
A New Metagrammar Compiler

B. Gai:ffe, B. Crabbe, and A. Roussanaly
Loria

1. Why a new metagrammar compiler?

Writing a TAG grammar manually is known tobe a non trivial task (Abeille 00; Doran et al. 94; Doran et al.
00; VS et al. 92). For that pwpose, (Candito 96) has suggested a grammatical framework that allows linguists to
describe the syntactic properties of a language at a hlgher level of abstraction . Given a set of classes, each of these
containing a partial tree description, the compiler outputs a set of tree schemata.

In order to work on the organi:Zation of a syntactic lexicon, we needed an almost equivalent tool that would
produce feature structures together with the tree schematas. Before developping a new tool, we criticized Candito 's
work (Candito 99) in considering the two following drawbacks:

1. the algorithm is closely linked to the specific linguistic description. As her analysis focusses on the study of
verbal trees, the structuration is badly adapted to the description of non verbal units ;

2. the current implementation of the compiler is not flexible enough to be easily adapted to other input/output
formats.

In the remainder of the paper we describe our tool and discuss two possible ways to implement a metagrammar
for french verbs.

2. Design of our tool

In this section, we present the characteristics of the tool we implemented. Our compiler ressembles the one
described in (Candito 96) and (Candito 99). We thus present the latter first in order to emphasize the differences
between her proposition and ours.

2.1. Topological factorisation

In (VS et al. 92), the authors propose to use a logic (precisely defined in (Rogers et al. 94)) which de-
scribes elementary trees of a TAG grammar so that the topological informations shared by trees is factorized in an
inheritance hierarchy.

In practice, infonnation concerning trees may be factorized according to different points of view quite in-
dependant from each other. For instance, subcategorization infonnation leads to a rather natural hierarchy while
realizations of syntactic functions lead to another hierarchy altogether. Therefore, attempts to describe both hierar-
chies in a unique inheritance lattice either leads to having to make a copy of one hierarchy at each leaf of the other,
or if multiple inheritance is allowed, multiplying links between leaves of the hierarchies.

2.2. Marie-Helene Candito's Compiler

(Candito 96) and (Candito 99) precisely explains the preceding point and advocates three independant, lin-
guistically motivated hierarchies which she calls dimensions:

l. subcategorization (which she represents in terms ofinitial syntactic functions)

2. syntactic function redistributions (which lead to final syntactic functions)

3. final functions realisations

© 2002 Gaiffe, Crabbe, Roussanaly. Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related
Frameworks (TAG+6), pp. 234-241. Universita di Venezia.

B. Gaiffe, B. Crabbe, A. Roussanaly 235

The underlying idea is that a linguist only describes these three hierarchies, and an automatic tool completes
the inheritance graph by crossing final classes of dimension 1 with the final classes of dimension 2 and further
crossing the result with the final classes of dimension 3.

However, not all final classes of dimension 1 are to be crossed with all final classes of dimension 2. For
instance, intransitive verbs do not admit passive constructions. In the same way, the resulting crossed classes of
dimensions 1 plus 2 have tobe crossed only with those final classes of dimension 3 that realize a final function
actually occuring in the crossed class.

The linguist has thus to give crossing conditions together with his hierarchies in order to constrain the crossing
process.

The algorithm implemented by (Candito 99) is thus thefollowing:

dim12 = empty set
for each final class cl of dimension 1

for each final class c2 of dimension 2 (compatible with cl)
create c12 that inherits cl and c2 and add it to dim12

end for
end for
res = empty set
for each cl2 in dim12

resOfC12 = {c12} '
for each final function ff appearing in c12

for each class c3 of dimension 3 that realizes ff
build new classes with each element of resOfC12 and c3
resOfC12 = these new classes

end for
end for
res = res U resOfC12

end for
compute minimal ｲ･ｦ･ｲｾｮｴｳ＠ for each element of res.

As this pseudo-algorithm makes clear, some constants that denote tree nodes are labelled by a final syntactic
function. They are actually also Iabelled by an initial syntactic function, probably in order to keep track of the
process. In dimension 2, most Of the job done by classes.consists in modifying the functional assignment1• More-
over, final functions are maintained unique in any description by an additional mechanism that equates constants
bearing the same final function.

2.3. Our proposition

Our initial motivation for developping a new meta-grammar compiler had to do with the Iexicon: the grammar
compiled with Candito 's tool is organised in tree families (as is XTAG (Daran et al. 00)) and lemmas are associated
to families. The anchoring of a tree thus consists in computing the lemma and the morpho syntactic features
associated to a word form, getting the families associated with the lemma and finally attempting to substitute the
lemma with the associated morpho syntactic features in the tree.

Such a process may of course fail, either because the morpho-syntactic features do not match (consider a tree
dedicated to an imperative form, together with. an infinitive word form) , or because the features associated to the
lemma do not match (some transitive verbs, for instance, do not accept a passive form).

Our starting idea was then to generate trees together with a feature structure that globally describes each tree,
and Candito's tool did not seem to pennit that.

Since we were implementing a new tool anyway, we gave ourselves some additional constraints:

• avoiding non monotonous mechanisms such as the modification of the final functions

• not limiting a priori the number of dimensions:

- the third dimension is de f acta a collection of dimensions dedicated to realizing each of the possible functions

1. Final functions are initialized to the initial function

236 Proceedings of TAG+6

- three dimensions is perhaps not a good choice for other categories than verbs, or for other languages than
French, English or Italian. (See for instance (Gerdes 02))

As we intend to produce trees together with a feature structure, classes of the meta-grammar contain a fea-
ture structure that describe its content. lt then seems natural that these feature structures get combined through
unification. along the inheritance lattice. This feature structure is then a good mechanism to avoid unwanted class
crossings. The example we meotion of intransitive verbs that do not accepts passive fonns may simply be taken
into account by means of an attribute transitive with values minus for an intransitive verb and plus for all passive
classes.

The remaining problem is to find a mechanism that allowes classes to cross. In (Candito 99) compiler, this
mechanism relies oo the three dimensions, but we do not want to rely oo a fixed number of dimeosions.

We thus decided to make explicit the reason why classes are to be crossed, typically a class of dimension 1
has tobe crossed with a class of dimension 2 because it needs redistribution of syntactic functions. Classes of
dimension 2 have to be crossed with classes of ex-dimension 3 because they need that their final functions be
realized. Conversely, a class of ex-dimension 3 may provide the realization of a subject, or an object, or whatever
other function.

A class in our system is then described by:

• aname

• a set of super-classes

• a description (which is a feature structure)

• a set ofneeds (atomic symbols)

• a set ofprovidings (atomic symbols)

• a fonnula describing trees

When a class cl2 inherits two classes cl and c2, the descriptions are unified (in case of failure, c12 is not
created), the set ofneeds is the union ofthe two set ofneeds minus the union ofthe providings, the set ofprovidings
is also the union of the providings minus the union of the needs and the formula is the conjunction of the two
formulas.

Tue crossing mechanism then consists in computing all balanced final classes, that is classes whose set of
needs and providings are empty2•

Finally, the formulas corresponding to balanced final classes are used to compute minimal referents (Rogers
et al. 94) together with the description associated with the corresponding class.

3. A survey on the linguistic applications

We made some experiments on french verbs, conforming as much as possible to the analysis of (Abeille 91;
Candito 99). Therefore, we give an overview of the way we describe verbs using three 'dimensions' 3•

Two ways to generate a gramrnar are given in the following sections. The first approach puts the focus on the
topology of the trees. While it allows to identify the nodes representing the predicate and its arguments in the tree,
it actually suffers from a major drawback due to the monotonicity of the system. That is, once a node is asserted in
the process of generating a tree, it cannot be removed. This is problematic if, for instance, one wants to describe
an agentless passive as the ellipsis ofthe predicate's agent4•

The second approach comes closer to the functional analysis introduced by (Candito 99). We do a topologi-
cally free reasoning upon arguments and functions until we have specified a complete final functional subcatego-
rization frame. The main interest ofthis approach is that the functional component ofthe grammar is not anymore

2. In order to keep with an associative and commutative mechanism, a cancelled need as weil as a cancelled providing is not
allowed to appear again.
3. Fonnally speaking, it should be clear that there are no dirnensions anyrnore.
4. However, there is a trick : one can set a 'kill' attribute to a node. lt rneans that the node will be removed frorn the tree after
its generation. The principle is that the removed node's children (if any) become the children of the removed node's parent (the
root of the tree cannot be removed).

B. Gaiffe, B. Crabbe, A. Roussanaly 237

mixed with the topological one. We are able to represent the agentless passive quite easily. But here, the rela-
tionship between the tree structure and the logical arguments is lost. As a comparison, .we do not specify any
topological information into the classes that belong to the equivalent of Candito 's first and second dimension. The
whole analysis is driven by the feature structures describing the classes.

Both approaches share some essentials ideas5• (1) Each tree which is generated represents the realization of a
logical predicate and its arguments. (2) The focus is put on the functional organization ofthe grammar. Following
these assumptions we specify through three successive layers the trees that represents the syntactic realization of
that predicate. Each of these layers performs a mapping as follows :

Predicate Structure
JJ. Dimension 1

Initial- Function
JJ. Dimension 2

Final-Function

JJ. Dimension 3
Surface-Realization

• Dimension 1 : maps the predicate arguments to an initial functional subcategorization frame.

• Dimension 2 : maps the initial subcategorization frame to a final functional subcategorization frame.

• Dimension 3 : maps the final subcategorization frame to a tree structure.

3.1. A node driven strategy

Following (Abeille 91; Candito 99) each tree which belongs to a family represents a predicative structure. Tue
first dimension is dedicated to mapping initial functions to the predicate's argument positions. Here we define a
set of classes which represents the arguments and another set which defines the functions that are to be mapped on
them. The final classes of this dimension are a list of all the valid mappings in French. For instance the final class
SubjOVObjl is the class where the first argument is mapped with a subject and the second is mapped with a direct
object6. .

ro-lrl
ｾｾ＠ --- ---

arg()= init--wbj
arg! = init--obj

init-sibj iniM>bj

Jnit-Subj
/ --

/ --

subjOVobjl

Figure l: Overview of the first dimension

ob}-redist

Jnit-Obj

We express this mapping with the declaration ofa constant7. Each ofthese quasi-nodes is equated with the
one representing its associated function.

To be linguistically weil fonned, we impose the requirement that the crossed classes map each initial function
to a final function. Then a class where an initial function node is defined contains a corresponding need for a final
function (see fi g. 3.1).

5. These ideas are already central in (Candito 99) work.
6. For the sake of clarity, we do not expand here to the whole (Abeille 91) analysis in farnilies. We do not consider here
sentential arguments and verbal auxiliaries though they are important for the definitions of the families.
7. Following (Rogers et al. 94), a constant is denoting a node.

238 Proceedings of TAG+6

The second step in the generating process aims at defining a final subcategorization frame. Here we map the
initial functions given above with final functions. As a side effect, the verb is given a rnorphological specification.
For instance, through inheritance, the fall personal passive maps the initial-subject to a by-object, the initial object
to ajinal-subject and requests the predicate tobe realized as a passive subtree. Furthermore, classes that introduce
a final function emit the need that this function is realized.

ｩ ｮｩｴｾ„ｦｪｾ＠

SUBJ-> l'AR-08 OBJ->SUllJ

Figure 2: Overview of the second dimension

Our general strategy consists in manipulating functions through constants denoting nodes: instead offunction
features, we have such constants as argO, initial-subject, or final-object. The redistributions are then performed
by means of equalities between such constants. The final classes of dimension 2 express equalities between the
nodes carrying the initial functions and the ones carrying the final functions. The interface with the first dimension
is done through providings that satisfy the final-function needs of dimension 1 classes. For instance the Full-
personal-passive class will inherit classes that provide the subj-redist and obj-redist. The content of the class
reflects the mapping : the initial-subject node equals the final-by-object node and the initial-object node equals the
final subject node (see fig. 3.1).

g
.......

ｾｾｾｾ Ｏ ｾｾ＠ ｾＭＭＭｾｾｾｾ＠

Pmuia,:,b1 ｓｕｂｾｒｅｊ＠
BY-OBJ-REAL /

/
/

Sc

ｾ＠

ｾ＠
Sm

T """"""""
pl'"1"<;>-le<

ｓ｣ ＺＺ｣｡ｾ ｳ＠

par-o-i: :: cat • PP
ｾ＠ :; cal „ Pn:p
ｾ ［Ｚ ｫ＾｣ ｳ ｰ｡ｲ＠ INV-NOM-SUB'
w-noun,;caa•Ntype•lllbst

QU- BY-OBJ

Figure 3: Overview ofthe third dimension

The functional realization 'dimensions', contains classes that actually yield trees. Basically, we view here a
syntactic function as a labe! for a set of subtrees. Thus, this dimension groups all the subtrees and each ofthem
is labelled as the representation of a function. The labe! assignment is performed through multiple inheritance as
shown in figs. 3.1 and 3.1. Note that contrary to (Candito 99) approach, there are here two 'third dimensions'. One
for the predicate's arguments and one for the predicate's head. The motivation is mainly methodological, we want
to explicitly separate the functional and the topological part of the gramrnar.

Writing a metagrammar remains (at least for us) an experimental process. Other formalisms have been pro-
posed that rely extensively either on feature structures (HPSG) or Linguistic functions (LFG). We experimented

B. Gaiffe, B. Crabbe, A. Roussanaly 239

with a LFG inpired approach whlch allows us to deal with the topology of trees only in dimension 3. The gen-
eral sketch is then to build feature structures in dimension 1 and 2 and to assemble the trees according to the
specifications given by the feature structure in dimension 3.

Sm--..
Vm Vb

Stn::cat• S
Vlll::Cill•Vtype ... anc
ｖ｢ｾ ｣｡ｴＭ ｖｴｹｰ｣｣ •ｾ＠

PASSIVE

Figure 4: Overview of 'another' third dimension

3.2. A feature driven strategy

Tue feature structure descriptions, contained in classes and therefore associated to the produced trees at the
end ofthe process, not only concem the anchoring, but may also actually describe the linguistic properties the tree
is responsible for. Typically, it enables us to know tbat a tree is the representation of a two place predicate, that
this predicate is a passive predicate, that the first argument is expressed as c;;litic and so forth. Tlms the compiler
allows to generate trees but also complex feature structures that are an ･ｸｰｬｩ｣ｩｾ＠ translation of what each tree 'rneans'
linguistically.

In the previous approach we put the focus on the identification of particular nodes into the trees, and the
feature structures associated to the classes only concems the impossibilities in crossings. In the new approach
we build complex feature structures and less complex formulas as lots of constants equated in rorder to represent
redistributions simply disappear.

As an example, here are the features inherited by the following final classes:

• SUBJOVOBJ 1 :

[PRED [::::AT ｾｾＺｔ｟［Ｚｾ＠ SUBJECT], [INIT-FUNC objectJ)]]
• FULL-PERS-PASSIVE :

HEAD [vMORPH passive]

PRED ([

INIT-FUNC SUBJECT]
SUBCAT FIN-FUNC BY-OBJ ,

CONS [ID

CSET

• QUEST-BY-ÜBJ :

[PRED [CSET
• lNV-SUBJ:

[PRED (csET

[
EXTRACTION By-objl]]
BY-OBJ quest

[SUBJ invertedJ]]

[

INIT-F.UNC object])
FIN-FUNC subject
CONS []

240 · Proceedings of TAG+6

In this approach, needs and providings are dispatched as they were in the previous approach. Classes of
dimension 1 and 2 do not contain any fonnulas anymore. The third dimension realizes arguments as well as the
predicate subtrees.

As a sample we generate the tree representing the schema that allows to analyze the sentence Par qui sera
accompagnee Marie ? (By whom will be. accompanied Mary) with the combination ofthe following final classes
subjOVobjl,fall-pers-passive, passive, inverted-subject, questioned-par-obj(see figs. 3.1, 3.1, 3.1 and the feature
structures given above) :

PRED

HEAD

SUBCAT

s

ｾ＠
PP S

/'-.... ｾ＠
Prep N.J. V N..t.

1 /"-...
par V<> V<>

[ｾｾｏｒｐｈ＠ ｾｾｾｶ･＠ l
([

INIT-FUNC SUBJECT]

FIN-FUNC BY-OBJ ,

CONS ｾｑｕｅ ｓ ｔ＠
[

INIT-FUNC

FIN-FUNC

' CONS

CSET , SUBJ []
[

EXT.RACTION By-objl

PAR-OBJ ｾ＠

object])
subject

III inverted

Notice that when we use this second approach (which anyway is an enhancement of the node driven approach),
the feature structure keeps track of the successive mapping steps that are performed throughout the process of
generation. This approach consists of not declaring any structural constraints in the two first dimensions8. This
solution has the benefit of clearly splitting the functional from the topological part of the grammar. But at the time
of tbis writing, we are not able to establish a link between the feature structures associated to the classes and the
constants ofthe logical formulas used to generate the trees.

4. Conclusion

Tue tool developped so far, though rough and buggy9 enables us to experiment with metagrammar writing.
As we just mentioned it also raises interesting questions regarding the precise objects we are dealing with when
describing a grammar. One of the main drawbacks of our implementation is the absence of relationship between
the descriptive feature structure and the Jogical fonnulas. In our opinion, the root of this prob lern concems what
a TAG grammar really is: a set oftrees gathered in families together with indices indexing nodes (cf. nOVnl) are
more than just elementary trees.

References

Abeille, A., Une grammaire lexicalisee d 'arbres adjoints pour le fran9ais. Application a /'analyse automatique, Doctoral
dissertation, Universite de Paris 7, 1991.

Abeille, A, Candito, M.-H., "FTAG : A Lexicalized Tree Adjoining Grarnrnar for French", in Abeille, A. and Rarnbow, 0. Cd.
Tree Adjoining Grammars. Formalisms, Linguistic Analysis and Processing, Stanford, CSLI , 2000.

Candito, M.-H„ Candito, ﾷ ｾ＠ Principle Based Hierarchical Representation ofLTAGs'', COLING, 1996.

8. That also suppress the trouble related to node deletion as mentioned earlier for the analysis of the agentless passive.
9. . .. and available at http:/lwww.loriafr/equipes/led/outilslmgclmgc.html.

B. Gaiffe, B. Crabbe, A. Roussanaly 241

Candito, M.-H„Organisation modulaire et parametrable de grammaires electroniques lexicalisees. Application au ｦｲ｡ｮｾ｡ｩｳ＠ et
a /'italien, Doctoral dissertation, Universite de Paris 7, 1999.

Doran, c; Egedi, D, Hockey, A., Srinivas, B., Zaidel, M., "XTAG System - A Wide Coverage Grarnmar for English", COL!NG,
1994.

Doran, C, Sarkar, A., Srinivas, B., Xia, F., "Evolution ofthe XTAG System", in Abeille, A. and Rambow, 0. Cd. Tree Adjoining
Grammars. Formalisms, Linguistic Analysis and Processing, Stanford, CSLI, 2000.

Gerdes, K„ DTAG ? Attempts to generate a useful TAG for German using a metagrammar, TAG+6, 2002.
Joshi, A. K., Levy, L. S., Takahashi, M., "Tree Adjunct Grammars'', Journal of Computer Science, 1975.
Kinyon, A., "Hypertags", COLING, 2000.
Lopez, P., Bonhomme, P., "Resources for Lexicalized Tree Adjoining Grammars and XML encoding : TagML", LREC, 2000.
Rogers, J., Vijay-Shanker, K„ "Obtaining Trees from Their Descriptions : An Application to Tree-Adjoining Grammars",

Computational lntelligence, 10, 4, 1994.
Vijay-Shanker, K., Schabes, Y., "Structure Sharing in Lexicalized Tree-Adjoining Grarnmars'', COLJNG, 1992.

