
Evaluation of LTAG Parsing with Supertag Compaction
Olga Shaumyan, John Carroll and David Weir
School of Cognitive and Computing Sciences
University of Sussex
Brighton, BN1 9HQ
UK�
olgas,johnca,davidw � @cogs.susx.ac.uk

1. Introduction

One of the biggest concerns that has been raised over the feasibility of using large-scale LTAGs in NLP is the
amount of redundancy within a grammar’s elementary tree set. This has led to various proposals on how best to
represent grammars in a way that makes them compact and easily maintained (Vijay-Shanker and Schabes, 1992;
Becker, 1993; Becker, 1994; Evans, Gazdar and Weir, 1995; Candito, 1996). Unfortunately, while this work can
help to make the storage of grammars more efficient, it does nothing to prevent the problem reappearing when the
grammar is processed by a parser and the complete set of trees is reproduced. In this paper we are concerned with
an approach that addresses this problem of computational redundancy in the trees, and evaluate its effectiveness.

2. LTAG parsing

LTAG parsing involves (at least) the following two steps. Each word in the input sentence is associated with
that set of (elementary) trees (also called supertags) from the grammar that it can anchor. In large-scale grammars
such as the XTAG grammar (XTAG-Group, 1999) and the LEXSYS grammar (Carroll et al., 1998b), due to lexical
ambiguity, there are usually a great many trees that can anchor each word. Once all of these elementary trees or
supertags have been found, the parser must explore ways in which they can be composed—using substitution and
adjunction—to produce complete parses of the input string.

In various experiments using a large, automatically produced LTAG, Sarkar, Xia and Joshi (2000) measured
the time to derive a set of shared derivation forests representing all derivations for each sentence. They used a
grammar with 6,789 tree templates and 2,250 sentences of length 21 words or less, and concluded that the amount
of syntactic lexical ambiguity and the number of clauses in a sentence are more significant factors in determining
the time taken to compute a parse forest than sentence length.

To date, the most popular way of addressing the computational problem of lexical ambiguity in LTAG pars-
ing involves supertag filtering, where another step is included in the parsing processes (between the two phases
described above) which involves filtering out some of the possible supertags for words in the sentence (Joshi and
Bangalore, 1994; Bangalore, 1997a; Bangalore, 1997b; Chen, Bangalore and Vijay-Shanker, 1999). This can
dramatically reduce the time it takes to find all ways in which supertags can be combined together into complete
parses. Sarkar et al. demonstrate the potential benefit: parsing their 2,250 sentences with all supertags took 548,000
seconds, but this reduced to 21,000 seconds when the maximum number of supertags per word was limited to 60,
and to a mere 31.2 seconds when lexical ambiguity was completely eliminated.

However, a drawback of this approach is that, since supertag filtering cannot be 100% accurate, a proportion of
desirable supertags are filtered out, resulting in some parses being lost. For example in Sarkar et al.’s experiment,
a limit of 60 supertags per word resulted in over 40% of the sentences receiving no parse at all.

3. Elementary computation sharing

There is an alternative approach to the problem of lexical ambiguity in parsing that removes some of the
computational redundancy that results from lexical ambiguity1. Given some parsing algorithm, each elementary

�
We are extremely grateful to Fei Xia for providing us with the grammar used in these experiments, and to Fei Xia and

Anoop Sarkar for the help and advice they have given.
1. Note that the approach described in this section could be combined with supertag filtering.

c
�

2002 Olga Shaumyan, John Carroll and David Weir. Proceedings of the Sixth International Workshop on Tree Adjoining
Grammar and Related Frameworks (TAG+6), pp. 201–205. Universitá di Venezia.



202 Proceedings of TAG+6

tree can be viewed as invoking some fragment of computation (an elementary computation). Evans and Weir
(1998) showed that elementary computations corresponding to bottom-up parsing can be expressed as finite state
automata (FSA). All elementary computations for the supertags associated with a word can be combined into
a single FSA. By minimizing this automaton (using standard minimization algorithms) sharing of elementary
computation is achieved. The hope is that this will lead to significant reductions in parsing time.

To date, this proposal has only received limited evaluation. Carroll et al. (1998a) demonstrated that for a
large hand-crafted grammar the number of states was significantly reduced by merging and minimizing the FSA
associated with a word. For example, the numbers of states in the automaton for the word come (associated with
133 supertags) was reduced from 898 to 50, for break from 1240 to 68, and give from 2494 to 83.

This paper improves on this evaluation in two ways: firstly, the grammar used is automatically acquired, so we
are not open to the charge that it was designed to make this technique work particularly well; secondly, we measure
parse time, not just numbers of states for individual words. Even when the number of states is significantly reduced
it is not clear that parse time (as opposed to recognition time) will drop. This is because in order that parse trees
be recoverable from the parse table, a considerable amount of book-keeping is required when the table is being
completed. This increases both space and time requirements.

4. Experimental evaluation

We used a grammar that was automatically induced by Fei Xia (1999) from sections 00–24 of the Wall Street
Journal Penn Treebank II corpus (Marcus, Santorini and Marcinkiewicz, 1993). This is very similar to the grammar
used by Sarkar, Xia and Joshi (2000) and Sarkar (2000), though slightly larger, containing around around 7,500
elementary trees.

We implemented the algorithm described by Evans and Weir (1997) and Evans and Weir (1998), the details
of which are not repeated here. Prior to parsing, the grammar is precompiled as follows. For each word, the set of
trees that it can anchor is determined. This results in a total of 11,035 distinct tree sets. For each of these tree sets
we first build what we refer to as an unmerged FSA. This automaton contains a separate progression of transitions
for each of the trees in the set; using these automata for parsing gives a conventional LTAG parsing algorithm which
we used to give a baseline for our evaluation. To evaluate the approach of Evans and Weir we implemented a parser
that used minimized versions of the automaton with sharing of common elementary computation fragments.

There are 80,538 non-minimized automata (involving 488,421 states). Thus there is a total of 80,538 occur-
rences of one of the grammar’s elementary trees in the 11,035 tree sets. When these nonminimized automata are
minimized we have one automaton for each of the 11,035 tree sets; these automata contain a total of 153,022 states.
Thus, minimization gives an overall compaction of a factor of 3.19. In order to determine the computational benefit
of elementary computation sharing we ran both the merged and unmerged parsers on a set of 14,272 test sentences
of lengths 1–45 words taken from sections 00–24 of the Penn Treebank corpus. The results are shown in Table 12.
It is clear that numbers of items and CPU time are smaller for the merged parser, and that the savings increase with
longer sentences.

Given a tokenized sentence to be parsed, the time shown includes time to make a chart corresponding to the
sentence length, look up definitions for each word and seed the chart with them, and then fill the chart. The results
show that the parse time for the merged parser is around

��� �
that of the umerged parser, and that this ratio is fairly

consistent as the length of sentence increases. This is shown in Figure 1.

5. Discussion

We have presented an empirical evaluation of the automaton-based LTAG parsing algorithm presented by
Evans and Weir (1998). We used a grammar automatically generated from Penn Treebank trees with two parsers:
one in which elementary trees were processed individually, and one in which overlapping elementary computa-
tions were shared. The results show that merging elementary computations results in a significant, though not
spectacular, reduction in parse time, despite the increased amount of book-keeping required to make recovery of
parse trees possible. In future work we plan to determine exactly how much this book-keeping adds to parse time
by implementing a version of the merged parser in which book-keeping is omitted.

2. We ran both parsers on one 750MHz processor of a unloaded Sun Blade 1000 workstation with 1.5GB memory.



Olga Shaumyan, John Carroll and David Weir 203

One rather significant drawback of this evaluation is that the amount of lexical ambiguity in this grammar is
far less than is found in large-scale wide-coverage grammars such as the XTAG grammar (XTAG-Group, 1999).
Although the tree-bank includes examples of a wide variety of syntactic constructions, for any individual word, the
number of syntactic contexts (corresponding to alternative supertag possibilities for that word) that actually occur
in the Penn Tree Bank is generally far less than those that would be included in the lexical entry for that word in
a wide-coverage grammar. This is particularly true for words with low frequency. In future work we plan to look
into ways of obtaining more complete mapping from a lexical item to the set of supertags it can anchor.

300

200

100

0

Mean
time

0 10 20 30 40

Sentence length

Unmerged

� �

� �
��� � � �

� �
� �
� � �

� �
� �
�
� �
�Merged

Figure 1: Comparison of Running Times



204 Proceedings of TAG+6

References

Bangalore, Srinivas. 1997a. Complexity of Lexical Descriptions and its Relevance to Partial Parsing. Ph.D. thesis, University
of Pennsylvania, Philadelphia.

Bangalore, Srinivas. 1997b. Performance Evaluation of Supertagging for Partial Parsing. In Proceedings of the Fifth Interna-
tional Workshop on Parsing Technologies.

Becker, Tilman. 1993. HyTAG: A new type of Tree Adjoining Grammar for hybrid syntactic representation of free word order
languages. Ph.D. thesis, Universitat des Saarlandes.

Becker, Tilman. 1994. Patterns in metarules. In Proceedings of the Third International Workshop on Tree Adjoining Grammars,
pages 9–11.

Candito, Marie-Hélène. 1996. A principle-based hierarchical representation of LTAGs. In Proceedings of the 16th Interna-
tional Conference on Computational Linguistics, Copenhagen, Denmark, August.

Carroll, John, Nicolas Nicolov, Olga Shaumyan, Martine Smets and David Weir. 1998a. Grammar Compaction and Computa-
tion Sharing in Automaton-based Parsing. In Proceedings of the First Workshop on Tabulation in Parsing and Deduction,
pages 16–25.

Carroll, John, Nicolas Nicolov, Olga Shaumyan, Martine Smets and David Weir. 1998b. The LEXSYS Project. In Proceedings
of the Fourth International Workshop on Tree Adjoining Grammars and Related Frameworks, pages 29–33.

Chen, John, Srinivas Bangalore and K. Vijay-Shanker. 1999. New Models for Improving Supertag Disambiguation. In
Proceedings of the Eighth Conference of the European Chapter of the Association for Computational Linguistics.

Evans, Roger, Gerald Gazdar and David Weir. 1995. Encoding Lexicalized Tree Adjoining Grammars with a Nonmonotonic
Inheritance Hierarchy. In Proceedings of the 33rd Meeting of the Association for Computational Linguistics, pages 77–84.

Evans, Roger and David Weir. 1997. Automaton-based Parsing For Lexicalized Grammars. In Proceedings of the Fifth
International Workshop on Parsing Technologies, pages 66–76.

Evans, Roger and David Weir. 1998. A structure-sharing parser for lexicalized grammars. In Proceedings of the 36th Meeting
of the Association for Computational Linguistics and the 17th International Conference on Computational Linguistics,
pages 372–378.

Joshi, Aravind and Srinivas Bangalore. 1994. Disambiguation of super parts of speech (or supertags): almost parsing. In
Proceedings of the 15th International Conference on Computational Linguistics, pages 154–160.

Marcus, Mitchell, Beatrice Santorini and Mary Marcinkiewicz. 1993. Building a Large Annotated Corpus of English: The
Penn Treebank. Computational Linguistics, 19(2):313–330.

Sarkar, Anoop. 2000. Practical Experiments in Parsing using Tree Adjoining Grammars. In Proceedings of the Fifth Interna-
tional Workshop on Tree Adjoining Grammars and Related Frameworks.

Sarkar, Anoop, Fei Xia and Aravind Joshi. 2000. Some Experiments on Indicators of Parsing Complexity for Lexicalized
Grammars. In Efficiency in Large-Scale Parsing Systems. Workshop held at COLING 2000.

Vijay-Shanker, K. and Yves Schabes. 1992. Structure Sharing in Lexicalized Tree-Adjoining Grammar. In Proceedings of the
14th International Conference on Computational Linguistics, pages 205–211.

Xia, Fei. 1999. Extracting Tree Adjoining Grammars from Bracketed Corpora. In Proceedings of the 5th Natural Language
Processing Pacific Rim Symposium(NLPRS-99).

XTAG-Group, The. 1999. A Lexicalized Tree Adjoining Grammar for English. Technical Report
http://www.cis.upenn.edu/˜xtag/ tech-report/tech-report.html, The Institute for Research in
Cognitive Science, University of Pennsylvania.



Olga Shaumyan, John Carroll and David Weir 205

Sentence # items # items mean time mean time
length unmerged merged unmerged merged

1 3 1 0.0 0.0
2 19 5 0.0 0.0
3 104 17 0.0 0.0
4 327 52 0.0 0.0
5 681 121 0.0 0.0
6 1256 235 0.0 0.0
7 2298 473 0.0 0.0
8 3923 864 0.1 0.0
9 5844 1347 0.1 0.1

10 9022 2180 0.2 0.1
11 12674 3203 0.2 0.2
12 18000 4649 0.4 0.2
13 26110 6928 0.5 0.4
14 34074 9165 0.7 0.5
15 47564 12969 1.0 0.8
16 62771 17481 1.3 1.0
17 80515 22809 1.8 1.4
18 99121 27909 2.3 1.7
19 128028 36790 3.3 2.5
20 163347 47322 4.1 2.9
21 193701 56268 5.1 5.2
22 277740 80430 5.1 3.1
23 274474 81562 5.0 3.1
24 354912 101143 6.8 4.1
25 427291 124919 8.5 5.3
26 532109 154792 10.9 6.7
27 683355 195608 14.5 8.9
28 731932 208338 15.9 9.3
29 855873 253130 18.8 11.6
30 873492 258383 19.7 12.3
31 1089989 314794 25.2 15.1
32 1291749 371601 30.8 18.6
33 1838306 556519 47.2 30.2
34 1917227 574944 51.1 31.6
35 2364987 710872 62.1 38.9
36 2487632 651374 67.1 36.1
37 3381691 982343 98.6 57.4
38 2864371 780416 82.0 44.7
39 3290281 979203 93.4 57.1
40 3755657 1106993 109.5 65.1
41 4993534 1467100 164.2 96.4
42 4843654 1380099 154.3 90.0
43 7071346 1983426 238.5 132.1
44 7655510 2282781 266.5 155.3
45 7772779 2317031 274.3 174.3

Table 1: Mean numbers of items and parse times (CPU seconds) per sentence, for sentences of length 1–45 words.


