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Abstract 

This paper proposes an algorithm for cau-
sality inference based on a set of lexical 
knowledge bases that contain information 
about such items as event role, is-a hier-
archy, relevant relation, antonymy, and 
other features. These lexical knowledge 
bases have mainly made use of lexical 
features and symbols in HowNet. Several 
types of questions are experimented to 
test the effectiveness of the algorithm here 
proposed. Particularly in this paper, the 
question form of “why” is dealt with to 
show how causality inference works. 

1 Introduction 

A virtually linked knowledge base is designed to 
utilize a pre-constructed knowledge base in a dy-
namic mode when it is in actual use. 

An open-domain question answering architec-
ture must consist of  various components and 
processes (Pasça, 2001) that include WordNet-
like resources, part of speech tagging, parsing, 
named entity recognition, question processing, 
passage retrieval, answer extraction, and answer 
justification. Consider a question like the follow-
ing: “Why do doctors cure patients?” 

The answer may be obtained by commonsense 
knowledge as follows: 

1. A patient suffered from a 
disease. 

2. A doctor cures the disease. 
3. The doctor cures at hospi-

tal. 

4. Doctor is an occupation. 
5. So the doctor cures the 

patient. 

These sentences are transformed into proposi-
tional forms, as illustrated below: 

6. sufferFrom(patient,disease) 
7. cure(doctor,disease) 
8. cure(doctor,at-hospital) 
9. occupation(doctor) 
10. cure(doctor,patient) 

Linguistic knowledge bases like WordNet 
(Miller, 1995), EDR dictionary (Yokoi, 1995) and 
HowNet (Dong, 1999) have been used to interpret 
these sentences. 

Moldovan et al. (2002) generated lexical chains 
from WordNet in order to trace these topically re-
lated paths and thereby to search for causal expla-
nations. A conceptual word Cj inside of a gloss 
under a synset Ci is linked to the synset Cj.  

HowNet (Dong et al. 1999) is a linguistic 
knowledge base that is designed to have the defini-
tion of words and concepts as well as event role 
and role-filling entities. Commonsense knowledge 
like naive physics is also built up through event 
role relation like the relation of sufferFrom requir-
ing cure. 

HowNet is modularized into separate knowl-
edge spaces for entity hierarchy, event hierarchy, 
antonymy, syntax, attributes, etc. Relations be-
tween various concepts (e.g., part-of, relevance, 
location) are defined implicitly in the definition of 
each concept. 

This paper will focus on building an algorithm 
that allows for searching for some topical paths in 
order to find causal explanations for questions like 
“Why do doctors cure patients?” or “Why do pa-
tients pay money?” as illustrated in Figure 1. 
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Figure 1: A Snapshot of a virtually integrated 
knowledge base for the question: “Why do patients 
pay money to doctors?” 
 
In the following sections, issues on the virtual in-
tegration of knowledge bases, their algorithms and 
experimentations are presented.  

2 Underlined Knowledge Bases and Vir-
tual Integration 

In Figure 1, each marked numbering has the fol-
lowing meaning: 

(1) Entity hierarchy: entity is the top node in 
the hierarchy of entities. 

(2) entity is the hypernym of patient, doctor, 
occupation, and money in the line (3). 

(3) Concepts or word entries are listed in this 
line. All concepts and word entries repre-
sent their definition by a list of concepts 
and marked pointers. 

(4) A concept (or word) in (3) features defini-
tional relations to a list of concepts. For 
example, a doctor definition is composed 
of two concepts and their marking point-
ers: #occupation and *cure. Pointers in 
HowNet represent relations between two 
concepts or word entries, e.g., “#” means 
“relevant” and “*” does “agent”. 

(5) syn refers to the syntactic relation in the 
question “Why do patients pay money to 
doctors?” 

(6) converse refers to the converse relation be-
tween events, e.g., give and take. 

(7) Event hierarchy: For example, the hy-
pernym for pay is give and the hypernym 
of give is event. 

(8) Event role: Now, event roles are partially 
filled with entities, e.g., patient and 
money. 

(9) Event role shift: The agent of give is 
equalized to the source of take. 

An overview of each component of the knowl-
edge base is in Figure 2, where three word entries 
why, patient, and money are in the dictionary. 
The four concept facets of entity, role, event, and 
converse are described in this example, mainly as 
part of linguistic knowledge. 
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Figure 2: HowNet Architecture in Example. 
 

Some issues on ontology integration have been 
discussed from various points of view. Pinto et al. 
(1999) classified the notions of ontology integra-
tion into three types: integration, merging and 
use/application. The term virtually integrated 
means the view of ontology-based use/application. 

This paper presents issues on and arguments for 
linguistic knowledge base and commonsense 
knowledge in (Lenat, Miller and Yokoi, 1995). 
One of the arguments was whether linguistic 
knowledge could be separated from commonsense 
knowledge, but it was agreed that both types of 
knowledge were essentially required for natural 
language processing. 

This paper was motivated by the desire to make 
inferences using a lexical knowledge base, thus 
successfully carrying out a kind of commonsense 
reasoning. 



3 Interpretation of Lexical Knowledge 

Consider the following three sentences: 
11. Doctors cure patients. 
12. Doctors earn money. 
13. Patients pay money. 

One major concern is finding connectability 
among words and concepts. As shown in Figure 2, 
the following facts are derived: 

14. Doctor is relevant to oc-
cupation. 

15. Occupation allows you to 
earn money. 

Because there exists a converse relation be-
tween give and take, their hyponyms earn and pay 
also fall under converse relation. It is something 
like the following social commonsense as shown in 
Figure 2: “If someone X pays money to the other Y, 
Y earns money from X.” 

We humans now understand the reason for 
“why patients pay money.” The answer is that 
“doctors cure patients as their occupation allowing 
them to earn money.” 

The following is a valid syllogism where Y is 
being instantiated to doctor: 

 
If “X pays money to Y” is 
equivalent to “Y earns money 
from X”1, and “a doctor earns 
money from X”, then “X pays 
money to the doctor”. 

 
Consider the next syllogism: If “a doctor 

cures X” and “doctor is an occupa-
tion” and Axiom 1, then “the doc-
tor earns money from X”. 

Axiom 1 is needed to make such a syllogism 
that “If Y cures X and Y is an occu-
pation, then Y earns money from 
X.” Then our challenge is to find out this Axiom 
1 from the lexical knowledge bases. It is a com-
monsense and thus there is a gap in the lexical 
knowledge base. 

The following is a list of questions derived 
from the three sentences of 11, 12 and 13 which 
are designed to discover such axioms (or rules) 
from a set of lexical knowledge bases: “Why do 

                                                           
1 It is a converse relation. 

doctors cure patient?”, “Why do doctors earn 
money?”, and “Why do patients pay money to doc-
tors?” 

4 Connectability: Similarity Measure  

Consider the query “Why do doctors cure pa-
tients?” Tracing Figure 2 back through Figure 1 
leads to obtaining logical forms from 6 through 10. 
The best connectable path is planned from the first 
word of the question. 

For each pair of words, the function called 
"similar(*,*)" will be estimated to choose the next 
best tracing concepts (or words).  similar's mis-
sions are summarized as (1) checking the connect-
ability between two nodes2, (2) selecting the best 
sense of the node,3 (3) selecting the best tracing 
candidate node in the next step. Finally, following 
the guidance by similar allows us to explain the 
question. 

4.1 Observation and Evidence of Topical Re-
latedness 

Let's try to follow the steps 6-10 given in the logi-
cal forms. In the question “Why do doctors cure 
patient?” that focuses on three words doctor, cure, 
and patient, we can trace some key words given in 
example sentences as follows: patient ~ disease ~ 
cure ~ doctor ~ occupation ~ earn ~ pay ~ pa-
tient. 

What kind of lexical relations are relevant to 
each pair of words or concepts? Their observation 
can be summarized as follows: 

A) The relation between patient ~ disease is a 
role relation of “sufferFrom(patient, dis-
ease)”. 

B) A sequence of cure ~ doctor ~ occupation 
~ earn lets us infer the relation among 
cure ~ earn, which are closely linked by 
their relevance relation to occupation. 
Furthermore, earn and cure shares a 
common subject of these two events. 

C) The sequence of earn ~ pay is the result of 
a converse event relation between earn 
and pay. 

D) pay ~ patient: The agent of pay is a ge-
neric human. In other words, pay is a hy-

                                                           
2 A node means either concept or word. 
3 It is similar with word sense disambiguation. 



ponym for the act of human, one of whose 
hyponym is patient. 

Consider again the match between the tracing 
sequences of concepts and the knowledge base. 
Going into more details, notations with footnotes 
will be given to each example. At this point, we 
will give names and formalization based on the 
observed characteristics. 

A) Feature comparison: To find the role re-
lation among patient ~ disease, search the 
definition of entities (referring to patient 
and disease) in ways that two entities share 
the same event concept (referring to 
cure):4 

patient ⊃ human∧$cure ∧*sufferFrom. 
disease ⊃  medical∧$cure ∧ undesired. 

B) Interrelation: To find the event interrela-
tion among cure ~ earn, two possible 
paths are presented as follows. 

• First, inverse interrelation: Two event's 
role entities can be found by searching all of 
entities using *earn ~ *cure that share the 
same subject, and using *earn ~ $cure 
where the subject of earn is the object of 
cure. 

• Second, sister interrelation: The following 
logical form can be derived from Figure 2:5 

doctor ⊃ *cure ∧ #occupation. 
occupation ⊃ earn. 

Because cure and occupation is in the defi-
nition of doctor, a probable logical implica-
tion can be derived as follows:6 

*cure ⊃ ~#occupation. 

C) Converse/antonymy: earn and pay have 
their respective hypernyms take and give. 
There exists a converse relation between 
these two hypernyms. 

                                                           
4 According to HowNet convention, “$” represents patient, 
target, possession, or content of an event, and “*” represents 
agent, experiencer, or instrument. “⊃” means implies or has 
features. 
5 “#” means “relevant”. 
6 “~” means “very probable”. 

D) Inheritance: The relation among pay ~ 
patient is represented as follows:7 

humanpatient
acthuman

actpay

p

p

*⊃  

4.2 Rationale of Connectability 

In the former section, we summarized four charac-
teristics8 of causality (relatedness)-based path find-
ing: feature comparison, interrelation, 
converse/antonymy in their hypernym’s level, and 
inheritance. Among search spaces available, it is 
necessary to find out a measure of guiding the op-
timal9 path tracing. 

We will call such a measure similar which will 
be defined according to the four characteristics just 
mentioned. Further details about the calculation 
formula will be presented again later. 

A) For “feature comparison”, the measure fea-
ture similar(X,Y) defines the notion of 
similarity between the features in X and Y.  

B) There are two interrelations in the last sec-
tion. 

• For “inverse interrelation”', inverse simi-
lar(X,Y) calculates how much similarity ex-
ists between Xθ and Yθ in a manner that Xθ 
= {Z | Z ⊂ θX}, where θX is an abstraction 
of role-marked concepts like *X, $X, #X, 
etc. Thus inverse similar(X,Y) = simi-
lar(Xθ,Yθ). 

• For “sister interrelation”, the measure sister 
similar(X,Y) means the following two situa-
tions: First, X and Y are features to define 
one concept (say, W). Second, one of them, 
say, Y's definitional feature concepts (refer-
ring to Z) are similar with X such that X and 
Z are similar if W ⊃ X ∧Y and Y ⊃ Z. 

C) Converse or antonymy: The converse re-
lation converse(X,Y) can be found by the 
measure feature similar. converse(X,Y) is 
formulated by X ⊂ θY and Y ⊂ θX where 
θ = converse. 

                                                           
7 “ YX p ” means “Y is hypernym of X”.  
8 Their exhaustiveness should be discussed later. 
9 “optimal” will not be discussed. 



D) Using inheritance property in the concept 
hierarchy, relations between hypernym of 
concepts X and Y are inherited to X and Y 
in a way that X and Y is similar if there 
exist X’ and Z such that 'XX p , Z ⊃ θX’, 
and ZY p  where θ is a pointer or null. 
This inheritance tracing can be determined 
by how much similar X and Y are in terms 
of their path upward based on the relation 
of hypernym. We will define path similar. 
But tracing the path upward following hy-
pernym links is to be described later ac-
cording to the algorithm. 

A measure called similar will be defined based 
on the discussion in this section. Then an algorithm 
is introduced through this measure with an exam-
ple. 

5 Measures 

In the last section, we discussed four kinds of the 
measure similar. 

• path similar, 

• feature similar, 

• inverse similar, 

• sister similar. 

For feature, inverse, and sister similar func-
tions, path similar is used as a basis of calculation. 
They are different with respect to both their search 
method and the depth of expanding features. fea-
ture similar finds similar features by using path 
similar. inverse similar(X,Y) searches for entries 
that contain X and Y as features and then use the 
path similar. In the same way, sister similar finds 
sister concepts, expands them, and finally meas-
ures using the path similar. 

Since path similar plays a key role in all these 
search and measure processes, its role will be ex-
plained in the next subsection. Other measures are 
only dealt with as part of the algorithm. 

5.1 Similarity Based on Hierarchy and Fea-
ture 

The mission of the measuring function simi-
lar(X,Y) is to calculate their relevancy between 
two concepts or words whether they are of type 
entity, event, or of some other type. 

If X and Y belong to different types of knowl-
edge plane (e.g., entity and event), it is hard to 
compare their hypernym path upward to the top 
concept. However, if different types of concepts 
have any relevance to (connect) causality, we will 
use feature similar or inverse similar after find-
ing the same type of concepts to calculate the path 
similar. Now we will explain the above by using 
two pairs of concept type: entity-entity and entity-
event, without loss of generality. 

First, pathsimilar(entity X, entity Y) is de-
fined as follows: 

)()(

)()(2
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where path+(X) is the ordered list of hypernym for 
X by descending order from the top concept. For 
example, 

path+(doctor)  
= [entity...animate...human.doctor] 
path+(patient)  
= [entity...animate...human.patient] 

Because |path+(X)| counts the number of nodes on 
the path, pathsimilar(doctor,patient) = 2× 
6/(7+7)=0.857. 

Second, pathsimilar(entity N, event V) is de-
fined as follows: 

pathsimilar(N,V)  
= Max pathsimilar(N.feature,V) 

where N.feature means the feature list in the defi-
nition of N. The following is an illustrative exam-
ple for the definition: 

money ⊃ $earn,*buy,#sell, $setAside, 
it is equivalent to the following:  

money.feature=[$earn,*buy,#sell,$setAside]. 
So pathsimilar(money,earn)=pathsimilar(earn,earn) 
=1. According to this Max function, the selection 
priorities for the path can be specified. 

Third, pathsimilar(event V, entity N) is de-
fined by inverse similar as follows: pathsimi-
lar(V,N) = Max pathsimilar(V.inverse, N).  For 
example, pathsimilar(cure, doctor) = Max path-
similar(cure.inverse, doctor) = Max pathsimi-
lar({doctor, medical worker, medicine, patient}, 
doctor). 

Fourth, pathsimilar(event X, event Y) shares 
the same formula with pathsimilar(entity X, en-



tity Y) shown before. But, we can give another 
inverse pathsimilar(event X, event Y) = Max 
pathsimilar(X.inverse, Y.inverse). 

5.2 Logical Implication and Expansion Depth 

All of the relations in Figure 2 are translated into 
logical form (see below). As shown in “Interpreta-
tion as Abduction” (Hobbs et al. 1988), “abductive 
inference is inference to the best explanation”. 
These relations showed “the interpretation of a text 
is the minimal explanation of why the text would 
be true” based on the abductive inference. By the 
same token, “the interpretation of a question is the 
minimal explanation of why the question would be 
true” based on a set of lexical knowledge bases. 

Before proceeding to our algorithm, an example 
will be applied to abductive inference briefly as a 
set of logical forms as well as a diagram in Figure 
3. 

16. doctor ⊃ human, #occupation, 
*cure, medical. 

17. medicine ⊃ *cure. 
18. disease ⊃ $cure. 
19. cure ⊃ medical, 

{agent,patient,content}. 
20. medical ⊃ #cure. 
21. converse(pay,earn) ⊃ 

agent=source,  
target=agent. 

22. patient ⊃ human,$cure. 
23. occupation ⊃ affairs, earn. 
24. cause(cure,sufferFrom) ⊃ 

patient=experiencer, 
content=content. 

25. possibleConsequence(cure, 
beRecovered) ⊃  
patient=experiencer,  
content=stateIni. 

 
While pursuing the path tracing enabling mini-

mal explanation, now we are going to propose       
a connectability measure similar such as 
“weighted abduction” (Hobbs et al. 1988). As 
“likelihood estimation” is useful to consider a 
“bounded conditioning” (Russell & Norvig, 1995) 
in a belief network, the “expansion depth” of simi-
lar will be useful for the explanation path tracing 
for the purpose of the minimal explanation of the 
question. 
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Figure 3: Virtual Linking for Causality 
 

The “expansion depth level” of similar has two 
kinds of utilities: one is to find the minimal expla-
nation, and the other is to be dynamically adapt-
able to the level of interaction. This level of 
similar is defined as a function simi-
lar(Level)(X,Y) for X and Y, concepts or words in 
the following manner: 

• similar(0)=pathsimilar: they use only them-
selves and their hypernym path from X and 
Y.  

• similar(1)=feature_similar: they use their 
features that are expanded one more than 
similar(0). 

• similar(2)=inverse_similar 

• similar(3)=sister_similar 
=inverse_similar×feature_similar. 

Depending on what level of similar is chosen, 
the search paths may be changed. A snapshot up to 
similar(2) is given in Figure 4. 

 

 
Figure 4: Snapshot for similar(2). 
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6 Tracing Algorithms 

6.1 Algorithm Crossover 

The overall algorithm 10  flow depends on simi-
lar(Level) as in the next program. 

Algorithm Crossover 
For Level=0...N until stopping 
condition is satisfied: 

   Expand the trace  
by similar(Level) 

For example, when Level=1, the algorithm cross-
over finds a very primitive answer to the question 
“Why do doctors cure patients?” We will expand 
other features of doctor except for cure because 
cure has a syntactic relation between doctor and 
patient. 

As shown in the logical forms (16~24) intro-
duced in the previous section, this algorithm in 
Level=1 can find the following concepts as a re-
sult: medical, human, cure ($cure, *cure). 

When Level=2, the algorithm crossover will 
seek higher-order relations (like the hypothesis) 
from the concept (by inverse_similar), con-
verse/antonymy relations (by feature_similar), 
and    event relations (if any, for use in knowing 
the cause or consequence relation). Consider again 
our example "Why do doctors cure patients?" by 
using the previous section's logical forms. The re-
sults are as follows: 

*cure = {doctor, medicine} 
$cure = {patient, disease} 
*sufferFrom = {patient} 
$sufferFrom = {disease} 

Its generated meaning may be “If a doctor cures a 
patient, the patient is recovered from disease.            
Because patients suffer from diseases, doctors cure 
the patients. Patients are recovered after getting 
cured.” 

6.2 Stopping Condition 

Stopping conditions for the algorithm crossover 
are as follows: 

(1) Event roles are filled up. 
(2) If no event is found in the feature defini-

tion, increase similar level. 

                                                           
10 This algorithm will be called “crossover”. 

(3) [weak stopping condition] When there is 
no event, one of the other features is com-
monly shared between two concepts. For 
example, medical is a common feature be-
tween doctor and cure. 

6.3 Hypernym Climbing 

In section 4.2, inheritance was discussed for the 
purpose of finding a relation among pay ~ patient. 
After trying to make Level=2 in section 5.2, we 
have been motivated to find the interrelation be-
tween hypernyms. The algorithm crossover is up-
dated. 

Algorithm Crossover+ 
For Level=0..N until stopping 
condition is satisfied: 

Expand the trace  
by similar(Level) 

If Level >= 2, then 
repeat climb up hypernym 
until it matches with  

the higher relation. 

6.4 Algorithm Crossover++ 

Consider again the question "Why do patients pay 
money to doctors?" As shown in Figure 1, the best 
trace is $cure ~ *cure ~ *earn ~ $pay. It provides 
an explanation for the statement that “patients are 
cured by doctors ~ doctors earn money ~ patients 
pay money to doctors”. This minimal explanation 
is observed by switching over the role pointers θ 
whenever tracing is performed. For example, 
$cure was switched over to *cure. This extended 
version of algorithm is called Crossover++. 

7 Evaluation 

By the algorithm Crossover’s, the behavior of 
“why”-type questions are investigated by extract-
ing the answer paths as follows. 
Q: Why does patient pay money?  
Path: patient ~ $cure ~ doctor ~ #occupation ~ 
$earn ~ money 
Q: Why does researcher read textbook? 
Path: researcher ~ #knowledge ~ #information ~ 
readings ~ textbook 

Paths between two concepts can now be found 
by simply checking the presence of a path among 
the concepts reached from an initial concept. Table 



1 and Table 2 show examples of the number of 
paths as a function of path size.  
 

Reached concepts path size Source 
concept 1 2 3 

cure 275 593 24854 
eat 268 605 24903 

study 276 358 23172 
food 532 650 18066 

human 6713 3686 51171 
money 328 1312 19827 

Table 1: Examples of destination concepts reached 
starting from one source concept  
 

Paths number length Concept1 Concept2 1 2 3 
cure human 0 78 26 
pay money 0 7 3 

human money 0 3 7 
food human 0 0 28 
read write 0 4 6 
earn pay 0 0 7 

Table 2: The number of paths between pairs of 
concepts 

8 Discussion 

HowNet (Dong et al. 1999-2003) has already de-
fined the words and concepts using the features of 
concepts. Each event role is also defined under the 
notion of feature. On the other hand, WordNet 
(Miller, 1995) consists of synsets and their glosses. 
Moldovan et al. (2002) showed a lexical chain to 
use words in glosses in order to trace the topically 
related paths.  

Their search boundary is restricted to the 
shapes: V, W, VW, and WW. In this paper, cross-
over* is shown to be flexible and search for a more 
probable explanation. 

9 Conclusion 

In this paper, we have attempted to show how to 
link pre-existing lexical knowledge bases to one 
another. The major issue was to generate a path to 
give explanation paths for answering the “why”-
type question. While observing the causality path 
behavior, we proposed the measure similar and 
also the algorithm crossover. It is compared with 
the “weighted abduction” (Hobbs et al. 1988) and 
“lexical chain” (Moldovan et al. 2002). 

With the ability to provide explanations de-
pending on the level of the measure similar, our 
proposed algorithm adapts itself to the user knowl-
edge level and well as to the type of interactive 
questions to enable more detailed level of ques-
tion-answering.  
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