XML in a Web-based Grammar Development Environment

Eugene Koontz
151 Calderon Ave Apt #125

Mountain View CA 94041
ekoontz@hiro-tan.org

1 Introduction

Example-based Development of Grammars
(EDQG) is a natural language parsing and gram-
matical knowledge representation system, im-
plemented in Common Lisp, that uses XML to
display its output. The system parses sentences
and allows querying and editing of its linguis-
tic knowledge base. The system’s response to
user input is in XML, which is then transformed
by an XSLT processor to form HTML, which
is then displayed by the user’s browser. The
XML dialect used by the system to represent
linguistic structure is described, together with
details of how the XSLT stylesheet transforms
it into HTML. Further information about the
system, including an interactive demonstration
of the system, may be found on the Web at
http://edg.sf .net

1.1 Background

EDG is an implementation of Head Driven
Phrase Structure Grammar (HPSG) as de-
scribed in (Pollard and Sag, 1994). HPSG
posits a uniform representation of syntactic
structure and semantics using feature struc-
tures, which are sets of feature-value pairs. Fea-
ture structures are used to represent all linguis-
tic knowledge, both lexical and grammatical,
and these structures are organized hierarchi-
cally in a type hierarchy. Typed feature struc-
tures and the type hierarchy obey certain math-
ematical constraints (Carpenter, 1992). Below
we discuss how these data structures are repre-
sented in XML form, and how the XML rep-
resentations are transformed into HTML via
XSLT.

1.2 User Interface

A web-based client-server grammar develop-
ment model has a number of attractive features:

e It is cross-platform; ideally any client able
to run a web browser should be able to use
to the system.

e It allows multiple users to connect to
the system simultaneously. Existing http
mechanisms such as cookies can be used to
save user state and allow multiple users to
edit a single grammar and lexicon concur-
rently.

e HTML (in particular, the <table> tag) is
well suited for representing complex data
structures such as parse trees and typed
feature structures. XSLT allows a straight-
forward mapping between the linguistic
data (grammar, lexicon, etc) in XML, and
their graphical representation in HTML. In
section 4 we discuss this mapping in detail.

2 System Architecture

Figure 1 shows the flow of information through
the system, sequentially ordered as follows. Us-
ing a web browser, a user sends information
via http to a web server. The web server then
invokes a CGI (Common Gateway Interface)
script that translates the http request to a Lisp
s-expression. This expression is passed over a
socket to the core of the EDG system, the Lin-
guistic Engine (LE), which is a Lisp program
that does all linguistic processing. After re-
ceiving the s-expression from the web server’s
CGI script, the LE evaluates the expression ac-
cording to its lexicon and grammar. The s-
expression could be a request to parse a sen-
tence, a query on the lexicon/grammar, or a
command to update the lexicon/grammar, as
described in detail in Section 5. The LE re-
turns its evaluation in the form of an XML
document to the CGI script, which then trans-
forms this XML document according to an

language engine

1\ s—expression

XML \L
web server/
XSL transformer

HTTP
POST/GET ¢
HTML

web
browser

/:

Figure 1: System Architecture

XSLT stylesheet, which transforms the XML
into HTML. Finally this HTML is displayed on
the client web browser.

3 XML and HTML encoding of
Data Structures

We here describe how to represent data such
as feature structures and parse trees. These
data structures are used to represent the gram-
mars, lexicons, and phrase structures of parsed
phrases.

The LE returns representations of these struc-
tures as XML documents conforming to the
DTD in Figure 2. Note that every XML
document begins with the top-level element
response. Note also the use of the ID DTD type
for the ref attribute. IDs are used to represent
indexed parts of an XML document. We use
them to represent structure sharing in feature
structures and to represent multiple inheritance
in type hierarchies. A fragment of an XML doc-
ument conforming to this DTD is given in Fig-
ure 3.

<!ELEMENT response (parse?,sub-hierarchy?)>
<!ELEMENT parse (agenda,chart)>

<!ELEMENT agenda (typex)>

<!ELEMENT chart (type*)>

<!ELEMENT sub-hierarchy (type,sub-hierarchy)>

<!ELEMENT type (objectx)>

<!ELEMENT object (featurex*)>

<!ATTLIST type name CDATA #REQUIRED>
<!ATTLIST type ref ID #IMPLIED>
<!ELEMENT feature (CDATA,objectx)>
<!ATTLIST feature name CDATA #REQUIRED>
<!'ATTLIST feature ref ID #IMPLIED>

Figure 2: DTD for Linguistic Engine output

<response>
<sub-hierarchy>
<type name="HIR0">
<feature name="SYNSEM">
<type name="T244">

</type>
</feature>
<feature name="PHON">"hiro"</feature>
</type>
</subhierarchy>
</response>

Figure 3: XML output from Linguistic Engine

3.1 AVDMs

Attribute Value Matrices (AVMs) are com-
monly used as a compact representation of fea-
ture structures. A IWTEXsty file called avm.sty
(Manning, 1992) can be used to transform a tex-
tual encoding of an AVM into a typeset version
suitable for printing. Similarly, we use an XSLT
stylesheet to transform an XML encoding of an
AVM, such as Figure 3, into HTML for view-
ing by a web browser. Figure 4 shows such an
HTML-rendered AVM.

A feature structure may contain re-entrances,
that is, values which are shared by more than
one feature. Structure-sharing within a feature
structure are indicated in the XML document
using the id and ref attributes. The LE only
elaborates the contents of a shared subgraph
only once, marking it with a id attribute; the
other occurrences of the subgraph are simply
marked by an empty element with the corre-
sponding ref attribute. The LE obeys the offi-
cial XML specification that a given value of the

SYNSEM

LOCAL

CONTENT

PSOA-SET

INDEX

T241

PERSON

THIRD-PERSON

NUMBER,

SINGULAR

GENDER

MASC

CATEGORY

SYNSEM-ELIST

SYNSEM

1798

1796

LOCAL
CONTENT

[200

[auants

v

NUCLEUS

quantifie

SLEEPER

RELN

r-list

sleep-relation_

E]

[

1308

PERSON third-person

NUMBER singular

GENDER masc

leep-rel

MARKING

NOUN-SUBSTANTIVE

PRD

BOOL

MoD

MOD-SYNSEM

GRAM-CASE

GRAM-CASE

PHON

"hirg"

Figure 4: Attribute Value Matrix represented

RETRIEVED

QSTORE

quantifier-list

quantifier-set

PHON

hiro_

sleeps_

1314 ’7‘2‘"7
LS SYNSEM [s
LOCAL
SYNSEM ﬂ [10 ‘CONTENT ‘\‘
LOCAL | —— L |
CONTENT RESTR psoa-eset
‘\NDEX E‘ [RETRIEVED quantifier-fist

RETRIEVED

QSTORE

quantifier-set

quantifier-list

QSTORE

quantifier-set

PHON

by nested HTML tables.

id attribute appears only once in a single XML
document.

3.2 Phrase Structure Trees

HPSG considers syntactic structure to be just
another type of information stored in a typed
feature structure. Specifically, the daughters of
a phrasal sign are pointed to by a feature typ-
ically called DAUGHTERS. The XML repre-
sentation in the system is similarly organized.
However, for the user’s graphical display, this
features is handled specially so that the phrasal
structure is reflected in the tabular structure of
the HTML. Figure 5 is an example of such an
HTML-represented parse tree for the sentence
hiro sleeps.

3.3 Type Hierarchies

Linguistic knowledge (both grammatical and
lexical) in HPSG is represented by typed fea-
ture structures. The types are organized hier-
archically, and multiple inheritance is allowed;
that is, a single type having one or more pos-
sible supertypes. As with parse trees, we use
nested HTML tables to represent these hierar-
chies, using co-indices to represent multiple in-
heritance. As with AVMs, the LE performs a
depth-first traversal of the graph to find shared
sub-graphs and indicates these with id and ref
attributes. Figure 6 shows a small type hierar-
chy transformed from the LE’s XML output to
nested HTML tables.

PHON “hiro"

about this demo

Figure 5: Parse tree for hiro sleeps represented
by nested HTML tables

HEADED-COMP-PHRASE=2

‘MARKING*PRINCIPLE*B [LINEAR*ORDER*]

EM

‘ T800

VP-2

’gvT

Figure 6: HTML tabular representation of a
type hierarchy

4 Stylesheet Details

As mentioned above, an XSLT stylesheet is
used to transform the system’s XML repre-
sentation of linguistic information into user-
browsable HTML. Below we discuss how the
stylesheet represents typed features structures
and parse trees. This stylesheet is available,
along with the rest of the source code for the
EDG system, at the URL given in the Intro-
duction.

4.1 Feature Structures

Representing a feature structure is done with
two stylesheet templates, one for the feature
structure object itself (the object template),
and one for each feature-value pair in that ob-
ject (the feature template). Both templates
are shown below in Figures 7 and 8. These two
templates are mutually recursive, that is, they

<xsl:template match="object">
<xsl:when
test="feature[@name=’DAUGHTERS’]">

</xsl:when>
<xsl:otherwise>
<table border="1">
<tr>
<td>
<xsl:value-of select="Qtype"/>
</td>
</tr>
<xsl:apply-templates
select="feature"/>
</table>
</xsl:otherwise>
</xsl:template>

Figure 7: XSLT template for the object ele-
ment

call each other to recursively output the HI'ML
for the feature structure.

First, consider the object template. (For
now, ignore the test at the beginning; this will
be discussed below in section 4.2.) This tem-
plate (within the xs1:otherwise element) first
creates a HTML table, and then writes out,
as the table’s first row, the type of the object.
Next, it applies the feature template to every
feature element in the object.

Now we turn to the feature template. Note
that every feature element is wrapped in a <tr>
(table row) HTML element. This corresponds
to a separate table row within the <table> of
the object in which this feature is contained.
Each table row contains two cells : the first
is the feature name; the second is the feature
value. The second cell is populated by call-
ing the object template on the object ele-
ment within this feature. For feature values
that are atomic (not containing features them-
selves), there are separate templates not shown
here. Also omitted for brevity are the rendering
of index tags.

4.2 Parse Trees

As mentioned above, HPSG uses a feature called
DAUGHTERS to represent syntactic structure
within feature structures, which is faithfully re-
produced in the XML that the LE generates.
The stylesheet is responsible for treating the
DAUGHTERS feature specially so that a parse

<xsl:template match="feature">
<tr>
<td>
<xsl:value-of select="@name"/>
</td>
<td>
<xsl:apply-templates
select="object"/>
</td>
</tr>
</xsl:template>

Figure 8: XSLT template for the feature ele-
ment

tree is rendered in HTML tables. Figure 9
shows the processing of the DAUGHTERS fea-
ture within the object template, done by the
xsl:when test that we ignored in the above sec-
tion.

A parse tree is rendered as a table with two
rows. The top row consists of a single cell con-
taining the parse tree’s mother. This row con-
tains a single cell that spans (using the colspan
HTML element) all of the cells in the bot-
tom row. The bottom row contains the parse
tree’s daughters, one daughter per cell. The
XSLT count () function is called to determine
the number of daughters, and thus the needed
colspan value for the mother’s cell.

4.3 Hiding Excessive Data

One useful aspect of XSLT is that parameters
can be passed to the XSLT transformation en-
gine at run-time. This allows control over what
aspects of the underlying XML should be dis-
played. This is important when the XML docu-
ments become so large as to be difficult to view
as a single HTML page. A single AVM can
contain so much information that its XML rep-
resentation, when transformed into HTML be-
comes too large to conveniently view on a single
web page : the user must scroll excessively to
view the entire AVM. We compensate for this
by providing a parameters to the stylesheet that
specify names of AVM features to hide from the
HTML output. The user can select which fea-
tures to show or hide with a web form. Groups
of related features, such as all features encod-
ing semantic information can be grouped for the
user’s convenience and referred to as “seman-
tics” on the user’s web form.

<xsl:template match="object">
<xsl:when
test="feature
[@name=’DAUGHTERS’]">
<table border="1">
<tr>
<td align="center">
<xsl:attribute name="colspan">
<xsl:value-of
select="
count (feature [@name=’>DAUGHTERS’]/
object//
feature[@name=’FIRST’])"/>
</xsl:attribute>
<xsl:value-of select="@type"/>

</td>
</tr>
<tr>
<xsl:apply-templates
select=
"feature[@name=’DAUGHTERS’]"/>
</tr>
</table>

</xsl:when>
</xsl:template>

Figure 9: XSLT template for the object ele-
ment, showing section for handling objects that
are phrases.

The LE need not know about the details of
the user’s display preferences, however, and this
enforces modularity by separating the underly-
ing XML generation from its presentation to the
user.

5 Input/Output Specification

As mentioned before, the LE is a program writ-
ten in Lisp that listens on a TCP port and re-
ceives s-expressions. It then processes the ex-
pression and returns an XML document to the
client. More details of the format of these input
and output expressions are given in this section.

Each input s-expression is a function that the
LE evaluates. The possible functions are given
in the following table.

There are three input expressions that can be
passed to the LE:

o (parse quoted string). This causes the
LE to parse the given quoted string and
returns the resulting agenda (completely

parsed constituents) and the chart (par-
tially parsed constituents).

e (sub-hier upper-bound lowerbound) .
The LE returns the set of types that is
both more specific than the given upper-
bound and more general than the given
lower-bound.

o (declare-type new-type supertypes sub-
types). The LE updates the type hierar-
chy by creating a new type with the given
name and situated in the type hierarchy
according to the supplied supertypes and
subtypes.

The following table summarizes the input-
output relationships described in this section.

input s-exp. output elem.
(parse expr) <parse>
(show-hier type-name) <sub-hier>
(declare-type type-name) | <sub-hier>
References
Bob Carpenter. 1992. The Logic of Typed
Feature Structures with Applications to

Unification-based Grammars, Logic Program-
ming and Constraint Resolution, volume 32
of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, New
York.

Chris Manning. 1992.
mentation for avm.sty.
//www.essex.ac.uk /linguistics/
clmt /latex4ling/avms/.

Carl J. Pollard and Ivan A. Sag. 1994. Head-
Driven Phrase Structure Grammar. Univer-
sity of Chicago Press, Chicago.

Docu-
http:

	Table of Content
	Workshops
	Authors

