
A Formal Proof of Strong Equivalence for a Grammar
Conversion from LTAG to HPSG-style

Naoki Yoshinaga,
�

Yusuke Miyao,
�

and Jun’ichi Tsujii
���

�
University of Tokyo

�
CREST, JST (Japan Science and Technology Corporation)

1. Introduction

This paper presents a sketch of a formal proof of strong equivalence,1 where both grammars generate equiva-
lent parse results, between any LTAG (Lexicalized Tree Adjoining Grammar: Schabes, Abeille and Joshi (1988))
�

and an HPSG (Head-Driven Phrase Structure Grammar: Pollard and Sag (1994))-style grammar converted from
�

by a grammar conversion (Yoshinaga and Miyao, 2001). Our proof theoretically justifies some applications of
the grammar conversion that exploit the nature of strong equivalence (Yoshinaga et al., 2001b; Yoshinaga et al.,
2001a), applications which contribute much to the developments of the two formalisms.

In the past decades, LTAG and HPSG have received considerable attention as approaches to the formalization
of natural languages in the field of computational linguistics. Discussion of the correspondences between the two
formalisms has accompanied their development; that is, their linguistic relationships and differences have been in-
vestigated (Abeillé, 1993; Kasper, 1998), as has conversion between two grammars in the two formalisms (Kasper
et al., 1995; Tateisi et al., 1998; Becker and Lopez, 2000). These ongoing efforts have contributed greatly to the
development of the two formalisms.

Following this direction, in our earlier work (Yoshinaga and Miyao, 2001), we provided a method for con-
verting grammars from LTAG to HPSG-style, which is the notion that we defined according to the computational
device that underlies HPSG. We used the grammar conversion to obtain an HPSG-style grammar from LTAG (The
XTAG Research Group, 2001), and then empirically showed strong equivalence between the LTAG and the ob-
tained HPSG-style grammar for the sentences in the ATIS corpus (Marcus, Santorini and Marcinkiewicz, 1994).
We exploited the nature of strong equivalence between the LTAG and the HPSG-style grammars to provide some
applications such as sharing of existing resources between the two grammar formalisms (Yoshinaga et al., 2001b),
a comparison of performance between parsers based on the two different formalisms (Yoshinaga et al., 2001a),
and linguistic correspondence between the HPSG-style grammar and HPSG. As the most important result for the
LTAG community, through the experiments of parsing within the above sentences, we showed that the empirical
time complexity of an LTAG parser (Sarkar, 2000) is higher than that of an HPSG parser (Torisawa et al., 2000).
This result is contrary to the general expectations from the viewpoint of the theoretical bound of worst time com-
plexity, which is worth exploring further. However, the lack of the formal proof of strong equivalence restricts
scope of the applications of our grammar conversion to grammars which are empirically attested the strong equiv-
alence, and this prevents the applications from maximizing their true potential. In this paper we give a formal
proof of strong equivalence between any LTAG

�
and an HPSG-style grammar converted from

�
by our grammar

conversion in order to remove such restrictions on the applications.

2. Grammar conversion

We start by stating our definition of an HPSG-style grammar, and then briefly describe our algorithm for con-
verting grammars from LTAG to HPSG-style. We hope that the reader will refer to the cited literature (Yoshinaga
and Miyao, 2001) for a more detailed description.

We defined an HPSG-style grammar, the form of the output of our conversion, according to the computational
architecture which underlies HPSG (Pollard and Sag, 1994). An HPSG-style grammar consists of lexical entries
and ID grammar rules, each of which is described with typed feature structures (Carpenter, 1992). A lexical
entry for a word must express the characteristics of the word, such as its subcategorization frame and grammatical
category. An ID grammar rule must represent the constraints on the configuration of immediate constituency, and
�

This research was funded by JSPS Research Fellowships for Young Scientists.
1. Chomsky (1963) first introduced the notion of strong equivalence between grammars, where both grammars generate
the same set of structural descriptions (e.g., parse trees). Kornai and Pullum (1990) and Miller (1999) used the notion of
isomorphism between sets of structural descriptions to provide the notion of strong equivalence across grammar formalisms,
which we have adopted in our research.

c
�

2002 Naoki Yoshinaga, Yusuke Miyao, and Jun’ichi Tsujii. Proceedings of the Sixth International Workshop on Tree
Adjoining Grammar and Related Frameworks (TAG+6), pp. 187–192. Universitá di Venezia.

188 Proceedings of TAG+6

X

X

Y

X

X

Y

γ uγ

vγ

X

X

X

uγ
1uγ

1γ , …

, …

T’

X

X

2γ

2uγ

Figure 1: Sketch for the division transformation (left) and the substitution transformation (right)

Sym:

Arg:

Sym :
Leaf :
Dir : right
Foot?: +

VP

S

NP

V

S
VP Sym :

Leaf :
Dir : right
Foot?:

NP
S

,

SV *

think

think :

anchor

foot node*
substitution node

Sym :
Arg :

Arg :

1

Sym :
Leaf :
Dir :
Foot? :

Sym :
Arg :

2

3
1
3

Sym :
Arg :

Arg :

1

Sym :
Leaf :
Dir :
Foot? :

Sym :
Arg :

2

3
1
3 2

4

4

substitution node

trunk node trunk node

foot node
2

Left substitution rule Left adjunction rule

left left
+

Figure 2: A conversion from a canonical elementary tree to an HPSG lexical entry (left) and grammar rules: the
substitution rule (center) and adjunction rule (right)

not be a construction-specific rule specified by lexical characteristics. The formal definition of an HPSG-style
grammar converted from LTAG

�
is given later in Section 3.3.

Our conversion algorithm consists of two kinds of conversion; i) a conversion from LTAG into canonical
LTAG, LTAG which consists only of canonical elementary trees, and ii) a conversion from the canonical LTAG into
an HPSG-style grammar. Canonical elementary trees are tree structures satisfy the following conditions; Condition
1: A tree must have only one anchor, and Condition 2: Every branching structure in a tree must contain trunk nodes.
Trunk nodes are nodes on a trunk which is a path from an anchor to the root node. We call a subtree of depth ���������
that includes no anchor a non-anchored subtree. Elementary trees which violate Condition 1 are converted into
canonical ones by dividing them into single-anchored parts (the division transformation: the left-hand side of
Figure 1). Elementary trees which violate Condition 2 are initially divided into multiple subtrees by the division
transformation, each of which has at most one anchor, and then converted into canonical ones by substituting the
deepest nodes in the non-anchored subtrees with every initial tree (the substitution transformation: the right-hand
side of Figure 1). We give the formal definition of these transformations later in Section 3.2. Conversion of a
canonical elementary tree is straightforward; that is, we traverse the trunk of a canonical elementary tree from
its anchor to root, regard the leaf nodes as the anchor’s arguments, and store the symbols of the leaf nodes and
the trunk nodes as Leaf and Sym features respectively in a stack (Arg feature in the left-hand side of Figure 2),
where Dir and Foot? features are the direction of the leaf node relative to the trunk and the type of the leaf node,
respectively. A set of pre-determined rules manipulates the stack to emulate substitution and adjunction; namely,
substitution rules (the center of Figure 2) and adjunction rules (the right-hand side of Figure 2).

3. A formal proof of strong equivalence

The whole proof consists of two pieces, each of which respectively proves that strong equivalence is guaran-
teed before and after the two conversions mentioned in the previous section.

3.1. Definitions

We first define LTAG, according to the definition of TAG given by (Vijay-Shanker, 1987). We then define a
derivation tree, which is a structural description of LTAG, and introduce the notion of strong equivalence.

We hereafter denote a tree as a set of pairs 	�
����� where
������ , which is a free monoid of the set of natural
numbers, and ����� , which is a finite set of alphabets (Gorn, 1962). For example, a tree in the left-hand side of
Figure 2 is denoted as � ��� ��� � � ������ �! #" �$���%�!& �(')" � � ���%�!&*��� ��� � � ���%�!&*�+& ��� � � ����+&,�-�.�/� ��0�1(2 �43(�!5 . An inequality

76�8 is satisfied if and only if there is a 9:�;�<� such that 8>=?
 � 9 . Another inequality
7@�8 is satisfied if and
only if
A6?8 and
CB=�8 .

Yoshinaga, Miyao, and Tsujii 189

Definition 3.1 (Lexicalized Tree Adjoining Grammar (LTAG)) Lexicalized Tree Adjoining Grammar
� 2 is a

quintuplet � � �! �� �!�%��� ��� � where
�

and �� are a finite set of terminal symbols and a finite set of nonterminal
symbols respectively, � is a distinguished nonterminal symbol called the start symbol, and � and � are a finite set
of initial trees and a finite set of auxiliary trees respectively.

Here, an elementary tree �?���
	�� is a tree whose leaf nodes are labeled by � �? ���	�� or ?� � , and
whose internal nodes are labeled by � � ���	�� . The symbol of one leaf node in an auxiliary tree � �
� is
identical to that of its root node, and is specially marked for a foot node. Note that more than one leaf nodes called
anchors in an elementary tree � are labeled with � � , and leaf nodes other than anchors and foot nodes are
marked for substitution nodes.

We denote adjunction and substitution of several trees ���-������� ����� into a tree � at 3 distinct addresses ���-������� �����
by �������! ���-�"�#��%$ ������ ��� ������ $ where 3 � � , and ��& �����& $ indicates substitution at ��& of ���& in the case where ��& is a
substitution node, or indicates adjunction at ��& of ���& in the case where �'& is an internal node. We call this production
as a derivation for � if all of the addresses of the substitution nodes in � are included in ��� ������� �(��� . A derivation
for � without substitution and adjunction is denoted as ���)� � .

We use the above notations to define a derivation tree, which represents the history of combinations of trees
and is a structural description of LTAG.

Definition 3.2 (Derivation trees) A derivation tree *,+ for LTAG
� = � � �� ��#�!�%��� ��� � is defined by a set of

derivations as follows:
* + = ��� �& � �.- � 6?2�60/��"�'&%�1��	�� 53254 +

where 4 +76 ��� �& �8� & � � �"� �&:9 $ ������ � � ��� �&<; $ -(3<� � ��2>=7/7��� & �"� &@? �A�A	B� 5 . The derivation tree *C+ must
satisfy the following condition: �D�& can appear once respectively in the left-hand side and the right-hand side of
derivations except that one distinguished elementary tree �)E , which is the root of the derivation tree *,+ and �#�E
can appear once in the left-hand side of the derivation, because �)& can adjoin or substitute once.3 Note that the
inequality 2F= 2HG � � is necessary to avoid cyclic applications of substitution and adjunction among elementary
trees.

Finally, we give the definition of strong equivalence between two given grammars
� � and

�JI
.

Definition 3.3 (Strong equivalence) Two given grammars
� � and

�,I
are strongly equivalent if and only if there

is a bijective (i.e., one-to-one and onto) function which maps a set of structural descriptions of
� � , K�L � � � � , to a

set of structural descriptions of
�MI

, K�L � �,I � .
In what follows, we assume that structural descriptions of LTAG are derivation trees in which the root node of

��E is labeled by the start symbol S in the definition 3.2.

3.2. Proof of strong equivalence for the two tree transformations

In this section we give a proof that strong equivalence is guaranteed for grammars before and after the two
tree transformations. In this abstract, We omit the proof of the substitution procedure, because the substitution
transformation is exactly the same as the one that Schabes and Waters (1995, pp. 494–495) defined and proved in
their strong lexicalization procedure of CFG into Lexicalized Tree Insertion Grammar.

The division transformation is formalized in the following lemma.

Lemma 3.1 (The division transformation) Let
� = � � �� ��#���%�(�(�(� � be LTAG. Let ���1��	N� be an elementary

tree and let O be an internal node with address
 of � that is labeled by � and be not on the spine. We divide � at
O and obtain two trees ��P ����Q as follows. Let ��P be a subtree except that a node labeled by RTS� ���	 � is added
to its root node, and let � Q be a supertree, except that the symbol of O is relabeled by the symbol RUS�? �� and
by marking it for substitution as shown in Figure 1. Define

� �%= � � �� ��V	C�WR 5 �!�%���X� �(�F� � where �X� and �Y� are
created as follows:

If � �Z� then �X� = � �,[��� 5-� 	 ���#P(����Q 5 and �F� =\�
If � �Z� then �X� =]�F	 ����Q 5 and �F� = � �\[��� 5 � 	����#P 5

Then,
� � is strongly equivalent to

�
; that is, there is a one-to-one onto mapping from the set of derivation trees

K�L � � � � generated by
� � to the set of derivation trees KDL � � � generated by

�
for the same sentence.

2. Due to limitations of space, we omit the notion of adjoining constraints and the proof including the notion in this abstract,
and then assume all internal nodes take selective adjoining constraints.
3. The condition implies that no trees can substitute or adjoin to two different nodes.

190 Proceedings of TAG+6

Proof We show that there is a one-to-one mapping from a derivation tree *J+ � �\K L � � � � to a derivation tree
* + ��K L � � � .

Assume each derivation tree *C+ � consists of elementary trees ��� � �������$�"��� 5 , � G �Z� 	 � for � 6 � 6 � . Then,
we can represent the derivation tree *,+ � by the set of derivations as shown in the definition 3.2.

Since we assume that a derivation tree is rooted by an elementary tree whose symbol of the root node is � ,
every occurrence of �DQ in * + � must always accompany with �DP and vice versa. In the following procedure, we
construct a one-to-one mapping from * + � to * + by replacing every occurrence of �DP which takes a substitution
of ��Q with � in derivations in * + � .

1. When ��P S� ��� � ������� ����� 5 or ��Q
S� ��� � ������� �"��� 5 , * + � includes neither �DP nor ��Q . * + � therefore consists of
� & � � ��	>�M[��� 5 � 60��	�� , there is exactly the same derivation tree *,+ in K L � � � .

2. When � P ����� � �������$����� 5 , we can construct one derivation tree *,+ from * �+ as follows.

(a) We first replace every occurrence of � � P in the right-hand side of derivations with � � .
(b) We next replace every derivation whose left-hand side is either ��� P or �#� Q .

i. When a root node with address � of ��Q takes substitution or adjunction, a pair of two derivations
whose left-hand side is �D� P and ��� Q is denoted as �D� P � �#P� ��� ������($ ������ ������� ��������D� $
����� Q $ and ��� Q �
�#Q' � �"�#�� $ 	
��� � �������� � $ ������ 	 � ������ $, where 3 =�1 � � . Here we assume ��&�
 for � 6 2,@�1 without loss of
generality. We replace these two derivations with the following derivation:

����� �3 � � ������ $ ������ � ���D� ���������� $
4�"�#�� $
 � �,� 	 ��� � �������� � $ ������
 � �,� 	 � ������ $
ii. If a root node with address � in �DQ takes neither adjunction nor substitution, we can also replace a pair of

two derivations whose left-hand side are respectively ��� P and ��� Q with one derivation whose left-hand side
is �#� in a similar way as above.

(c) By repeating the above replacements at most the number of pairs of two derivations for � P and �#Q , we can
obtain a set of derivations * + without ��� P and ��� Q . The replacement in (a) is valid since ��P includes both root
node and foot node of � , and thus � can substitute or adjoin every node at which � P does. In the procedure
(b), we replace exactly the same number of � � P as the procedure (a). The resulting derivations including � �
is valid in

�
because ��� appear only once in the right-hand side and the left-hand side of the derivations,

respectively.

The resulting derivation tree *C+ is the same as *C+ � except that every occurrences of �DP which takes a substitution
of � Q with � . Since � P which takes a substitution of � Q is the same as � except that one internal node is added,
this does not cause effect on the frontier string. Also, when * �+ � � *

I
+ � are mapped to * �+ �%*

I
+ and * �+ and *

I
+ are

equivalent, * �+ � and *
I
+ � are also equivalent owing to the formulation of the above mapping.

On the other side, we can also construct a one-to-one onto mapping from * + to * + � by replacing every
occurrence of � in * + by ��P which takes a substitution of �DQ . Due to limitations of space, we omit the proof here.

In this way, we can construct a one-to-one onto mapping from a derivation tree * + � ��K�L � � � � to a derivation
tree * + �ZK#L � � � for the same sentence. This indicates that

�
is strongly equivalent to

� � . �
3.3. Proof of strong equivalence for the conversion from canonical LTAG to HPSG-style

In this section, we prove that strong equivalence is guaranteed for the latter part of our grammar conversion,
that is, a conversion from canonical LTAG

�
to an HPSG-style grammar

� � . In the following proof, we first
introduce the notion of origination for every Sym and Leaf feature in HPSG lexical entries. We next define an
HPSG parse, which is a structural description of an HPSG-style grammar. We then prove the strong equivalence
by giving a one-to-one onto mapping from a derivation tree by

�
to an HPSG parse by

� � .
Definition 3.4 (An HPSG-style grammar converted from LTAG) Given canonical LTAG

� =� � �� ��#�!�%��� ��� � , an HPSG-style grammar
� � converted from

�
is denoted by quituplet � � �� ��#���%���;��� �

where ��&:��� is a lexical entry converted from ��&�� � 	B� and � is substitution and adjunction rules. �W& is
denoted as follows: ��& = ����� � ��� �-��� � ����� � 0�� � ������� � ��� � ��� � ���X� ��0"� � � where 3�� � , ��� is the symbol of the mother
node of the anchor in � & , and � G � � 	 ��#��� G � � 	 ��#��� G � ���! #"%$�&$��')(�*�& 5 � 0 G � �,+ ��[5 are values of Sym,
Leaf, Dir, Foot? features in the

�
-th element of the Arg feature in � & . When the length of the Arg feature of � & is 0,

� & is denoted as � & = ��� � ��- � .

Yoshinaga, Miyao, and Tsujii 191

First, we introduce the notion of origination for the Sym and Leaf features in HPSG lexical entries in order
to define an HPSG parse, which represents the histories of rule applications to lexical entries and is a structural
description of an HPSG-style grammar. We hereafter assume that each HPSG lexical entry � & is converted from a
canonical elementary tree � & . We define the origination of the feature in � & as 	�
4�"� & � , which indicates that the value
of the feature originates from the symbol of a node with address
 in �)& .

Next, we define a rule history for � & , which is a history of rule applications to a lexical entry �W& in the parse
tree. We then follow the parse tree from an anchor of � & to root, and then assign each rule application as an element
of the rule history for � & if and only if the applied rule pops an element which originates from an element of the
Arg feature in ��& . Assume that ��& is denoted as the one given in the definition 3.4. A rule history for � & is denoted
as follows, where the origination of � G and the feature unified with �<G are 	H� G ����&�� and 	�	-�"�'& ? � , respectively.

1. When ��& �1� , no application of the adjunction rule is assigned to �W& as an element of the rule history for � & . The
rule history is then denoted as � �& � ��&" ��� ��� �& 9 $ ������ ��� ��� �& ; $.

2. When ��&#��� , one application of the adjunction rule is assigned to �W& as an element of the rule history for � & .
The rule history for ��& is then denoted as � �& � ��&� ���-��� �& 9 $ ����� ������� ��� �& ��� 9 $ 	-����& � $ ����� �-��� �& ��� 9 $ ������ ��� ��� �& ; $ where
0 � = + .

When the length of the Arg feature of � & is 0, a rule history for ��& is denoted by � �& � � .
Definition 3.5 (HPSG parses) Given canonical LTAG

� = � � �� ��#���%�(�(�(� � and an HPSG-style grammar
� � =� � �� ��#�!�%��� ��� � converted from

�
, an HPSG parse

� + � is denoted by a set of rule histories for � & � � as
follows:

� + � = �%� �& � �.- � 6 2.6�/7��� & ��� 532 �Y+ � 2�� + �
where � + � is a set of rule histories for ��& converted from ��& �Z� , and � + � is a set of rule histories for � & converted
from �'&���� , and elements in � + � and � + � are denoted as the ones in the above paragraph where 2 =�/ .

Since the above HPSG parse
� + must uniquely correspond to the parse tree, we require some conditions on� + . First, � �& where ��& �A� can appear once respectively in the left-hand side and the right-hand side of rule

histories except that one distinguished lexical entry � E where � �E appears once in the left-hand side of the rule
history for � E . Second, � �& where � & �\� must appear only once in the left-hand side of the rule history for � & .
Third, � 6 2 G @ 2 for the rule history for � & where � & �
� . Fourth, � 6 2 G @ 2 where

� B= 1 , and 2 � = 2 , for
the rule history for � & where � & �1� . The third and fourth conditions are necessary to avoid cyclic applications of
grammar rules to lexical entries.

Lemma 3.2 Let
� = � � �� �� ���%�(�(�(� � and

� � be LTAG and an HPSG-style grammar converted from
�

, respec-
tively. Then, we can map a derivation tree * + by

�
one-to-one onto to an HPSG parse

� + � by
� � .

Proof In the following proof, we first show a mapping from
� + � to a set of derivations * + � , and then show that

* + � is a valid derivation by
�

.
Suppose an HPSG parse denoted as the one given in the definition 3.5. We can map it to a set of derivations * + �

in the following procedure. For each � & where ��& �B� , we eliminate 	-����& � $, which corresponds to an application
of the adjunction rule, and add the element 	-��� �& $ to the right-hand side of the rule history for � & � . Then, we obtain
a set of derivations * + � by replacing ��& ? and � �& ? with ��& ? and ���&@? in the rule history for � & and by assigning it as the
derivation for � & . This mapping is one-to-one because a pair operation of an elimination of 	-��� & � $ and an addition
of 	 ��� �& $ is one-to-one mapping.

Following the definition 3.2, we show that * + � is a valid derivation tree by
�

. First, every substitution and
adjunction in the derivations in * + � must be valid in

�
. Since the substitution and adjunction rules preserve

the order of the elements in the Arg feature of �W& , substitution rules always unify the symbol of the substitution
node with the symbol of the root node of ��& ? , which represents the same constraint as the one on which substitution
imposes. We can give the similar argument for an adjunction rule. The substitution and adjunction in the derivations
in * + � are then valid in

�
. Second, all addresses in the substitution nodes of ��& must be included in its derivation.

This is apparently guaranteed by the definition of the rule history for � & . Third, ���& can appear only once respectively
in the right-hand side and the left-hand side of the derivations. This is apparently guaranteed for �3�& where ��&.� �
by the definition 3.5, and is guaranteed for ���& where � & �V� because � �& does not appear in the right-hand side of
rule histories, 	-��� & � $ appears only once in the rule history for � & , and the elimination of 	-��� & � $ accompanies the
addition of 	 �����& $ once to the right-hand side of the derivation for � & � . Fourth, the elements in the right-hand side

192 Proceedings of TAG+6

of the derivation for � & must be � G �"�#�&@? $ where 2 G @ 2 . This is apparently guaranteed for �D�& where � & ��� by the
definition 3.5, and is guaranteed for �D�& where ��& �1� because the addition of 	-�"�D�& $ for the derivation for �D�& � satisfy
2 �N=?2 due to the definition 3.5.

The frontier string is preserved before and after this mapping from
� + � to * + � , because ��& stores the same

LP constraints between � & and � G for 2*B= �
as the constraints between ��& and � G . Then, an HPSG parse

� + � by
� �

mapped one-to-one to a derivation tree * + � which is valid in
�

.
On the other side, we can construct a mapping from * + to an HPSG parse

� + as the inverse procedure for
the above mapping from

� + � to * + � . The obtained
� + is a valid HPSG parse by

� � because we can give a similar
argument for the validity of the rule histories in

� + . �
Hence, strong equivalence is guaranteed for a conversion from canonical LTAG to an HPSG-style grammar.

The two proofs given here and in the previous section prove the strong equivalence between any LTAG
�

and an
HPSG-style grammar converted from

�
by our grammar conversion.

4. Conclusion

In this research, we proved that strong equivalence is guaranteed between any LTAG grammar
�

and an HPSG-
style grammars converted from

�
by our grammar conversion. Our proof theoretically justifies some applications

of the grammar conversion that exploit the nature of strong equivalence (Yoshinaga et al., 2001b; Yoshinaga et al.,
2001a), applications which contribute much to the developments of the two formalisms.

References

Abeillé, Anne. 1993. Les nouvelles syntaxes: grammaires d’unification et analyse du français. Armanda Colin. in French.
Becker, Tilman and Patrice Lopez. 2000. Adapting HPSG-to-TAG compilation to wide-coverage grammars. In Proc. of

TAG+5, pages 47–54.
Carpenter, Bob. 1992. The Logic of Typed Feature Structures. Cambridge University Press.
Chomsky, Noam. 1963. Formal properties of grammar. In R. D. Luce, R. R. Bush and E. Galanter, editors, Handbook of

Mathematical Psychology, volume II. John Wiley and Sons, Inc., pages 323–418.
Gorn, Saul. 1962. Processors for Infinite Codes of Shannon-Fano type. In Proc. of the Symposium on Mathematical Theory of

Automata, pages 223–240.
Kasper, Robert. 1998. TAG and HPSG. Talk given in the tutorial session at TAG+4.
Kasper, Robert, Bernd Kiefer, Klaus Netter and K. Vijay-Shanker. 1995. Compilation of HPSG to TAG. In Proc. of ACL 1995,

pages 92–99.
Kornai, A. and G. K. Pullum. 1990. The X-bar Theory of Phrase Structure. Language, 66:24–50.
Marcus, Mitchell, Beatrice Santorini and Mary Ann Marcinkiewicz. 1994. Building a large annotated corpus of English: the

Penn Treebank. Computational Linguistics, 19(2):313–330.
Miller, Philip H. 1999. Strong Generative Capacity. CSLI publications.
Pollard, Carl and Ivan A. Sag. 1994. Head-Driven Phrase Structure Grammar. University of Chicago Press and CSLI

Publications.
Sarkar, Anoop. 2000. Practical Experiments in Parsing using Tree Adjoining Grammars. In Proc. of TAG+5, pages 193–198.
Schabes, Yves, Anne Abeille and Aravind K. Joshi. 1988. Parsing strategies with ‘Lexicalized’ grammars: Application to Tree

Adjoining Grammars. In Proc. of COLING 1992, pages 578–583.
Schabes, Yves and Richard C. Waters. 1995. Tree Insertion Grammar: A Cubic-Time Parsable Formalism that Lexicalizes

Context-Free Grammar without Changing the Tree Produced. Computational Linguistics, 21(4):479–513.
Tateisi, Yuka, Kentaro Torisawa, Yusuke Miyao and Jun’ichi Tsujii. 1998. Translating the XTAG English Grammar to HPSG.

In Proc. of TAG+4, pages 172–175.
The XTAG Research Group. 2001. A Lexicalized Tree Adjoining Grammar for English. http://www.cis.upenn.edu/˜xtag/.
Torisawa, Kentaro, Kenji Nishida, Yusuke Miyao and Jun’ichi Tsujii. 2000. An HPSG Parser with CFG Filtering. Natural

Language Engineering, 6(1):63–80.
Vijay-Shanker, K. 1987. A Study of Tree Adjoining Grammars. Ph.D. thesis, Department of Computer & Information Science,

University of Pennsylvania.
Yoshinaga, Naoki and Yusuke Miyao. 2001. Grammar conversion from LTAG to HPSG. In Proc. of the Sixth ESSLLI Student

Session, pages 309–324.
Yoshinaga, Naoki, Yusuke Miyao, Kentaro Torisawa and Jun’ichi Tsujii. 2001a. Efficient LTAG parsing using HPSG parsers.

In Proc. of Pacific Association for Computational Linguistics (PACLING 2001), pages 342–351.
Yoshinaga, Naoki, Yusuke Miyao, Kentaro Torisawa and Jun’ichi Tsujii. 2001b. Resource sharing among HPSG and LTAG

communities by a method of grammar conversion from FB-LTAG to HPSG. In Proc. of ACL/EACL 2001 Workshop on
Sharing Tools and Resources for Research and Education, pages 39–46.

