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Abstract

Why do few working spoken dialogue sys-
tems make use of dialogue modelsin their
dialogue management? We find out the
causes and propose a generic dialogue
model. It promises to bridge the gap be-
tween practical dialogue management and
(pattern-based) dialogue model through
integrating interaction patterns with the
underling tasks and modeling interaction
patterns via utterance groups using a high
level construct different from dialogue act.

1 Introduction

Due to the rapid progress of speech and language
processing technologies (Cole et a., 1998; Juang
and Furui, 2000), ever-increasing computing power,
and vast quantity of social regquirements, spoken di-
aogue systems (SDSs), which promise to provide
natural and ubiquitous access to online information
and service, have become the focus of many research
groups (both academic and industrial) with many
projects sponsored by EU, US (D)ARPA and others
in the past few years (Zue and Glass, 2000; McTear,
2002; Xu, 2001). The last decade saw the emergence
of agreat deal of SDSs.

Despite so much progress, some problems till
remain, prominent among which are usability and
reusability (or portability across domains and lan-
guages). Through a survey of typical working spo-
ken (or natural language) dialogue systems in the
nineties (Xu, 2001), we find their central control-
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ling component — dialogue management — is rela-
tively less well-established than other components.
In most working SDSs, the design of dialogue
management is usually guided by some principles
(den Os et a., 1999), strategies (Souvignier et a.,
2000), or objectives (Lamel et a., 2000). In some
even these guidelines are implicit. The problem is
more outstanding in those SDSs developed by the
speech recognition community, in which most work-
ing SDSs come into being. Among many causes,
we think, the most important is that dialogue man-
agement is short of solid theoretical support from
dialogue models (the distinction between dialogue
management and dialogue model will be explicated
in section 2), in addition to the design of SDSsbeing
areal world problem.

The approach we adopt in building dialogue man-
agement model for SDSs is to study human-human
dialogues solving the same or similar problem.
Though human-computer dialogues may be differ-
ent in some aspects from human-human dialogues,
the design of human-computer dialogue will bene-
fit alot from the study of human-human diaogues.
It will not be clear whether those that characterize
human-human dialogues are applicable to human-
computer dialogues until they are well studied. Ap-
plicable or not, they are sure to contribute some in-
sights to the design of dialogue management.

In what follows we first inspect main approaches
to dialogue modeling and dialogue management and
find two deep causes behind the gap between them
(section 2). Against the causes we propose ageneric
dialogue model which distinguishes five ranks of
discourse units and three levels of dialogue dynam-



ics (section 3). Then we apply it to information-
seeking (one of the most common tasks adopted in
the study of SDSs) dialogues and elaborate interac-
tion patterns as utterance groups, which are classi-
fied aong two dimensions (initiative and direction
of information flow) into four basic types with some
variations (section 4). We also experiment on seg-
menting utterance groups in our corpus with a sub-
ject and three algorithms.

2 The Gap

Why do most working SDSs make little use of di-
alogue models in their dialogue management? Or,
why is there a gap between dialogue management
and dialogue models?

To make it clear, we first distinguish between di-
alogue models and dialogue management models,
or equivalently, between dialogue modeling and di-
alogue management modeling.The goal of dialogue
modeling isto develop general theories of (coopera-
tive task-oriented) dialogues and to uncover the uni-
versals in dialogues and, if appropriate, to provide
dialogue management with theoretical support. It
takes an analyzer’s point of view. While the goal
of dialogue management modeling isto integrate di-
alogue model with task model in some specific do-
main to “develop algorithms and procedures to sup-
port a computer’s participation in a cooperative dia-
logue” (Cohen, 1998, p.204). It takes the viewpoint
of adialogue system designer.

Next, we briefly overview main approaches to di-
aogue modeling and dialogue management, then
point out the causes behind the gap.

2.1 Dialogue Models

There are mainly two approaches to dialogue mod-
eling: pattern-based and plan-based?

1The distinction between dialogue models and dialogue
management models is close to what Cohen (1998) makes in
dialogue modeling. He distinguishes “two related, but at times
conflicting, research goals ... often adopted by researchers of
dialogue”. Roughly speaking, oneistheoretical and the other is
practical.

2Cohen (1998) gives a more detailed discussion on dialogue
modeling. Below we draw alot from there. He mentions “three
approaches to modeling dialogue — dialogue grammars, plan-
based models of dialogue, and joint action theories of dialogue”.
We treat joint action theories as further development of original
plan-based approach. So his latter two correspond to our plan-
based approach in general.

Patten-based approach models recurrent interac-
tion patterns or regularities in dialogues at theillo-
cutionary force level of speech acts (Austin, 1962;
Searle, 1969) in terms of dialogue grammar (Sin-
clair and Coulthard, 1975), dialogue/conversational
game (Carlson, 1983; Kowtko et al., 1992; Mann,
2001), or adjacency pairs (Sacks et d., 1974). It
benefits a lot from the insights of discourse analy-
sis (Sinclair and Coulthard, 1975; Coulthard, 1992;
Brown and Yule, 1983) and conversation analysis
(Levinson, 1983).

Plan-based approach relates speech acts per-
formed in utterances to plans and complex mental
states (Cohen and Perrault, 1979; Allen and Perrault,
1980; Lochbaum et al., 2000) and uses Al plan-
ning techniques (Fikesand Nilsson, 1971). Later de-
velopments of plan-based dialogue models include
multilevel plan extension (Litman and Allen, 1987,
Litman and Allen, 1990; Carberry, 1990; Lambert
and Carberry, 1991), theories of joint action (Co-
hen and Levesque, 1991) and SharedPlan (Grosz and
Sidner, 1990; Grosz and Kraus, 1996).

Pattern-based dialogue model describes what hap-
pens in dialogues at the speech act level and cares
little about why. Plan-based dialogue model ex-
plains why agents act in dialogues, but at the ex-
pense of complex representation and reasoning. In
other words, the former is shallow and descrip-
tive and the latter is deep and explanatory. Hul-
stijn (2000) argues for the complementary aspects of
the two approaches and claims that “ dialogue games
arerecipes for joint action”.

Since, on the one hand, our target tasks belong to
the class of simple service, like information-seeking
and simple transactions, which are relatively well-
structured and well-defined and not too complex for
pattern-based dialogue models, on the other hand,
there are some significant problems in using plan-
based models in practical SDSs — those of “knowl-
edge representation, knowledge engineering, com-
putational complexity, and noisy input” (Allen et
al., 2000), we will choose pattern-based instead of
plan-based dialogue model as our theoretical basis
for practical dialogue management at present.

2.2 Dialogue Management Models

We view dialogue management as an organic com-
bination of dialogue model with task model in some



specific domain. Its basic functionalities include in-
terpretation in context, generation in context, task
management, interaction management, choice of di-
alogue strategies, and context management. Al
of them require contextual (linguistic and/or world)
knowledge.

According to how task model and dial ogue model
are used, approaches to dialogue management can
be classified into four categories’ in Table 1.

Table 1: Classifying dialogue management models

Task Model
implicit | explicit
Dialogue | implicit || DITI DITE
Model explicit DETI DETE

DITI or graph-based, both dialogue model and task
model are implicit. Dialogue is controlled via
finite state transitions (McTear, 1998). Topic
flow is predetermined. It is neither flexible nor
natural, but simple and efficient. It's suitable
for smple and well-structured tasks similar to
automated services over ATMs or telephones
with DTMF input.

DITE or frame-based, with no explicit dialogue
model, but task is explicitly represented as a
frame or aform (Goddeau et a., 1996), atask
description table (Lin et al., 1998), atopic for-
est (Wu et al., 2000), or an agenda (Xu and
Rudnicky, 2000), etc. Both system and user
may take the initiative. Topic flow is not prede-
termined. It's more flexible than that of DITI,
but still far from naturalness and friendliness,
since it makes no explicit use of dialogue mod-
els. Most working SDSs adopt this way of dia-
logue management.

DETI there is no practical dialogue management

3For a more comprehensive discussion on dialogue man-
agement (and SDSs), see (McTear, 2002). He identifies two
aspects of dialogue control (i.e., dialogue management) — ini-
tiative and flow of dialogue, and three strategies for dialogue
control — finite-state-based, frame-based, and agent-based. The
first two are similar to DITI and DITE respectively and the third
is a collection of some other approaches which are now hardly
applicable for practical dialogue management, among which is
plan-based. Our classification below is more clear.

using such a combination of task model and di-
alogue model.

DETE both dialogue model and task model are
explicit. This type of dialogue management
shares the advantages of frame-based one. At
the same time it is potentia to allow of more
natural interactions according to the dialogue
model used. Thisiswhat we are after here.

2.3 The Causes behind the Gap

From the analysis above we can see the surface
gap between (DITE) dialogue management in most
working SDSs and (pattern-based) dialogue models
is mainly due to a deep one, i.e., the one between
dialogue models and the underlying tasks.

There is another important cause — the interaction
patterns are described at the level of speech act or
dialogue act.* To link dialogue acts to utterances,
three problems® must be addressed at the same time:

e Dialogue act classification scheme and its reli-
ability in coding corpus, (Carletta et al., 1997;
Allen and Core, 1997; Traum, 1999);

e Choice of features/cues that can support auto-
matic dialogue act identification, including lex-
ical, syntactic, prosodic, collocational, and dis-
COUrse CUes,

e A model that correlates dialogue acts with
those features.

Some of the problems are discussed in (Jurafsky et
a., 1998; Stolcke et al., 2000; Jurafsky and Martin,
2000; Jurafsky, 2002). The empirical work on dia-
logue act classification and recognition did not begin
until some dialogue corpora (like Map Task, Verb-
mobil, TRAINS, and our NLPR-TI) were available.

But how could dialogue act recognition be suc-
cessfully applied to practical dialogue management
remains to be seen. So we choose a higher level

“Following Jurafsky (2002), we will adopt the term dia-
logue act, which captures the illocutionary force or commuca-
tive function of speech act. Though there are some arguments
in (Levinson, 1983) and others against using dialogue act to
model dialogues, and there are indeed some unresolved prob-
lemsin linking dialogue acts to utterances, it will be our choice
for the time being.

SWe extend Webber’s (2001) idea by splitting feature choice
out.



construct (UT-3, see section 3.1.3) to describe inter-
action patterns instead. We are by no means deny-
ing the important role dialogue act playsin dialogue
modeling, but try to incorporate high level knowl-
edge into dialogue modeling.

3 The Bridge — GDM

Against the above gap and its causes we propose a
generic dialogue model (GDM) for task-oriented di-
alogues, which consists of five ranks of discourse
units and three levels of dialogue dynamics. It cap-
tures two important aspects of task-oriented dia-
logue — interaction patterns at the low level and un-
derlying task at the high level.

3.1 Discourse Units

We distinguish five ranks of discourse units in de-
scribing task-oriented dialogues: dialogue, phase,
transaction, utterance group, and utterance.

3.1.1 Dialogue, Phase, and Transaction

The overall organization of atypical task-oriented
dialogue can be divided into three phases, namely,
an opening phase, a closing phase, and between
them a problem-solving phase, which can be subdi-
vided into transactions depending on how the under-
lying task isdivided into subtasks. Each subtask cor-
responds to atransaction. If atask is atomic, there
will be only one transaction in the problem-solving
phase, just like the task of tourism information-
seeking.

3.1.2 Utterance Group

In performing a subtask (or task, if atomic), some
interaction patterns will recur. We name the interac-
tion patterns utterance groups (or groups, for short).
It's also called exchanges or conversational games
(see section 2.1). The unit at thislevel involves com-
plex grounding process towards common ground or
mutual knowledge (Clark and Schaefer, 1989; Clark,
1996; Traum, 1994).

3.1.3 Utterance

The elementary unit in our model is utterance.
Every utterance either initiates a new group, contin-
ues, or ends an old one. Usually it is what a speaker
utters in his’her turn (for simplification, overlaps
will not be considered here). But there are some

turns with two or more utterances. These multi-
utterance turns usually end an old group with their
first utterance and begin a new one with their last ut-
terance. Similar observations are found in Verbmo-
bil corpus (Alexandersson and Reithinger, 1997).

Each utterance can be anadyzed at three levels
and assigned atype correspondingly (utterance type,
uT):

UT-1 sentence type or mood, i.e., declarative, im-
perative, and interrogative (including yes-no
guestion (yng), wh-question (whq), alterna
tive question (atg), digunctive question (djq),
which can be identified using surface lexical
and prosodic features).

UT-2 dialogue act, see section 2.3.

UT-3 a more general communicative function, rel-
ative to a group, of a small number, including
initiative (1), response/reply (R), feedback (F),
acknowledgement (A) (typical in information-
seeking dialogues), and others. It can be iden-
tified using UT-1 and semantic content (or ut-
terance topic) and preceding UT-3s, It is at this
level that interaction patterns are more obvi-
ous. What's more, it can be recognized without
UT-2 (dialogue act) but contribute to dialogue
act recognition.

3.2 Dialogue Dynamics

By dialogue dynamics, we mean the dynamic pro-
cess within dialogues, i.e., how dialogues flow from
one partner’s utterance to another’s al the way till
the closing. The dynamic process includes that of
intra-utterance (micro-dynamics) and that of inter-
utterance. Inter-utterance dynamics is further di-
vided into intra-group dynamics (meso-dynamics)
and inter-group dynamics (macro-dynamics).

3.2.1 Micro-dynamics

Micro-dynamics deals with how discourse phe-
nomena (like anaphora, ellipsis, etc.) within one
utterance are decoded (interpretation) or encoded
(generation) in discourse context and how utterance
level intention (dialogue act) is recognized using
lexical, prosodic, and other cues and discourse struc-
ture (see section 2.3). Discourse phenomena contain
much discourse-level context information. Itisthose



that contribute partly to the naturalness and coher-
ence in human-human dialogues. But it's very dif-
ficult for computers to make full use of them, either
in interpretation or in generation. They are imple-
mented in few of present SDSs, though much effort
has been put on the study of computational models
of discourse phenomena (see (Webber, 2001) for an
overview and references therein for further details).

3.2.2 Meso-dynamics

Meso-dynamics explains utterance-to-utterance
moves within one group which present recurrent
interaction patterns. Our corpus study shows that
those patterns in information-seeking dialogues are
closely related to two factors — initiative and direc-
tion of information flow between user and server
(see section 4.1).

3.2.3 Macro-dynamics

Macro-dynamics describes inter-group moves,
which may take place intra-transactionally within
one subtask or inter-transactionally between sub-
tasks. Inter-group moves are subject to the under-
lying task. It’s difficult to give an account like intra-
group moves, because they reflect the process how
a problem is solved.The account depends on how
tasks are represented and reasoned. We may gain
some hints from the study of general problem solv-
ingin Al (Bonet and Geffner, 2001).

3.3 Discussion

GDM aswe propose above isa DETE dialogue man-
agement framework with fine-grained patterns. We
discuss related work and itsimplication for dialogue
management below.

3.3.1 Discourse Unit

Different discourse units are used by different re-
searchers in studying discourse. In (Sinclair and
Coulthard, 1975), five ranks of units are used to ana-
lyze classroom interactions. lesson, transaction, ex-
change, move, and act. The first four roughly cor-
respond to our dialogue, transaction, group, utter-
ance. We add the unit phase and omit act, which
is a sub-utterance unit. In (Alexandersson and Re-
ithinger, 1997), four ranks of units are used to ana
lyze meeting scheduling dialogues:. dialogue, phase,
turn, and dialogue act. Turn is a natura unit that
appears in dialogues, but is it an basic unit? Four

units with conversation acts (Traum and Hinkelman,
1992; Traum, 1994), are used to analyze TRAINS
(freight scheduling) dialogues. multiple discourse
unit (argumentation act), discourse unit (core speech
act), utterance unit (grounding act), sub-utterance
unit (turn-taking act). Theirs differ a lot from ours
partly because they pay more attention to grounding.

3.3.2 Discourse Structure

In GDM the structure of discourse® is accounted
for from two aspects: local structure is reflected
in utterance groups and shaped by meso-dynamics,
global structure is determined by the underlying task
and shaped by macro-dynamics. This is obvious to
task-oriented dialogues in view of GDM.

3.3.3 Dialogue Strategies

In most working SDSs dialogue strategies are
handcrafted by system developers. Recently there
are some efforts in applying machine learning ap-
proaches to the acquisition of dialogue strategies
(Walker, 2000; Levin et a., 2000). We hope to
find out what strategies are used in human-human
dialogue and how they could be applied to human-
computer dialogue. We first refine the concept of
diadogue strategies. From the view of GDM, the
strategies a dialogue agent may choose can also be
classified into three levels, i.e,,

Micro-level strategies how to realize information
structure, anaphora, ellipsis, and others, in ut-
terances,

Meso-level strategieswhat to say regarding current
group status, so as to complete ongoing group
more friendly,

Macro-level strategieshow to choose discourse
topic regarding current task status, so as to
complete the underlying task more efficiently.

Grosz and Sidner (1986) proposed a tripartite discourse
model consisting of attentional state, intentional structure, and
linguistic structure. It is influential and covers both dialogue
and text. But their intentional structure fails to capture the dis-
tinction between global level and local level structure. Their
discourse unit — discourse segment — is used without noticing
that there are different ranks of discourse unit in dialogues. This
ispartly due to that they looked more at the similarities between
dialogue and text and less at the differences between them. Di-
alogue and text, as two types of discourse, share something in
common, but there is also something that makes them different.



3.3.4 The Complexity of Dialogue Management information flow: one from user to server (U=>S)

Since dialogue management is closely related to
dialogue model and underlying task and domain,
the complexity of dialogue management can be de-
composed into three parts, i.e., the complexity of
dialogue model, the complexity of task, and the
complexity of domain. The complexity of dialogue
model is affected by what kind of initiative and dia-
logue phenomena are allowed. The task complexity
is affected by the number of its possible actions and
by whether it is well-structured and well-defined.
The domain complexity is affected by domain en-
tities and their relations and by the volume of in-
formation. The three are not independent but inter-
twined.

4 Utterance Groups in GDM-IS

We now apply GDM to information-seeking dia-
logues (GDM-1S) and search for interaction patterns
in the NLPR-TI corpus. We first try to classify and
segment utterance groups. Thisisapreliminary step
toward group pattern recognition. Details of the
recognition process and results will be givenin (Xu,
2002).

4.1 Group Classification

Group patterns are recurrent, but how many? Or,
is there a limited number? In our NLPR-TI corpus
information-seeking dialogues (see section 4.2.1),
we find four basic groups with some variations.

4.1.1 Basic Groups

The recurrent patterns, according to our observa-
tion, can be classified into one of the four types in
Table 2 along two dimensions — initiative and the di-
rection of information flow (determined using world
knowledge in the domain).

Table 2: Basic utterance groups

Information Flow
S=>U | U=>S
Group User UISU UluS
Initiative | Server || SISU SIUS

Direction of information flow In the dialogues
of information-seeking, there are two directions of

and the other from server to user (S=>U). In the
tourism domain, the former includes intended route
(or sight-spot, or arough area, obligatory), intended
start time, number of tourists (optional); the latter in-
cludes start time, duration, vehicle, price, accommo-
dation, meal, schedule, and more. Server must know
the information about user’s intended route before
providing user with other information.

Initiative 7 In GDM, initiative aways starts anew
utterance group. It isone of utterance's general com-
municative functions relative to a group, together
with reply, feedback, acknowledgement, aswe men-
tion in section 3.1.3. Regarding one group topic
there are user initiatives (Ul) and there are server ini-
tiatives (S1). Group patterns depend heavily on who
initiates the group regarding some specific topic.
This is due to the role asymmetry of the dialogue
partners.

4.1.2 Complex Groups

Though most groups can be covered by the above
basic patterns, there are some exceptions which are
more complex. They are usualy embedded ones.
When one partner signals non-understanding or non-
hearing, or anormal group is suspended, one or two
more utterances will beinserted, either to repest pre-
vious utterance or resume suspended group. The
embedded groups may also be precondition groups.
Precondition groups occur when some obligatory in-
formation is missing before the salient issue could
be addressed. Once the missing is provided, the
outer group will continue. Complex groups can also
occur when one partner lists more than one items or
does some repairing.

4.2 Group Segmentation

Given the above group classification, how to rec-
ognize them? We have to segment and classify
groups, and determine UT-3 of every utterance
within groups. Thisis abig problem. Only the ex-
periment on group segmentation is reported in this

paper.

"We note that there are task initiative and dialogue initia-
tive (Chu-Carroll and Brown, 1998) and there arelocal initiative
and global initiative (Rich and Sidner, 1998). Our initiative-in-
group ismore task-related and global. For acomprehensive dis-
cussion on mixed initiative interaction, see (Haller and McRoy,
1998, 1999).



To segment adialogue into groups isfirst to deter-
mine the beginning of a group, i.e., to determine if
an utterance is an initiative or not. (Multi-utterance
turns are manually segmented beforehand for sim-
plification.)

4.2.1 NLPR-TI Corpus

We use NLPR-TI corpus (Xu et a., 1999) in the
experiment. It consists of 60 spontaneous human-
human dialogues (about 5.5 hours) over telephones
on tourism information-seeking. There are total
2716 turns (1346 by the user and 1370 by the
server). The average length of user’s turns is about
7 Chinese characters and server’s about 9. The first
20 dialogues (transcript) are used for current group
segmentation.

4.2.2 Manual Segmentation

A subject was given the basic ideas about GDM
and utterance groups in GDM-1S and segmented two
dialogues with an expert’s guide before starting the
work.

To test the reliability of group segmentation
within GDM-IS, we calculate the kappa coefficient
(K)® (Carletta, 1996; Carletta et al., 1997; Flam-
mia, 1998) to measure pairwise agreement between
the subject and the expert. Two coders segmented
the first 20 dialogues (totally 845 utterances). They
reached K = .85 > .8, which shows a high reliabil-
ity. Using the expert’s segmentation asreference, we
also measure the subject’s segmentation using infor-
mation retrieval metrics — precision (P), recall (R),
and F-measure® (see Table 3 for the result).

4.2.3 Automated Segmentation

Three simple algorithms in Figure 1 are used to
perform the same task on the 20 dialogues. Thein-
put is a semantic tag sequence produced by a stetis-
tical parser (Deng et al., 2000)°.

8K = (P(A) — P(E))/(1 — P(E)), where P(A) is the
proportion of times that the coders agree and P(E) is the pro-
portion of timesthat one would expect them to agree by chance.
— From (Carletta, 1996)

°Combined metric F = (8% + 1)PR/(3*P + R), from
(Jurafsky and Martin, 2000, p.578), 8 = 1.

That we adopt such deep features in discourse segmenta-
tion is mainly due to our target application — dialogue manage-
ment. Thismakesit different from others using surface features
like (Passonneau and Litman, 1997).

I. Using topic only for segmentation
if topic is new

then UT-3 = initiative

elseUT-3 = non-initiative

I1. Using UT-1 only for segmentation
if UT-1 € interrogatives

then UT-3 = initiative

elseUT-3 = non-initiative

I11. Using both for segmentation

if topic isnew A UT-1 € interrogatives
then UT-3 =initiative

elseUT-3 = non-initiative

Figure 1. Group segmentation algorithms

Given the semantic tag sequence of an utterance,
we determineitstopict! and UT-1 (what we are most
interested in is interrogatives (yng, whq, atg, and
dig)). Since the parser performs with an error rate
of 26.4%, there will be some wrong semantic tags,
which lead to errors in assigning UT-1 and topic.
Then we use the three simple algorithms to seg-
ment groups in the 20 dialogues. Their performance
(also using the expert’s segmentation as reference)
isgivenin Table 3.

Table 3: Group segmentation results

| subject | 1 [ 1 |1
Precision | .88 [ .59] .67 | .83
Recall 92 | .82].62| .56

F-measure .90 .69 | .64 | .67

4.3 Discussion

Table 3 shows the results of group segmentation,
both manual and automated. Though none of the
three algorithms outperforms the subject, they all
show that topic change and UT-1 as interrogative
are acceptable and also good indicators of utterance
group beginning, esp. when topic and UT-1 are the

MWe presume that the topic of an utterance is the last onein
the candidate tags. This seems problematic but istrue to most of
the utterances according to our observation. How to determine
the topic of an utterance needs further study.



only information sources and when discourse mark-
ers (Schiffrin, 1987) in spontaneous speech are un-
available in current deep analysis.

There is no obvious performance difference in
segmenting dialogue into groups with the three al-
gorithms. The performance of algorithm | may be
improved if the noises brought by the parser and
our simple topic identification algorithm are cleared.
This implies that topic change is a potentially bet-
ter indicator of the beginning of new groups. The
result using UT-1 only is the worst. This is partly
because not al groups begin with interrogatives and
that interrogatives do not always occur at the begin-
ning of a group. When using both topic and UT-1,
the performance changes little, though seemly more
constraints are used. This possibly is because topic
change and UT-1 as interrogative overlap alot.

5 Conclusions

After a survey of the main approaches to dialogue
modeling and dialogue management in working
SDSs, we find the causes behind the gap between
practical dialogue management and dialogue models
and propose GDM, which consists of five ranks of
discourse units and three levels of dialogue dynam-
ics. It promises to bridge the gap through integrat-
ing meso-dynamics at the group level with macro-
dynamics at the task level, and modeling interaction
patterns via utterance groups using UT-3.

Then we apply it to information-seeking dia-
logues and elaborate utterance groups (or interaction
patterns) in the model. We aso classify and seg-
ment utterance groups in our information-seeking
corpus, which takes a preliminary step toward bet-
ter dialogue modeling for practical dialogue man-
agement with empirical justification. A more chal-
lenging task — group pattern recognition — is under
way (Xu, 2002). After that we will investigate how
local discourse structure in terms of utterance group
structure could contribute to the recognition of dia-
logue act (UT-2).

GDM takes a step further toward better dialogue
modeling for practical dialogue management with
empirical justification. It is expected to be used in
practical dialogue management in the near future for
better usability and portability.
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