that the notion of partial tagging described in
Cutting, et al, is essentially different from what we con-
sider here. Whereas they assume a lexicon which, for
every term in the vocabulary, lists its possible parts of
speech, we construct a lexicon which imposes a single
sense (or a few senses; see Section 3.2) on each of the
few thousand most frequent terms, but provides no infor-
mation about other terms.

As in Cutting, et al, however, we can use Baum-
Welch re-estimation to extract information from novel
terms, and apply the Viterbi algorithm to dispose of
a particular occurrence. While the literature suggests
that Baum-Welch training can degrade performance on
the tagging task (Elworthy, 1994; Merialdo, 1994), we
have found in early experiments that agreement between
a tagger trained in this way and the tagger from the
XTag Project consistently increases with each iteration
of Baum-Welch, eventually reaching a plateau, but not
decreasing. We attribute this discrepancy to the different
structure of our problem.

3.1.2 Lexicon expansion
Note that a HMM is under no constraint to handle a

given term in a consistent fashion. A single model can
and often does assign a single term to multiple classes,
even in a single document. When a term is sufficiently
frequent, a more robust approach may be to assign it to a
category using only its summary co-occurrence statistics.
The idea is straightforward: Create an entry in the lexi-
con for the novel term and measure the change in mutual
information associated with assigning it to each of the

Term Freq. Cluster Example Terms
weizsaecker 30 baker morgan shearson

provoke 20 take buy make

glut 10 price level volume

councils 5 prices markets operations

stockbuilding 3 earnings income profits

ammonia 2 energy computer petroleum

unwise 2 expected likely scheduled

Table 3: Assigning novel terms to clusters using the mu-
tual information objective function. Each row shows a
term not present in the initial clustering, its corpus fre-
quency, and example terms from the cluster to which it is
assigned.

available categories. Assign it to the category for which
this change is maximized.

As Table 3 demonstrates, this procedure works surpris-
ingly well, even for words with low corpus frequencies.
Of course, as frequencies are reduced, the likelihood of
making a sub-optimal assignment increases. At some
point, the decision is better made on an individual basis,
by a classifier trained to account for the larger context in
which a novel term occurs, such as an HMM. We are cur-
rently investigating how to strike this trade-off, in a way
that best exploits the two available techniques for accom-
modating novel tokens.

Lexical ambiguity (or polysemy) and fixed collo-
cations (multi-word units) are two phenomena which
clearly lead to sub-optimal clusters. We have achieved
promising results resolving these problems while remain-
ing within the co-clustering framework. The basic idea is
as follows: If by treating a term as two distinct lexemes
(or, respectively, a pair of commonly adjacent terms as a
distinct lexeme), we can realize an increase in mutual in-
formation, then the term is lexically ambiguous (respec-
tively, a fixed collocation). In the case of polysemy reso-
lution, this involves factoring the context distribution into
two or more clusters. In the case of a fixed collocation,
we consider the effect of treating an n-gram as a lexical
unit.

3.2 Polysemy Resolution

To determine whether a term is polysemous we must de-
termine whether the lexicon’s mutual information can be
increased by treating the term as two distinct lexemes.
Given a particular term, we make this determination by
attempting to factor its context distribution into every
possible pair of distinct clusters.2 Faced with a candidate
pair, we posit two senses of the target term, one in each

2In this discussion, we assume exactly two senses, but the
approach is easily extended to handle more than two.



Term o MI Cluster Example Terms
april march junemay 8.75e-5
would could should
continue remain comeact 6.51e-5
board committee court
continue remain comevote 4.32e-5
meeting report

japan canada brazilfrance -1.2e-6
and
willwould -0.0008
would could should

Table 4: The result of polysemy resolution run on some
representative terms. The third column lists sample terms
from the two clusters into which each term is divided.

cluster. The probability mass associated with each event
type in the term’s context distribution is then assigned
to one or the other hypothetical sense, always to the one
that improves mutual information the most (or hurts it the
least). Once the probability mass of the original term has
been re-apportioned in this way, the resulting change in
mutual information reflects the quality of the hypotheti-
cal sense division. The maximum change in mutual in-
formation over all such cluster pairs is then taken to be
the polysemy score for the target term.

Table 4 shows how this procedure handles selected
terms from the Reuters corpus. Positive changes in mu-
tual information clearly correspond to polysemy in the
target term. In the Reuters corpus, there are a fair number
of terms that have a noun and a verb sense, such as “act”
and “vote” in the table. Note, too, the result of polysemy
resolution run on unambiguous terms–either a nonsensi-
cal division, as with “france,” or division into two closely
related clusters, in both cases, however, with a decrease
in mutual information.

Note that the problem of lexical ambiguity has been
studied elsewhere. Schütze (1993; 1995) proposes two
distinct methods by which ambiguity may be resolved. In
one paper, a separate model (a neural network) is trained
on the results of clustering in order to classify individ-
ual term occurrences. In the other, the individual occur-
rences of a term are “tagged” according to the distribu-
tional properties of their neighbors. Clark (2000) presents
a framework which in principle should accommodate lex-
ical ambiguity using mixtures, but includes no evidence
that it does so. Furthermore, a mixture distribution speci-
fies the proportion of occurrences of a term that should be
tagged one way or another, but does not prescribe what to
do with every individual event. In contrast to the above
approaches, we derive a lexicon which succinctly lists the
possible syntactic senses for a term and provides a means
to disambiguate the sense of a single occurrence. More-

Phrase Example Cluster Terms
cubic feet francs barrels ounces

hong kong london tokyo texas

pointed out added noted disclosed

los angeles london tokyo texas

merrill lynch texaco chrysler ibm

we don’t we i you

saudi arabia japan canada brazil

morgan stanley texaco chrysler ibm

managing director president chairman

smith barney underwriters consumers

Table 5: The ten highest-scoring two-word multi-word
units in Reuters, along with example terms from the clus-
ter to which each was assigned.

over, a shortcoming of occurrence-based methods of pol-
ysemy resolution is that a given term may be assigned to
an implausibly large number of categories. By analyz-
ing this behavior at the type level, rather than the token
level, we not only can exploit the corpus-wide behavior
of a term, but we can enforce the linguistically defensible
constraint that it have only a few senses.

3.3 Multi-Word Units
In English, orthography provides a convenient clue to tex-
tual word segmentation. Doing little more than breaking
the text on whitespace boundaries, it is possible to per-
form a linguistically meaningful statistical analysis of a
corpus. Multi-word units (MWUs) are the exception to
this rule. Treating terms such as “York”—terms which in
a particular corpus may not be meaningful in isolation—
gives rise to highly idiosyncratic context distributions,
which in turn add noise to cluster statistics or lead to the
production of “junk” clusters.

In order to recognize such cases, we apply a variant of
our by now familiar lexicon optimization rule: We posit
a lexical entry for a given candidate MWU, find the clus-
ter to which it is best suited, and ask whether creating
the lexeme improves the situation. In principle, we can
conduct this process in the same way as with novel terms
and polysemy. Here, however, we report the results of a
simple surrogate technique. After assembling the context
distribution of the candidate MWU (an n-gram), we com-
pute the Hellinger distance between this distribution and
that of each cluster. The Hellinger distance between two
distributions A and p is defined as:qOr A 	 pts �WufVkX ,bv 8 , v w , (4)

The candidate MWU is then tentatively assigned to
the cluster for which this quantity is minimized and
its distance to this cluster is noted (call this distance



Score Band % in Wordnetx 0.5 55
0.25 – 0.5 37
0 – 0.25 21
-0.25 – 0 11

-0.5 – -0.25 5
-1 – -0.5 1.4y -1 1.9

Table 6: Fraction of two-word collocations present in
Wordnet in each MWU score band.

q{z�|*}(~*�
). We then compute the distance between each of

the n-gram’s constituent terms and its respective cluster
(
q�����}(� GD����� q�����}(���

). The MWU score is the difference
between the maximum term distance and the n-gram dis-
tance, or �B�.� ,�q �J��}(� & V�q z�|*}(~*�

. In other words, the
score of a candidate MWU increases with its closeness of
fit to its cluster and the lack of fit of its constituent terms.

Table 5 shows the ten bi-grams that score highest us-
ing this heuristic. Note that they come from a number
of syntactic categories. In this list, the only error is the
phrase “we don’t,” which is determined to be syntacti-
cally substitutable for pronouns. Note, however, that this
is the only collocation in this list consisting entirely of
closed-class terms. To the extent that we can recognize
such terms, it is easy to rule out such cases.

Table 6 benchmarks this technique against Wordnet.
Breaking the range of MWU scores into bands, we ask
what fraction of n-grams in each band can be found in
Wordnet. The result is a monotonic decrease in Wordnet
representation. Investigating further, we find that almost
all of the missing n-grams that score high are absent be-
cause they are corpus-specific concepts, such as “Morgan
Stanley” and “Smith Barney.” On the other end, we find
that low-scoring n-grams present in Wordnet are typically
included for reasons other than their ability to serve as
independent lexemes. For example, “on that” appears to
have been included in Wordnet because it is a synonym
for “thereon.”

3.4 Directions

We have begun research into characterizing more pre-
cisely the grammatical roles of the clusters found by our
methods, with an eye to identifying the lowest-level ex-
pansions in the grammar responsible for the text. Inas-
much as information extraction can rely on shallow meth-
ods, the ability to produce a shallow parser without super-
vision should enable rapid creation of information extrac-
tion systems for new subject domains and languages.

We have had some success distinguishing open-class
clusters from closed-class clusters, on the one hand,
and “head” clusters from modifier clusters, on the other.

Highest Lowest
Term Entropy Term Entropy
and 6.67 swedish 3.50
,(comma) 6.31 june 3.50
to 6.27 apparel 3.50
for 6.01 giant 3.50
was 5.92 modified 3.50

Table 7: Five most entropic and five least entropic terms
among the 5000 most frequent terms, using the “-1 �
+1” grounding space. In general, closed-class terms have
higher entropy.

Schone and Jurafsky (2001) list several universal charac-
teristics of language that can serve as clues in this pro-
cess, some of which we exploit. However, their use of
“perfect” clusters renders some of their algorithmic sug-
gestions problematic. For example, they propose using
the tendency of a cluster to admit new members as an in-
dication that it contains closed-class (or function) terms.
While we do find large clusters corresponding to open
classes and small clusters to closed classes, the separation
is not always clean (e.g., cluster 199 in Table 2). Small
clusters often contain open-class terms with predominant
corpus-specific idiomatic usages. For example, Reuters-
21578 has special usages for the terms “note,” “net,” and
“pay,” in additional to their usual usages.

While the size of its cluster is a useful clue to the
open- or closed-class status of a term, we are forced to
search for other sources of evidence. Once such indica-
tor is the entropy of the term’s context distribution. Ta-
ble 7 lists the five most and least entropic among the 5000
most frequent terms in Reuters-21578. Function terms
have higher entropy not only because they are more fre-
quent than non-function terms, but also because a func-
tion term must participate syntactically with a wide vari-
ety of content-carrying terms. While entropy alone also
does not yield a clean separation between “function” and
“content” terms, it may be possible to use it in combina-
tion with the suggestion of Schone and Jurafsky to pro-
duce a reliable separation.

3.5 Conclusion

It seems clear that practical constraints will necessitate
the development of powerful corpus-driven methods for
meaning representation, particularly when dealing with
diverse languages, subject matter, and writing styles. Al-
though it remains to be fully developed and tested, the
evidence assembled thus far seems sufficient to con-
clude that our lexical optimization approach offers this
prospect.

The approach follows a simple information-theoretic
principle: A lexicon can be judged by the amount of in-



formation it captures about a suitably chosen “ground-
ing space”. The process results in a distributional lexicon
suitable for semantic comparison of sense-disambiguated
terms, multi-word units, and most likely, larger units of
text such as short phrases.

One can initialize the lexical optimization process by
applying a distributional clustering algorithm such as co-
clustering to obtain term classes that have the proper-
ties of syntactic tags, regardless of the fact that many
of the terms in a typical cluster will, in many contexts,
fail to exhibit the syntactic class that the cluster im-
plicitly represents. This starting point is sufficient to
support incremental refinements including sense disam-
biguation, multi-word-unit detection, and the incorpora-
tion of novel terms into the lexicon. The preliminary ev-
idence also suggests that this approach can be extended
to capture shallow parsing information. Although we
have yet to conduct such experiments, it also seems clear
that given a set of refinements based on one co-clustering
run, it becomes possible to re-analyze the corpus in terms
of the improved lexicon and generate an improved co-
clustering, etc. It remains to be seen how far such an
approach can be productively pursued.
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