Learning a Perceptron-Based Named Entity Chunker
via Online Recognition Feedback

Xavier Carreras and Lluis Marquez and Lluis Padro
TALP Research Center
Departament de Llenguatges i Sistemes Infatios
Universitat Poliecnica de Catalunya
{carreras,lluism,padro @lsi.upc.es

1 Introduction 2 Named-Entity Phrase Chunking

We present a novel approach for the problem of Namelh this section we describe our NERC approach as a
Entity Recognition and Classification (NERC), in thephrase chunking problem. First we formalize the prob-
context of the CoNLL-2003 Shared Task. lem of NERC, then we propose a NE-Chunker.
Our work is framed into the learning and inference L
paradigm for recognizing structures in Natural Languagé-1 Problem Formalization
(Punyakanok and Roth, 2001; Carreras et al., 2002). Weet = be a sentence belonging to the sentence sggce
make use of several learned functions which, applietbrmed byn wordsz; with ¢ ranging from0 ton — 1. Let
at local contexts, discriminatively select optimal partialC be the set of NE categories, which in the CoNLL-2003
structures. On the top of this local recognition, an infersetting iskC = {LOC, PER ORG, MISC}.
ence layer explores the partial structures and builds the A NE phrase denoted as$s, e), iS a phrase spanning
optimal global structure for the problem. from word z, to word z., havings < e, with category
For the NERC problem, the structures to be recognizeld € K. Let N€ be the set of all potential NE phrases,
are the named entity phrases (NE) of a sentence. First, wapressed a8/ € = {(s,e), |0 < s < e,k € K} .
apply learning at word level to identify NE candidates by We say that two different NE phrasesg; = (s1, 1),
means of éBegin-Insideclassification. Then, we make andne; = (s2,e2);, overlap, denoted ase; ~ney iff
use of functions learned at phrase level —one for each > s3 A ea > s1. A solutionfor the NERC problem
NE category— to discriminate among competing NEs. is a sety formed by NE phrases that do not overlap, also
We propose a simple online learning algorithm forknown as achunking We define the se¥ as the set of all
training all the involved functions together. Each functiorpossible chunkings. Formally, it can be expressed as:
is modeled as &oted perceptrorfFreund and Schapire, Y={y CNE|Vne, nes €y neipnes}
1999). The learning strategy works online at sentence The goal of the NE extraction problem is to identify
level. When visiting a sentence, the functions beinghe correct solutioy €) for a given sentence.
learned are first used to recognize the NE phrases, and
then updated according to the correctness of their solg:2 NE-Chunker
tion. We analyze the dependencies among the involvethe NE-Chunker is a function which given a sentence
perceptrons and a global solution in order to design a € X identifies the set of NE phrasgsc):
global update rule based on the recognition of named- NEch: X — Y
entities, which reflects to each individual perceptron its The NE-Chunker recognizes NE phrases in two lay-
committed errors from a global perspective. ers of processing. In the first layer, a set of NE can-
The learning approach presented here is closely relidates for a sentence is identified, out of all the po-
lated to —and inspired by— some recent works in the araantial phrases iolVE. To do so, we apply learning at
of NLP and Machine Learning. Collins (2002) adaptedvord level in order to perform 8egin-Insideclassifica-
the perceptron learning algorithm to tagging tasks, vidon. That is, we assume a functidn; (w) which de-
sentence-based global feedback. Crammer and Singades whether a word) beginsa NE phrase or not, and a
(2003) presented an online topic-ranking algorithm infunctionh;(w) which decides whether a wordiissidea
volving several perceptrons and ranking-based updaME phrase or not. Furthermore, we define the predicate
rules for training them. BI*, which tests whether a certain phrase is formed by

a startingbeginword and subsequentsidewords. For- The representation functioh : X — 2™ codifies an
mally, BI*((s,e)r) = (hp(s) A Vi:s<i<e:hi(i)). instancer belongingto some spaceinto a vector irR™
The recognition will only consider solutions formed bywith which the perceptron can operate.
phases inV'E which satisfy theBI* predicate. Thus, this The functionshg andh; predict whether a worbegins
layer is used to filter out candidates frox€ and conse- or isinsidea NE phrase, respectively. Each one consists
guently reduce the size of the solution spatd-ormally, of a perceptron weight vectofjz andw;, and a shared
the solution space that is explored can be expressed mpresentation functiot,,, explained in section 4. Each
Ye1- = {y € V| Vneey BI*(ne)}. function is computed a; = w; - (), forl € {B,I},

The second layer selects the best coherent set of Nfd the sign is taken as the binary classification.
phrases by applying learning at phrase level. We assumeThe functionsscorey, for & € X, compute a score for
a number of scoring functions, which given a NE phrase phras€s, e) being a NE phrase of categoky For each
produce a real-valued score indicating the plausibility ofunction there is a vectan;,, and a shared representation
the phrase. In particular, for each categbrg K we as- function ®,,, also explained in section 4. The score is
sume a functioscore;, which produces a positive score if given by the expressiastorey (s, e) = wy, - Py (s, €).
the phrase is likely to belong to categdryand a negative
score otherwise.

Given this, the NE-Chunker is a function whichWe propose a mistake-driven online learning algorithm
searches a NE chunking for a sentencaccording to for training the parameter vectarsof each perceptron all

3.1 Learning Algorithm

the following optimality criterion: in one go. The algorithm starts with all vectors initialized
to 0, and then runs repeatedly in a number of epdEhs
NEch(z) = arg max Z score (s, €) through all the sentences in the training set. Given a sen-

yEYVpr* tence, it predicts its optimal chunking as specified above

using the current vectors. If the predicted chunking is not

That is, among the considered chunkings of the Se|p_en‘e_ct_the vectors which are _responsible of the incorrect
tence, the optimal one is defined to be the one whod¥edictions are updated additively.
NE phrases maximize the summation of phrase scores. T he sentence-based learning algorithm is as follows:
Practically, there is no need to explicitly enumerate each Cffal 1 m ,m
possible chunking iVg;-. Instead, by using dynamic o Input:{(z%,y7), - (@ y™)}-
programming the optimal chunking can be found in e Define:W = {wg,w;} U {wy|k € K}.
guadratic time over the sentence length, performing a o B
Viterby-style exploration from left to right (Punyakanok ® Initialize: Vi € W w = 0;
and Roth, 2001).

Summarizing, the NE-Chunker recognizes the set of
NE phrases of a sentence as follows: First, NE candidates 1. § = NEchyy, (z°)
are identified in linear time, applying a linear number of 2. learning_feedback(W, z*, y, 9)
decisions. Then, the optimal coherent set of NE phrases
is selected in quadratic time, applying a quadratic number ® Output: the vectors i
of decisions.

(s;e)r€y

e fort=1...T ,fori=1...m:

We now describe thkearning feedbackLet y* be the
. . . gold set of NE phrases for a sentenc@ndy the set pre-
3 Learning via Recognition Feedback dicted by the NE-Chunker. LebldB(i) andgold1(i) be

. . .. _respectively the perfect indicator functions for thegin
We now present an online learning str for trainin . e . .
e now present an online learning strategy for tra %nd|n5|de classifications, that is, they return 1 if word

the learning components of the NE-Chunker, namely thé i U . .
functionshy andh; and the functionscorey,, for k € K. =; begins or is inside some phraseyhand 0 otherwise.

L . We differentiate three kinds of phrases in order to give
Each function is implemented using a perceptrand feedback to the functions being learned:
a representation function.

A perceptron is a linear discriminant functidn, : e Phrases correctly identified(s,), € y* N ¢:
R" — R parametrized by a weight vectar in R".
Given an instancez € fR™, a perceptron outputs as
predi;:tion the inner product between vectarand w, o Missed phrasest(s, e); € y* \ ¥

— Do nothing, since they are correct.

1. Updatebeginword, if misclassified:

Actually, we use a variant of the model called thated if (wp - @y (7s) < 0) then
perceptron explained below. wp = W + Py (zs)

2. Update misclassifieidsidewords:
Vi : s < i < e:suchthafar - Py (x;) <0)
wy = wy + Py ()
3. Update score function, if it has been applied:
if (’lj}B . @W(Is) >0 A
Vi:s <i<e:w - Py(x;) > 0)then
W = Wi + <I>p(s, 6)

asw = Y7_, 5,527 Given a kemnel functiod (z, 2),
the final expression of a dual voted perceptron becomes:

J J

ha(2) =Y Y suK(z,7)

j=1 i=1

In this paper we work with polynomial kernels
K(z,2") = (z - 2’ 4+ 1)?, whered is the degree of the
kernel.

e Over-predicted phrases(s,e), € § \ y*:
1. Update score function:
Wg = Wk — ‘I)p(S, 6)
2. Updatebeginword, if misclassified :
if (goldB(s) = 0) then
W = W — @w(xs)
3. Update misclassifieidsidewords :
Vi : s < i < e:such thafgoldI(i) = 0)
W = W — (PW(]J,‘)

4 Feature-Vector Representation

In this section we describe the representation functions
oy, and ®,, which respectively map a word or a phrase
and their local context into a feature vecto®ift, partic-
ularly, {0, 1}™. First, we define a set of predicates which
are computed on words and return one or more values:

e Form(w), PoSw): The form and PoS of word.
This feedback models the interaction between the two Orthographic(w): Binary flags of wordw with re-
layers of the recognition process. TBegin-Insiddden- gard to how is it capitalizedritial-caps all-caps,
tification filters out phrase candidates for the scoring ihe kind of characters that form the worbitains-
layer. Thus, misclassifying words of a correct phrase digits, all-digits, alphanumeric Roman-numbgy
blocks the generation of the candidate and produces a ihe presence of punctuation marksoiftains-

missed phrase. Therefore, we move tgin or end dots contains-hyphenacronyn), single character
prediction vectors toward the misclassified words of a patterns lpnely-initial, punctuation-mark single-
missed phrase. When an incorrect phrase is predicted, chan), or the membership of the word to a predefined
we move away the prediction vectors of theginandin- class functional-word), or pattern URL).

sidewords, provided that they are not in the beginning or , . i ,
inside a phrase in the gold chunking. Note that we delib- ® Affixes(w): The prefixes and suffixes of the word

erately do not care about false positideegyin or inside

words which do not finally over-produce a phrase. .
Regarding the scoring layer, each category prediction

vector is moved toward missed phrases and moved away

(up to 4 characters).

Word Type Patterns(ws ... we): Type pattern of
consecutive words, ... w.. The type of a word
is eitherfunctional(f), capitalized(C), lowercased

(1), punctuation mark.), quote(’) or other (x).
For instance, the word type pattern for the phrase
“John Smith payed 3 euros” would I@CIxI .

from over-predicted phrases.

3.2 Voted Perceptron and Kernelization

Although the analysis above concerns the perceptron al-

gorithm, we use a modified version, theted perceptron ind ¢ q & that i q ith
algorithm, introduced in (Freund and Schapire, 1999). & WIndow ol words aroundr;, that is, wordsr,; with.
I € [-Ly,+Ly]. Each predicate label, together with

The key point of the voted version is that, while train- h relati itioh and h ret d value f
ing, it stores information in order to make better predic—eaC relative position and each returned vajue forms a

tions on test data. Specifically, all the prediction vecf'nalI bmadry_ mdlllcator feature. TEe Wr? rd typde pattt;r_nﬁ are
torsw’ generated after every mistake are stored, togethg aluated in all sequences within the window which in-

with a weightc?, which corresponds to the number of® u'ge ttr;]e c;entrta_ll m?rd tth text of
decisions the vecto survives until the next mistake, T oF the function®, (s, ¢) we represent the context o

Let J be the number of vector that a perceptron accumﬁheﬂ?hrase t()jy ev:luatmg{aLg 0] VLV'”dO.W(;’f pre:ht(;]ates
lates. The final hypothesis is an averaged vote over tifi thes word and a separa(®, +Lj,] window at thee

predictions of each vector, computed with the expressio\ﬁord' Atthes wmd_ow, we also codify the nameq enti-.
ho(z) = Z.] o (w9 -) ties already recognized at the left context, capturing their
w - j=1 .

Moreover. we work with the dual formulation of the cat€gory and relative position. Furthermore, we represent
vectors, which allows the use of kernel functions. It igh€ (s, ¢) phrase by evaluating the predicates without cap-
shown in (Freund and Schapire, 1999) that a veetoan turing the relative position in the features. In particular,

be expressed as the sum of instancethat were added 2Functional words are determiners and prepositions which
(szs = +1) or subtractedq,; = —1) in order to create it, typically appear inside NEs.

For the function®,, (z;) we compute the predicates in

for the words within(s, ¢) we evaluate the form, affixes English devel. | Precision| Recall | Fz—;

and type patterns of sizes 2, 3 and 4. We also evaluate the | LOC 90.77% | 93.63% | 92.18
complete concatenated form of the phrase and the word | MISC 91.98% | 80.80% | 86.03
type pattern spanning the whole phrase. Finally, we make | ORG 86.02% | 83.52% | 84.75
use of a gazetteer to capture possible NE categories of the | PER 91.37% | 90.77% | 91.07
whole NE form and each single word within it. Overall 90.06% | 88.47% | 89.26
5 Experiments and Results English test [Precision| Recall | Fs—;
A list of functionalwords was automatically extracted LOC 86.66% | 89.15%) 87.88
from each language training set, selecting those lower- MISC 84.90% | 72.08%) 77.97
cased words within NEs appeariﬁg 3 times or more. For ORG 82.73% | 77.60%) 80.09
each language, we also constructed a gazetteer wi.th the PER 88.25% | 86.39% | 87.31

' Overall 85.81% | 82.84% | 84.30

NEs in the training set. When training, only a random
40% of the entries was considered.
We performed parameter tuning on the English lan-

German devel| Precision| Recall | Fg—;

guage. Concerning the features, we set the window sizes Il_/I(IDSCC ;2332;0 Zigﬁo gigg
(Lw andLy) to 3 (we tested 2 and 3) , and we did not con- | S22~ 76.800/2 47'220/2 o5 48
sidered features occurring less than 5 times in the data. PER 76.87% 60.96% 67.99
When moving to German, we found better to work with : : :
Overall 76.36% | 55.06% | 63.98

lemmas instead of word forms.
Concerning the learning algorithm, we evaluated ker-
nel degrees from 1to 5. Degrees 2 and 3 performed some-

German test | Precision| Recall | Fg—;

what better than others, and we chose degree 2. We then LOC 72'893/0 65'222/" 68.84
ran the algorithm through the English training set for up MISC 67'140/" 42'090/0 ol.74
to five epochs, and through the German training set for up ORG 77.67% | 42.30%| 54.77

PER 87.23% | 70.88% | 78.21

to 3 epochs® On both languages, the performance was
still slightly increasing while visiting more training sen- Overall
tences. Unfortunately, we were not able to run the algo-

rithm until performance was stable. Table 1 summarizegable 1. Results obtained for the development and the
the obtained results on all sets. Clearly, the NERC tadlest data sets for the English and German languages.

on English is much easier than on German. Figures indi-

cate that the moderate performance on German is mainll_.¥efereﬂceS

caused by the low recall, specially forG andmisc en-

tities. It is interesting to note that while in English theX. Carreras, L. Mirquez, V. Punyakanok, and D. Roth.
performance is much better on the development set, in 2002. Learning and Inference for Clause Identifica-
German we achieve better results on the test set. Thistion. InProceedings of the 14th European Conference
seems to indicate that the difference in performance be- 0n Machine Learning, ECMLHelsinki, Finland.

tween development and test sets is due to irregularitiq\ﬁ Collins. 2002. Discriminative Training Meth-

in the NEs that appear in each set, rather than overfitting'odS for Hidden Markov Models: Theory and Experi-

problems of our learning strategy. N ments Perceptron Algorithms. Rroceedings of the
The general performance of phrase recognition system EMNLP’02

we present is fairly good, and we think it is competitive

with state-of-the-art named entity extraction systems. K. Crammer and Y. Singer. 2003. A Family of Additive
Online Algorithms for Category Rankinglournal of

Acknowledgments Machine Learning ResearcB:1025-1058.

77.83% | 58.02% | 66.48

This research has been partially funded by the European Fréund and R. E. Schapire. 1999. Large Margin Clas-

Commission (Meaning, I1ST-2001-34460) and the Span- ig';?g:gn ;J;gg)ggt?;z_zggceptron AlgorithmMachine

ish Research Dept. (Hermes, TIC2000-0335-C03-02; Pe- 9 ' ‘

tra - TIC2000-1735-C02-02). Xavier Carreras holds &. Punyakanok and D. Roth. 2001. The Use of Clas-

grant by the Catalan Government Research Department. sifiers in Sequential Inference. RProceedings of the
3Implemented in PERL and run on a Pentium IV (Linux, NIPS-13

2.5GHz, 512Mb) it took about 120 hours for English and 70

hours for German.

