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Abstract

We describesomeof the complications
involved in expressingthe techniqueof
induction when automaticallygenerating
textual versionsof formal mathematical
proofs producedby a theoremproving
system,anddescribeour approachto this
problem. The pervasivenessof induc-
tion within mathematicalproofs makes
its effective generationvital to readable
proof texts. Our focus is on planning
texts involving induction. Our efforts are
driven by a corpus of human-produced
prooftexts,incorporatingbothregularities
within thiscorpusandtheformalstructure
of inductioninto coherenttext plans.

1 Introduction

The goal of having natural languageversionsof
formal, computer-generatedmathematicaltexts has
beendriven by the increasingquantity of formal
mathematicsbeingproducedbyavarietyof projects.
Thepurposesfor thesecollectionsvariesover peda-
gogicalpurposes(Constable,1996),proving sophis-
ticatedtheorems(Cederquistetal., 1997),formaliz-
ing foundationaltheories(Huanget al., 1994),and
usingtheoremproving to verify codeandhardware
(O’Leary et al., 1994; Liu et al., 1999). For all of
thesepurposes,someof the individualswishing to
understandthe proofswill not be familiar with the
systemusedto producetheproofsandits specialized
syntax. The domainof formal mathematicshasa

definiteneedfor naturallanguageversionsof its ob-
jects.Thenecessityof automaticgenerationof these
texts is clearnot only from thelargenumberof for-
mal proofsbeingproduced,but alsofrom the tech-
nicalexpertiserequiredto understandtheproofsand
transformthemto naturallanguagereliably. We fo-
cusonproducingfull, staticproofs,suchaswouldbe
foundin textbooksor researchpublications.Though
this preventsthe degreeof customizationavailable
from interactivesystems(suchas(Fiedler, 2001)),it
allows the applicationof existing natural language
searchand summarizationtools over the collected
proof textsof a formal library.

One of the most pervasive and complex proof
techniquescommon to almost every domain of
mathematicsis proofby induction. Inductionis used
in proofsfrom numbertheoryto codeverification.It
is oftenthefirst sophisticatedprooftechniquetaught
in introductorylogic coursesbut is usedin themost
complicatedproofs in both mathematicsand com-
puterscience.An ability to expressinductionclearly
is centralto any effective tool for generatingtexts
from formalproofs.

In this paper, we will lay out someof the com-
plicationsinvolved in expressinginduction in texts
andour proposedsolutions. Our focus will be on
planningthetexts to expressthiswide-rangingtech-
nique. Our examinationof inductionwill be driven
by a corpusof human-producedproof texts which
employ induction,aswell asa commitmentto en-
suring the validity of the formal proof within the
informal proof text. We will describean approach
currentlybeingusedto generatetexts from formal
proofs andhow this systemis expandedto handle



induction.Finally, wewill discusshow ourobserva-
tions aboutinductionmayapply to producingtexts
employingothersophisticatedprooftechniquessuch
asdiagonalization.

2 Background

2.1 Previous Work

Many of the systemsactively in useproducingfor-
mal proofsemployhigh-level strategies,or tactics,
to encodeproof strategies,guiding reasoningwith
proof heuristics(Huanget al., 1994; Gordon and
Melham,1993).This is in contrastto systemswhich
produceand presenttheir proofs via the low-level
logical rules which establishthe system’s logical
framework. Therecanbefrom 10’s to 100’sof low-
level rulesneededto performthesameinferenceas
doneby a singlehigh-level rule. Onecanliken this
distinction to the gapbetweenhigh-level program-
ming languagesthatpeopleprogramwith andlow-
level assemblylanguageswith a fixed numberof
simplecommands.In many tacticprovers,userscan
definetheir own tacticsor combinetactics,some-
timesnondeterministically.

Choosinga representationinvolvesa tradeoff be-
tween thesetwo views of formal inferences,one
which is limited in form but producesvery large
proofswith inferencestepsmuchsmallerthanpeo-
ple naturally think in, andonewhich is arbitrarily
complex andheuristicbut producesproofsatamore
natural level of detail. Previous approacheshave
concludedthattacticproofs,becauseof theirbreadth
of applicationand nondeterminism,can be unreli-
ableasinput to a generationsystem(Chester, 1976;
Coscoy, 1997;Coscoyet al., 1995). Working only
from a low-level proof, though,requiresrebuilding
thehigh-level structureof theprooffrom thebottom
up. The planningprocessrequiresextensive math-
ematicalknowledgeto deducehow the small steps
shouldbereassembledinto naturalinferenceblocks.

It is clearfrom this work, andour own observa-
tions,thata tacticproof aloneis not sufficient input
to agenerationsystem(Huang,1994).Oursolution,
though,is to usethetacticproofto guidetheprelim-
inaryplanandthenusethelow level prooftosupple-
menttheplanwith any missingdetailsandverify its
accuracy (Holland-Minkley et al., 1999). Because,
in thetheoremproving systemweareworkingwith,
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Figure1: SampleNuprl proof, aspresentedin cor-
puscollectionstudy, proving theStampsTheorem

it is requiredthattactic inferencesbeexpandableto
a sequenceof primitive inferences,which arestatic
within the system,we candirect our searchof the
low-levelproofbyanchoringit with referencepoints
in thetacticproof.

2.2 Description of Nuprl proofs

Our generationprocessusesproofs produced,in-
dependentlyof any natural languagegeneration
scheme,by theNuprl theoremproving system(Con-
stableet al., 1986). The structureof Nuprl proofs
and the tactics available to prove them were de-
signedwith an eye towardsconsistency with men-
tal modelsof mathematics,while still maintaining
the system’s type-theoreticfoundation.The formal
proofsarestructuredin trees,whereeachnodecon-



tainsthe currentgoal to be proved,any currenthy-
potheses,and the tactic to be appliedto prove the
goal; the directededgesrepresentthe application
of tacticsto producesubgoals.Leavesstoregoals
which areentirely establishedby theapplicationof
the correspondingtactics, and the root node con-
tainsa null hypothesislist andthe proof’s theorem
asa goal. Thebeginningportionof a Nuprl proof is
shown in figure1.

Tacticsmakeprogresson proving the goalsof a
prooflargelythroughheuristicapproachestosearch-
ing for proofs or building justificationsof specific
forms. For example,theArith tacticperformsba-
sic arithmeticsimplificationswhile theDecide x
tacticperformsa casesplit over whethertheexpres-
sion given in parameterx is true or not. Thereare
somestandardNuprl tactics, but userscan define
their own tactics;in general,tacticsbuild proofsby
combiningmany primitiveproof rules.

Primitiveproofrulesareinherentto theNuprl sys-
temandits logic. A tacticnodecanbedecomposed
into collectionof primitive proof stepsorderedin a
proof treeof its own, rootedat thegoalof thetactic
node,andwith its leavesbeingthegoalsof thetactic
node’schildren.A singletacticnodecanexpandto a
primitiveproof containingasmany as100primitive
proof nodes.

2.3 Planning from Tactic Proofs

We have observed in previous work (Holland-
Minkley et al., 1999)basedon evaluationof proof
textsaboutelementarynumbertheorythatthestruc-
tureof a tacticproofcanbelinearizedinto thestruc-
ture of a contentplan througha direct mappingof
tactic proof nodesto sentences,orderingthe nodes
in theproof treevia depthfirst search.Furthermore,
determiningwhatcontentfrom eachnodeshouldbe
communicatedcanbedoneby analyzingwhatproof
techniquewasusedin thecurrentinference.Theset
of commoninferencetypesobserved in our corpus
comprisemuchthesamesetof basicinferencetech-
niquesdescribedby mathematiciansas fundamen-
tal for creatingandwriting effective proofs(Solow,
1982; Constableet al., 1984), such as caseanal-
ysis, lemmaapplication,andarithmeticsimplifica-
tion. We call theseinferencetechniqueswith their
sharedmodesof expressionMathematicalCommu-
nicationConventions(MCCs).

Basedon theseobservations,we have built a pro-
totypesystemwhichhasverifiedthatplausibleproof
texts can be automaticallygeneratedusing these
techniques. Our systemfollows traditional gener-
ation systemarchitecture(Reiter and Dale, 2000),
with our primary focusbeinga plannerbuilt based
on theregularitiesnotedabove. Thelexical chooser
washand-codedin FUF andusestheSURGEgram-
mar (Elhadad, 1993), generalizingthe sentences
from our corpuscorrespondingto eachof theinfer-
encetechniquesidentified.

3 Planning Induction

Having establishedthe ability to build a content
planneraroundmathematicalcommunicationcon-
ventions (MCCs) associatedwith common proof
techniques,it wasclearthat,in extendingthesystem
to handlemore complex proofs, the ability to pro-
cessinductionwouldbekey. Giventhesystemstruc-
ture aspresentedabove, we would like this exten-
sion to only involve detectingthis new proof tech-
niqueanddeterminingits contentandverbalization
in isolation.However, unlikemostotherproof tech-
niqueswhichonly impacttheproof locally, applying
inductioncanimpactnodesin theproof treeremote
from its initial application.We evaluatea corpusof
proof texts to determineif a localizedapproachto
generationcanbe usedor if a morecomplex plan-
ningprocess,suchasusedin restructuringlow-level
proofs in other generationsystems,will be neces-
sary. 21 subjectswith varying degreesof familiar-
ity with theNuprl systemandformalrepresentations
wereaskedto write textualversionsof four different
formal proofsinvolving inductionover integers. In
total,77proof texts werecollected.

3.1 Isolating Induction

Ourfirst goalis to identifywhateffect,if any, aproof
nodecorrespondingto inductionhason thecontent
plan’s structure. We needto determineif the dis-
tributedeffectsof the inductive processcanbe lo-
calizedwithin the proof plan, allowing us to insert
inductionMCCsinto ourpre-existing system.

Justascasesplitting mimics branchingin a pro-
gram, introducing non-linearity, induction mimics
looping, introducinga morecomplex non-linearity.
Thereis concernthat our simple linearizationpro-



cesswill no longerhold, or that, given the looping
natureof induction, it will be reflectedthroughout
theentiresubproofbelow it ratherthanonly locally,
thus requiring any generationsystemhandling in-
ductionto processproofstepsdifferentlyin thecon-
text of aninductiveproof versusoutof it.

Fortunately, we find that induction requires a
more complex, but still compatible,set of MCCs
thanotherproof techniquesexaminedto date.Hand
analysisof thecorpusidentifiedthosesentencesex-
pressingcontentnot predictedby theregularitiesof
thepreviouscorpus,asencodedby ourMCCs. In all
of the77proofsanalyzed,theunpredictedsentences
communicatedcontentabouttheinductiveaspectof
the proof. Furthermore,for all of the proof steps
which did not involve an inductive inferenceor the
usageof an inductive hypothesis,the sameMCCs
aspreviously identifiedwereadequateto represent
thecorrespondingsentences.Weconclude,then,not
only thatthealterationsin thetext weredueto induc-
tion, but alsothatplacingothertypesof inferencein
thecontext of aninductiveproofdid notchangetheir
treatment.This allows inductionto be incorporated
into thelargergenerationstructureas-is.

3.2 Induction Communication Content

Following this observation, we identify induction
MCCs by collecting all sentencesin the corpus
whichcommunicatethesameinductivecontent.We
find the same tight correlation among sentences
about induction as was found betweensentences
about the application of other proof techniques,
allowing matchingsentencesto be generalizedto
MCCs.

Inductionis communicatedin threeways: thein-
vocationof induction,the setup of any basecases
andstep(or inductive)cases,andtheapplicationof
the inductive hypothesiswithin a stepcase,defin-
ing the set of induction MCCs: InductionState-
ment, BaseCase,StepCase,and IHInvocation(see
figure2). 70%of theproofsin thecorpusexhibited
all of theseMCCs,with IHInvocationbeingomitted
mostoften;94%of theproofsexhibitedbothInduc-
tionStatementandBase/StepCaseMCCs.Theques-
tion of when IHInvocationshouldbe usedwill be
consideredin moredetailbelow.

GiventheseMCC’s, theformal proof canbepro-
cessedwith the existing contentplanner, adjusted

InductionStatement � InductionValue �
“We proceedby inductionon 	 .”

BaseCase � InductionValue, BaseAssumption �
“BaseCase:	�
� ”

StepCase � InductionValue, StepBasis, Induction-
Hypothesis �

“Assume����	 andthereare � ,� suchthat ���
����������
�	���� .
IHInvocation � InductionValue,
InductionHypothesis, Instantiations,
Conclusion �

“[...] sinceby theinductionhypothesisthereare
� and� suchthat � ������������
!	���� .”
Figure2: The MCCs usedfor inductioninferences
asa functionof theproof contentthey requirefrom
theNuprl proof,with exampleverbalizations

only to (1) detectthe applicationof inductionand
(2) checkwhethera hypothesisbeingappliedis the
markedinductionhypothesis.As the contentplan-
ner currentlymustcheckthe type of inferenceand
find all invoked hypotheses,thesealterationsare
easily incorporatedinto the existing system. Upon
detectionof induction,theInductionStatementMCC
is addedto theplanin progress,andthesubcasesare
processedin adepth-firstmanner(aswith casesplit-
ting), eachintroducedby theBaseCaseor StepCase
MCC. All othernodesin the proof canbe planned
asbefore,with the singleexceptionof thoseproof
nodeswithin a stepcasewhich invoketheinduction
hypothesis,which will substitutethe IHInvocation
MCC for ageneralHypInvocationMCC.

Our final problem is to determinewhich proof
nodecontentthe plannerneedsto passon for real-
ization.Analyzingthecorpustexts,we observe two
stylesof texts usedto expressinduction,which we
label formal inductionand informal induction. For-
mal inductionpresentsinduction in a regular, styl-
ized manner, suchas is taught in logic coursesor
is shown in introductorytextbooks. The Induction-
Statementverbalizationclearlystatesthatinduction
is beingused,andidentifiesthequantityover which
induction is being performed. BaseCase’s are al-
ways identifiedassuch,as is the StepCase,which
includesastatementof theinductionhypothesis.Fi-



Formal induction: Informal induction:

Proceedby inductiononn. For thebasecase, Proceedby inductionon n. For n = 0, theGCDof
n = 0, fib(n) = 1 andfib(n+1)= 1, andthe fib(n) andfib(n+1) is 1. Now considern" 0 and
GCDof 1 and1 is 1. For theinductivecase, assumetheresultis truefor n-1.
assumethattheGCDof fib(n-1)andfib(n) is 1. ...
... NotethatsincetheGCDof fib(n) andfib(n-1) is 1,
Now, by theinductionhypothesis,theGCDof theGCD of fib(n) andfib(n) + fib(n-1) is also
fib(n) andfib(n) + fib(n-1) is also1, by 1, by ”gcd p shift”. ...
”gcd p shift”. ...

Figure3: Sampletexts showing thesameinductivereasoningusingboththeformal andinformal proof text
styles

nally, IHInvocationalwaysstatesthatthehypothesis
beingappliedis theinductionhypothesis.

In contrast, informal induction is abbreviated.
TheInductionStatementremainsthesameasin for-
mal induction. However, the BaseCaseand Step-
Casearenolongernecessarilylabeledassuch.Most
significantly, theInductionHypothesis is not explic-
itly statedin the StepCase.Rather, it is implied by
thequantityover which inductionis performed,and
thenstatedlater in the IHInvocation. Examplesof
bothstylesof inductionareshown in figure3.2.

Acrossthe corpus,48% of the texts usedformal
induction,and40%usedinformalinduction.There-
maining12%of theproofsaccountfor othercombi-
nationsof thesefour MCCs,many of themin proofs
with major inaccuracies.Consideringindividuals’
backgrounds,we found a correlationbetweenthe
styleusedandthefamiliarity of theindividualswith
formal proofs. Only subjectswith Nuprl expertise
showed a preferencefor informal induction, using
thisstylein 69%of their proofs,whereasthenovice
subjectsusedboth formal and informal induction
equally, each43%of the time. Giventhatevenour
”novice” subjectsreportedhigh expertisein math-
ematicsand moderatefamiliarity with formal lan-
guages,weconjecturethattheinformalstyleis more
naturalif oneis moreconfidentwith theproof con-
tent, and the formal style helpslend structureand
anchorpointsto complex proofswhich maybedif-
ficult to understand.Unfortunately, anecdotalexpe-
riencesuggeststhattruly novicesubjectscannotun-
derstanda formalmathematicalproof sufficiently to
involvethemin a similarcorpuscollectionstudy.

4 Future Work

Induction is the first proof technique we have
workedwith in which multiple stylesof expression
occurredin corpustexts. With simplerproof tech-
niques,thereappearsto begreatconsensusasto the
normsfor expressingtheir content.Work is under-
wayon extendingour systemto incorporatethefor-
mal style of induction,but our resultssuggestthat
for somepotentialreaders,proofsemployingthein-
formal inductionstylewouldbepreferred.We hope
tobeableto usedifferentMCCstoexpressthesedif-
ferences,suchasFormalInductionStatementversus
InformalInductionStatement,andadjusttheplanner
to accountfor the currentusermodelasthe formal
proof tree is traversedand planned,avoiding hav-
ing toentirelyrecodetheplanningandlexical choice
componentsfor eachmodel.

We would also like to use our experiencein
handling a complex proof technique to process
more new techniquesProof by diagonalizationof-
fers many of the samechallengesasinduction,po-
tentially combininginformation from many points
in theproof,while still beingeasilyidentifiablefor-
mally. As a significantchallenge,we would also
like to be ableto extendthesystemto identify and
communicateproof by analogy, whereinonebranch
of a casesplit hasits proof truncatedandreplaced
by a citation that the reasoningis analogousto a
previously communicatedbranch. This technique
presentsnot just a significant challengein choos-
ing how to communicatewhat aspectscorrespond,
but identifyingwhatdegreeof similarity, to areader,
wouldappearanalogousis unclear.



5 Conclusions

Throughouranalysis,wehaveshown how theproof
techniqueof induction, central to any mathemati-
cal text generationsystem,canbe isolatedwithin a
proof andincorporatedinto a proof planwithout re-
quiringmajorchangesto thehandlingof otherproof
techniques.The expansionto handleinductionnot
only significantlyimprovesthetext rangeof oursys-
tem,but indicatesaneaseof expansiontoothertech-
niqueswithin themathematicsdomain.
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