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Abstract 

Our partial parser for Chinese uses a learned 
classifier to guide a bottom-up parsing 
process. We describe improvements in 
performance obtained by expanding the 
information available to the classifier, from 
POS sequences only, to include measures of  
word association derived from 
co-occurrence statistics. We compare 
performance using different measures of  
association, and find that Yule's coefficient 
of colligation Y gives somewhat better 
results over other measures. 

Introduction 

In learning-based approaches to syntactic 
parsing, the earliest models developed generally 
ignored the individual identities of  words, 
making decisions based only on their 
part-of-speech classes. On the othor hand, 
many later models see each word as a 
monolithic entity, with parameters estimated 
separately for each word type. In between have 
been models which auempt to generalize by 
considering similarity between words, where 
knowledge about similarity is deduced fi'om 
hand-written sources (e.g. thesauri), or induced 
from text. For example, The SPATTER parser 
(Magerman, 1995) makes use of  the output of  a 
clustering algorithm based on co-occurrence 
information. Because this co-occurrence 
information can be derived from inexpensive 
data with a minimum of  pre-processing, it can be 
very inclusive and informative about even 
relatively rare words, thus increasing the 
generalization capability of the parser trained on 
a much smaller fully annotated corpus. 

The cunent work is in this spirit, making 
complementary use of a relatively small 
treebank for syntactic information and a 
relatively large collection of  flat text for 
co-occurrence information. However, we do 
not use any kind of  clustering, instead using the 
co-occurrence data directly. Our parser is a 
bottom-up parser whose actions are guided by a 
machine-learning-based decision-making 
module (we use the SNoW learner developed at 
the University of  Illinois, Urbana..Champaign 
(Roth, 1998) for its strength with potentially 
very large feature sets and for its ease of use). 
The learner is able to directly use statistics 
derived from the co-occu~euce data to guide its 
decisions. 

We collect a variety of statistical measures of  
association based on bigram co-occurrence data 
(specifically, mutual information, t-score, X 2, 
likelihood ratio and Yule's coefficient of  
colligation Y), and make the statistics available 
to the decision-making module. We use 
labelled constituent precision and recall to 
compare performance of different versions of  
our parser on unseen test data. We observe a 
marked improvement in some of  the versions 
using the co-occurrence data, with strongest 
performance observed in the versions using 
Yule's coefficient o f  colligation Y and mutual 
information, and more modest improvements in 
those using the other measures. 

1 Background 

1.I Our Task m Partial Parsing 

The current work has developed in the context 
of  developing a partial or "chunk" parser for 
Chinese, whose task is to identify certain kinds 
of  local syntactic structure. The syntactic 
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analysis we use largely follows the outline of 
Steven Abney's work (Abney, 1994). We 
adopt the concept of  a "e-head" and an "s-head" 
for each phrase, where the e-head corresponds 
roughly to the generally used concept of  head 
(e.g., the main verb in a verb phrase, or the 
preposition in a prepositional phrase), and the 
s-bead is the "main content word" of a phrase 
(e.g., the main verb in a verb phrase, but the 
object of  the preposition in a prepositional 
phrase). The core of  our chunk definition is also 
in line with Abney's: A chunk is essentially the 
contiguous range of  words s-headed by a given 
major content word. Within this basic 
framework, we make some aecorunaodations to 
the Chinese language and to practicality. For 
example, by our understanding of Abney's 
definition, a numeral-classifier phrase followed 
immediately by the noun it modifies should 
constitute two separate chunks. However such 
units seem likely to be useful in further 
processing, and easy to accurately identify, so 
we chose to include them in our definition of 
chunk. 

For simplicity and consistency, we adopt a 
very restricted phrase-structured syntactic 
formalism, somewhat similar to a 
phrase-structured formulation of a dependency 
grammar. In our formalism, all constituents are 
bina_ry branching, and the purpose of the 
non-terminal labels is restricted to indicating the 
direction of dependency between the two 
children. Figure 1 shows an example sentence 
with some indicative structures. 

Dependencies within individual chunks are 
shown with heavy arrows. A fight-pointing 
dependency, such as the three dependencies 
within the noun phrase " ) l ~ . ~ t : ~ y ~ r ~ " ,  
corresponds to a constituent labelled 
"right-headed". A left-pointing dependency, 
such as that between the verb "~,.~[~" and its 
aspect particle " T ' ,  corresponds to a constituent 
labelled "left-headed". These are cases where 
the s-head and the e-head of the phrase are 
identical. When they are not identical, we 
have a "two-headed" dependency, like those in 
the phrase " ~ _ L [ ~ ' .  Here, the relation 
between " ~ "  and ".J~" (and between " ~  
_.L" and " ~ " )  is that the left constituent 
provides the s-head of  the phrase, while the right 
constituent provides the e-head. 

These four non-terminal categories can 
descn'be high- or low- level syntactic structures. 
However, for chunking we wish to leave the 
higher-level structures of a sentence unspecified, 
leaving only a list of  local structares. We treat 
this in a consistent way by adding a fifth 
non-terminM category "unspecified", and 
replacing all higher str~tures with a backbone 
of strictly left-branching "unspecified" nodes, 
anchored to a special "wall" token to the left of  
the sentence. This backbone structure is shown 
by the light lines in the figure. 

1 . 2  O u r  D a t a  S o u r c e s  ~ One Large and O n e  
Small 

During development, we made use of two 
corpora. The first is a relatively small-scale 
treebank of approximately 3500 sentences, 
39,000 words, and 55,000 characters (Zhou, 
1996). We transformed this corpus by annotating 
each phrase with c-heads and s-heads, using a 
large collection of hand-written rules, and then 
extracted chunks from this transformed version. 

The second corpus, which we use only as a 
source of co-occurrence statistics, is much larger, 
with approximately 67,000 sentences, 1.5 
million words, and 2.2 million characters, with 
sentences separated and words separated and 
marked with parts-of-speech, but with no further 
syntactic annotation (Zhou and Sun, 1999). In 
the current work we make no use of the 
part-of-speech annotation, taking co-occurrence 

• counts of  word-types alone. 

1.3 Our Framework - -  C las s i f i er -Guided  
S h i f t - R e d u c e  P a r s i n g  

The parsing framework we use has been 
chosen for maximum simplicity, aided by the 
simplicity of  the syntactic framework. In 
parsing, we model a left-to-right shift-reduce 
automaton which builds a parse-tree 
constituent-by-constituent in a deterministic 
left--to-right process. The parsing process is 
thus reduced to making a series of decisions of 
exactly what to build. 

For training, we extract the series of actions 
the shift-reduce parser would have had to make 
to produce the trees from the surface structure of 
the sentences. This gives a long series of 
state-action pairs: "when the parser was in 
state X, it took action Y'. The state description 
X is set of binary predicates describing the local 
surface structure of the sentence and the contents 
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cucurbit vegetable raising methods already occur lperf.] foundation on [rel.] change 

Methods of raising cucurbit vegetables have changed fundamentally.  

Figure 1. An example sentence annotated according to our system. 

of the stack. We describe these predicates in 
detail below. This series of  state-action pairs is 
presented to the SNoW learner, which tries to 
learn to predict the parser actions from the 
parser states, attempting to find a linear 
diserimin:mt over these binary predicates which 
best accounts for the corresponding actions in 
the training data. 

These parse actions can be either "shift a word 
from the right on to the stack", or "reduce the 

• , top elements of  the stack" into a single 
constituent. Because our syntactic framework 
is strictly binary branching, each reduce action 
operates on exactly the top two items on the 
stack, so the automaton need only choose a 
category for the new constituent. This decision 
turns out to be nearly trivial, and we were able to 
achieve 100% accuracy on our test set using 
only part-of-speech information, so in the 
remainder of this paper we discuss only issues 
relating to the more difficult decision of  whether 
to shift or reduce. 

Within the shift-reduce decisions, over half 
are pre<letermined by the basic requirements of 

the framework. For example, if  there are no 
words left to shift, we can only reduce. If there 
is only one item on the stack, we can only shift. 
These decisions are handled by simple 
deterministic rules within the parser and are not 
shown to the classifier either in training or in 
parsing. 

In the first version of the parser, prior to the 
introduction of  co-occurrence statistics, the 
information available to the classifier is limited 
to parts-of-speech of words in the surface 
structure of the sentence, nonterminal categories 
of  constituents already built on the stack, and 
parts-of-speech of  the s- and e-heads of  
constituents already built on the stack. These 
are collected into schemas representing sets of  
poss~le binary predicates. Table 1 shows a 
representative subset of this original set of  18 
predicate schemas (space does not allow us to 
present all of  them). The total of  all the 
instantiations of all these templates presents a 
potentially huge feature set, so we rely on an 
important property of the SNoW architecture, 
that it can handle an indefinitely large set of 
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Predicate Schema 

POS (Surface-word [k] ) = t 

Range  o f  
Parameters 

-I K k_< 2 

POS(Surface-word[k]) = tl /~ POS(Surface-word[k + I]) = t2 -2 ~ k ~ 1 

Category(Stack[k] ) = c 0 ~ k ~ 1 

Category(Stack[k] ) = ci /k Category (Stack [k + I] ) = c2 0 ~ k -< 1 

POS(S-head(Stack[k])) = t 0 ~ k ~ 2 

POS(S-head(Stack[k])) =tl/k POS(S-head(Stack[k+ I])) =t2 0 ~ k -< 1 

POS(S-head(Stack[kx] )) = tx /k POS (Surface-word[k2]) = t2 0 --< kx ~ 1 
-I~ k2-<0 

Category(Stack[kx]) = c /k POS(C-head(Stack[kx])) = t~ /~ 
POS (Surface-word [k2] ) = t2. 

0-< kz~ 1 
-i~ k2-<0 

Table 1. A Subset of  the Feature Schemas in the Original Version of  the Parser. The variables t, tt, 
and t2 range over the set of  part-of-speech categories, while the variables c, et, and c2 range over the 
set of  non-terminal categories. Surface words are indexed relative to the parsing position, such that 
Surface-word[O] is the next word to be shifted. 

features, actually using only those features 
which are active. The set of these actually 
active features is reasonable for our set of  
schemas. 

2 Enriching the Feature Set with 
Co-occurrence Statistics 

statistic(wl, w2) ~ Xl 

statistic (wl, w2) ~- X2 

rather than mutually-exclusive predicates of 
the form: 

X0 < statistic(wl, w2) ~-Xl 

X0 < statistic(wl, w2) ~ X2 

2.1 Measures of  Association 

Table 2 shows the definitions of  the five 
measures we have chosen to compare in the 
current work, taken from (Manning and Shfitze, 
1999), (Kageura, 1999). 

These measures are based on empirical counts 
of  word occurrences and co-occurrences. 
Because these events are very prone to 
zero-counts, both for unseen bigrams and for 
unseen words, we applied Simple Good-Turing 
smoothing (Gale and Sampson, 1995) to both 
bigram and word counts. 

2.2 Making Measures of  Association Available to 
the Parser 

To make the measures of  association available 
to the parser, we started by discretizing each 
measure, that, is substituting for each continuous 
measurement a set of  binary predicates coarsely 
describing its approximate value. We used a 
very simple form of  discretization, counting 
occurrences of each value, and then dividing the 
values into bins of  approximately equal counts. 
Informal exploration showed consistently better 
performance when bin membership was made 
cumulative; that is, using 
non-mutually-exclusive predicates of  the form: 

Using these cumulative predicates, parsing 
accuracy consistently improved with increases in 
the number of  bins, though the rate of 
improvement slowed at the same time. The 
cost of  increasing the number of  bins came 
primarily in the algorithm's training time. We 
chose thirty-two to be a good number of bins. 

The predicates resulting ~om discretization 
are predicates over values of  a statistic. To 
apply these predicates in parsing, we created 
features relating to particular slots within 
parse-state descriptions. Specifically, we made 
three new feature schemas available to the 
Winnow learner, as shown in Table 3. Each of  
these feature schemas is an extension to one 
available to the original parser. In each case, 
the original schema was of  the form: 

POS(wl) = t~ A POS(w2) = t2 

And the extended schema was of  the form: 
POS(wl) = tl A POS(w2) = t2 A 

statistic(wl, w2) ~ X 

In this way, the learner is able to condition 
separately depending on the parts-of-speech of  
the two words in question. This is based on the 
intuitions that different eases for part-of-speech 
combinations would behave veery differently, 
and that the training data was sufficient that 
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Measure Definition 

Mx lo~-  c(w~'w2) 
c (w . . ) c ( . ,  w2) ) 

T-score 4C(Wl, w2)f  C ( W d ~ - 2 ~  w2) ~ Cl, W,,W2) 1} 

x' c(.,.)(c(w. - c(w. ))2 
c( , . )c( , , )c(  . , )c( . ) 

Likeli- 
hood 
Ratio 

L I ,  c(*.-) ) ct.,-) ) j 

Note: LogL(p; n; k) = k log(p)  + (n - k) log(1 - p )  

Yule's Y . ~ - I  

4 +1 
Note: C(O. o)c(w,, 

C( WI, W2 )C( WI, W2) 
Table 2. Definitions of the Five Measures of Association. c(x~,wz) represents the count of the 

event that x and y occur adjacent and in this order in the training corpus. - ' w  represents summation 
over all words other than w, and • represents summation over all words. 

performance would not be hurt by the resulting 
sub-division; however we have no specific 
empirical support for this. 

2.3 Experimental Results 

We trained a series of  SNoW networks using 
features sets extended with each of  t he f ive  
measures, and tested five versions of  our parser, 
One using each of the resulting networks. This 
was done on a held-out test set comprising 
approximately ten percent of  our treebank. The 
resulting measurements for labeled constituent 
precision and recall are shown in Table 4, 
arranged according to the geometric mean of the 
two measurements. 

It is clear from the table that co-occurrence 
information can be made useful, and that the 
measure used to represent this information has a 
large influence on its usefulness. There is also 
a large disparity between the in~rovement in 
precision, 1.7%, and the improvement in recall, 
4.1%. We conjecture that this is because the 
parser odg/nally tended to err in the direction of  
splitting words into separate chunks, the 

commoner case, while with the co-occurrence 
infommtion, it is able to pick out some cases 
where a strong association suggests that words 
be joined in the same chunk. 

3 Related Work 

Statistical measures of  association appfied to 
bigram co-occurrence counts have been used 
most extensively in terminology and collocation 
extraction. (Manning and Shfitze, 1999) 
contains a good introduction to this topic. 
(Kageura, 1999) is an especially good empirical 
comparison of  the performance of  several 
measures of  association on a set of tasks in both 
terminology extraction and in morpheme 
splitting of  Chinese character sequences. This 
latter tasks which can be seen as a very restricted 
form of  parsing, has been treated in a body of  
interesting work, including (Sun, Shen and Tsou, 
1998), (Lee, 1999) . This work has generally 
used vee/y simple heuristic control policies, such 
as repeatedly splitting at the point of lowest 
mutual information. The use of  similar 
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Predicate Schema 

P0S (Surface-word[k]) = tz A POS (Surface-word[k + 1] ) 

Statistic(Surface-word[k] , Surface-word [k + I] ) ~< X 

=t2 A 

Range of 
Parameters 

-2_< k~ 1 

POS(S-head(Staek[k])) = tx /k POS(S-head(Stack[k + i])) = t2 /~ 0 ~- k ~ 1 

Statistic(S-head(Stack[k]),S-head(Stack[k + i])) ~- X 

POS (S-head(Stack [kz] ) ) = tz /k POS (Surface-word[k2]) 

Statistic (S-head (Stack [kl] ) , Surface-word [k2] ) ~- X 

Table 3. Augmented Feature Schemas. 

approaches for general parsing received some 
early exploration (Brill, Magerman, Marcus and 
Santofini, 1990), (Magerman and Marcus, 1990), 
but this approach seems to have lost popularity. 
This may be because using co-occurrence 
statistics as a sole source of  guidance may 
become insufficient as the object of  parsing 
moves from the veery local structure of  word 
splitting to the longer-distance dependencies of 
general parsing. The current work attempts to 
remedy this by using a general leaf ing device 
to balance co-occurrence statistics with other 
information to be integrated into a larger control 
policy. 

Conclusions and Future Work 

Our experiments show that simple statistical 
information gathered ~om the unprocessed 
surface structure of  large-scale text has value in 
guiding parsing decisions. However, we feel 
that there is still a great deal of  further advantage 
to be gained from this approach. Our next step 
will be to include co-oecu~ence information 
from a much larger corpus, containing on the 
order of  108 characters. 

We would also like to experiment with other 
definitions of  co-occurrence. (Yuret, 1998) 
describes some very interesting work, in a 
different framework from ours, in which a parser 
using only co-occurrence mutual information 
was able to achieve a high precision but low 
recall when co-occurrence was defined as 
adjacent co-occurrence, and low precision but 
high recall when co-occurrence was defined as 
occurrence within the same sentence. We 
would like to experiment with ways of  balancing 
these two measures. 

We also suspect that significant gal.~ are 
possible through a more sophisticated inclusion 
of  the statistics in the decision making process. 
The current diseretization scheme is very simple, 
but there is ample empirical evidence that 

= t2 /k 0 ~ kx -< 1 
-i ~ k2 ~ 0 

discrefization which takes into account target 
categories can significantly improve 
classification accuracy (Dougherty, Kohavi, and 
Sahami, 1995). 

The several articles we have cited which use 
exclusively co-occurrence information to predict 
constituent boundaries are very interesting for 
the simplicity of  their control structures, but in 
one important way they are more complex than 
the current work: they make decisions by 
explicitly comparing the measures of association 
between different pairs of  words. We predict 
that augmenting the feature set to allow our 
parser to be sensitive to this kind of information 
would be a very valuable extension. 

A related issue is the choice of  learning 
methodology. The Winnow learner has served us 
well with its ability to handle very large feature 
sets, but it is weak in its ability to take 
advantage of  the interaction between features. 
We would like to experiment with learning 
methods which do not suffer from this weakness, 
and with methods for automatic feature 
extraction which could supplement Winnow. 

We experimented with a nondeterministic 
control policy for the parser, using cost-front 
search to fred the most probable series of  
parsing decisions, but we found this not to be 
very useful. Over a series of  comparative 
experiments, the non.deterministic control 
policy consistently raised precision by a small 
margin, lowered recall by a small margin, 
increased run times by an order of  magnitude or 
more, and for about 10% of the test.set 
sentences exhausted system resources before 
finding any parse at all. We posit that these 
problems may in part be due to the fact that 
while the Winnow learner is otherwise quite 
well adapted for our purposes, its output is not 
intended to be interpreted probabilistically. In 
the future we intend to run parallel experiments 
with more probabilisticaUy oriented learners; we 
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Measure of Association Precision Recall 
Yule's Y 0.882 0.875 

Geometric Mean 
0.879 

Mutual Information 0.885 0.857 0.871 
Likelihood Ratio 0.879 0.845 0.862 
X z 0.870 0.848 0.859 
T-score 0.870 0.836 0.853 
None (Ori~na! Feature Set) 0.868 0.834 0.851 

Table 4. Accuracy Measurements of Parsing with Different Measures of Association 

are espeeiaUy interested in experimenting with a 
Maximum Entropy model. 

In the larger context, we plan to experiment 
with more sophisticated, model-based 
unsupervised learning methods, including 
clustering and beyond, and ways of  providing 
their gathered knowledge to the parser, to make 
the fullest possible use of the vast wealth of  
un-annotated text available. 
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