
In: Proceedings of CoNLL-2000 and LLL-2000, pages 184-193, Lisbon, Portugal, 2000.

Incorporating Linguistics Constraints into
Inductive Logic Programming

James Cussens Stephen Pulman
Dept. of C o m p u t e r Science Universi ty of Cambr idge C o m p u t e r Labora to ry

Universi ty of York New Museums Site, Pembroke Street
Heslington, York, YO10 5DD, UK Cambr idge CB2 3QG, UK

j c@cs. y o r k . ac . uk S t e p h e n . Pulman@c 1. cam. ac . uk

A b s t r a c t

We report work on effectively incorporating lin-
guistic knowledge into grammar induction. We
use a highly interactive bot tom-up inductive
logic programming (ILP) algorithm to learn
'missing' grammar rules from an :incomplete
grammar. Using linguistic constraints on, for
example, head features and gap threading, re-
duces the search space to such an extent that,
in the small-scale experiments reported here,
we can generate and store all candidate gram-
mar rules together with information about their
coverage and linguistic properties. This allows
an appealingly simple and controlled method
for generating linguistically plausible grammar
rules. Starting from a base of highly spe-
cific rules, we apply least general generalisation
and inverse resolution to generate more general
rules. Induced rules are ordered, for example by
coverage, for easy inspection by the user and at
any point, the user can commit to a hypothe-
sised rule and add it to the grammar. Related
work in ILP and computational linguistics is
discussed.

1 Introduction

A major advantage of inductive logic program-
ming is the ability to incorporate domain knowl-
edge (background knowledge) into the inductive
process. In ILP domain knowledge is usually
encoded by (i) a set of definite clauses declar-
ing rules and facts which are true (or assumed
to be true) in the domain and (ii) extra-logical
constraints on the hypothesis space. The ILP
approach thus allows a very direct and flexible
method of expressing domain knowledge.

In this paper, we report on continuation of the
work described in (Cussens and Pulman, 2000),

which at tempts to maximise the effectiveness of
linguistic knowledge when inducing a grammar.
We take an existing grammatical formalism (de-
rived from the FraCaS Project (1996)) and ex-
tend it with inductive capabilities, rather than
shoe-horning a grammar learning problem into
a form suitable for some particular ILP algo-
rithm. This has major practical benefits, since
the required linguistic knowledge can be en-
coded in a linguistically natural manner. As
in all real applications of ILP most effort is
required in 'getting the background knowledge
right'. Being able to express this knowledge in
a representation specifically developed to enable
linguists to write down a grammar makes this
step easier and quicker.

The paper is organised in a manner analo-
gous to that o f our algorithm. In Section 2, we
describe how to generate naive grammar rules
directly from the chart produced during a failed
parse. The essentials of this approach have al-
ready been described in (Cussens and Pulman,
2000), but we briefly describe it here for com-
pleteness and also because we have altered its
implementation. Section 3 describes the most
important step of the a lgor i thm-- the represen-
tation and use of linguistic constraints at an
early stage in the inductive process. Section 4
describes the two generalisation operators cur-
rently used in the search by way of an exam-
ple. Section 5 describes two further experiments
very briefly. Most of the various components of
our method have been investigated previously
either in the ILP or the computational linguis-
tics literature: in Section 6 we discuss this re-
lated work. In Section 7, we assess the current
work and point to future work.

184

2 G e n e r a t i n g n a i v e r u l e s

The first step in our algorithm can be described
as inductive chart parsing. The details of inte-
grating induction into chart parsing have been
described in (Cussens and Pulman, 2000), here
we give just a brief account. This first step of
the algorithm is the only one that has been re-
tained from this previous work. The basic idea
is that, after a failed parse, we use abduct ion
to find needed edges: which, if they existed,
would allow a complete parse of the sentence.
These are produced in a top-down manner start-
ing with the initial need for a sigma edge span-
ning the entire sentence. If a need matches the
mother of a g rammar rule and edges for all the
daughters bar one are in the chart, then the
missing daughter edge is generated as a new
need.

The process of generating naive rules is very
simple, and we will explain it by way of an ex-
ample. Suppose the vp_vp rood grammar rule,
shown in Fig 1, has been artificially removed
from a grammar. The absence of this rule means

vp_vp_mod syn vp : [gaps= [A, B] ,mor=C, aux=n] ==>
[vp : [gaps = [A, D] , mor=C, aux=n] ,
mod: [gaps= [D, B], of =or (s, vp), type=_]] .

Figure 1: Missing grammar rule (human-
readable representation)

that, for example, the sentence All big compa-
nies wrote a report quickly can not be parsed,
since we can not get the needed VP wrote a re-
port quickly from the found VP wrote a report
and the found MOD quickly. The corresponding
needed and actual (complete) edges are given in
Fig 2. A naive rule is constructed by put t ing a

Y.need (Sent, Cat, From, To).
need(l, vp([ng,ng],

f(0,0,0,0,1,1,1,1,1),_), 3, 7).
%edge (Sent, Id, Origin, From, To, Ca t , . .)
ThCat, From, To).
edge(l , 39, vp v rip, 3, 6,

vp([_A,_A] ,f(O,O,O,O l,l),n)).
edge(l, 19, quickly, 6, 7,

mod([_B,_B] ,f (0,0,0, I) ,f(0,1, i,i)),...).

Figure 2: Needed and (abbreviated) actual
edges

needed edge on its LHS and other edges on the

RHS which in this case gives us the naive rule
in Fig 3. In (Cussens and Pulman, 2000) only
actual edges were allowed on the RHS of a naive
rule, since this ensures that the naive rule suf-
fices to allow a parse. Recently, we have added
an option which allows needed edges to appear
on the RHS, thus generating more naive rules.
This amounts to conjecturing that the needed
edges should actually be there, but are missing
from the set of actual edges because some other
grammar rule is missing: thus preventing the
parser from producing them. Since all naive
rules are subsequently constrained and evalu-
ated on the data, and then not added to the
grammar unless the user allows them, such bold
conjectures can be retracted later on. From

cmp_synrule (rO,
vp([ng,ng] ,f (0,0,0,0,1, I, I, 1, i) ,_),

vp([_A,_A] ,f (0,0,0,0 1,1) ,n),
mod(E_B,_B] ,f (0,0,O, i) ,f (0,I, i,i))).

Figure 3: Naive VP -+ VP MOD rule in com-
piled form

an ILP perspective, the construction of naive
rules involves repeated applications of inverse
resolution (Muggleton and Buntine, 1988) until
we produce a clause which meets extra-logical
constraints on vertex connectivity. Abbreviat-
ing, we produce v p (3 , 7) : - vp (3 ,6) and then
vp (3 ,7) :'- v p (3 , 6) , m o d (6 , 7) . This is then
followed by variabilising the vertices to give
vp(Vl,V3) :- vp(Vl,V2) ,mod(V2,V3). Ex-
actly the same procedure can be implemented
by building a 'bottom-clause' using the Progol
algorithm. We previously used P-Progol (now
called Aleph) to construct naive rules in this
way, but have since found it more convenient to
write our own code to do this.

3 U s i n g l i n g u i s t i c cons tra int s

3.1 Simple filter constraints
The user never sees naive rules; most are fil-
tered out as linguistically implausible and those
that survive have generally become specialised.
Our basic mot to is: constrain early, constrain
tightly. The aim is tha t no linguistically implau-
sible rule is ever added to the set of candidate
rules. This allows an incremental approach to
implementing the constraints. On observing a
linguistically implausible rule in the candidate

185

set, we have to specify what makes it implau-
sible and then express this as a constraint in
Prolog. In this way, we build up a set of filters
which get rid of linguistically implausible naive
rules as soon as they are produced.

Table 1 lists the constraints currently used.
The Head features and Gap threading con-
straints are discussed later. RHS length simply
limits the number of constituents on the RHS
of a rule to some small user-defined integer (in
the experiments described here it was equal to
4). LHS # RHS filters out rules with a sin-
gle daughter which is the same category as the
mother. Head OK filters out rules', where the
LHS has a head category which is not found on
the RHS. The last three constraints in Table 1
act on the LHS of potential rules (i.e. needs),
filtering out, respectively, sigma categories, cat-
egories which do not appear as the LHS of ex-
isting rules (and so are probably lexical) and s
(sentence) categories.

Constraint Specialises Defined on
Head features Yes Compiled
Gap threading Yes Compiled
RHS length No Compiled
LHS ~ RHS No Compiled
Head OK No Readable
LHS not sigma No Needs
LHS not new No Needs
LHS not s No Needs

Table h Linguistic constraints

3.2 G a p t h r e a d i n g a n d h e a d f e a t u r e
cons tra in t s

Gap-threading is a technique originating with
Pereira's 'extraposition grammars ' (Pereira,
1981). It is an implementat ion technique com-
monly used for dealing with movement phenom-
ena in syntax, as il lustrated by a Wh-question
like What does Smith own _?, where the Wh-
word is logically associated with the gap marked
'2.

There are three components to this type of
analysis. Firstly, one rule must introduce the
'moved' constituent. This rule also sets up an
expectation for a gap of the same type as the
moved constituent elsewhere in the sentence.
This expectat ion is coded as a set of features,
or in our case, a single tuple-valued feature with

'GapIn' and 'GapOut ' values. By setting the
value of the 'GapIn' feature to be that of (a
copy of) the moved constituent, and GapOut
to be some null marker (here, n g = nogap) we
can enforce that expectation. Secondly, rules
which do not involve gaps directly pass the value
of the GapIn and GapOut values along their
daughters (this is the ' threading' part) making
sure that the gap value is threaded everywhere
that a gap is permi t ted to occur linguistically.
Thirdly, there are rules which rewrite the type
of consti tuent which can be moved as the empty
string, discharging the 'gap' expectation. Ex-
ample rules of all three types are as follows:

(±) s: [gap=(G,G)] ->
np: [type=wh, agr=A, gap= (ng, ng)]
s : [gap= (rip : [type=wh, agr=A,

gap= (ng, ng)], ng)]

(ii) vp: [gap(In,0ut)] ->
v: [] np: [gap=(In,Next)]
pp : [gap= (Nxt, 0ut)]

(iii) np: [gap=(np: [type=T,agr=A,
gap= (ng,ng)] ,ng), type=T, agr=A] ->

epsilon

Rule (i) introduces a fronted wh NP as sister to
an S which must contain an associated NP gap
agreeing in number etc. Rule (ii) passes the gap
feature from the mother VP along the daugh-
ters that can in principle contain a gap. Rule
(iii) rewrites an NP whose gap value indicates
that a moved element precedes it as the empty
string. Rules of these three types conspire to
ensure that a moved consti tuent is associated
with exactly one gap.

Consti tuents which cannot contain a gap as-
sociated with a moved element outside the con-
st i tuent identify the In and Out values of the
gap feature, and so a usual NP rule might
be of the form: np: [gap(G,G)] -> det: [...]
n: [...] In a sentence containing no gaps the
value of In and Out will be ng everywhere.

Naive rules will not necessarily fall into one
of the three categories above, because the cate-
gories that make up their components will have
been instantiated in various possibly incomplete
ways. Thus in Fig 3 the gaps values in the
mother are (ng,ng), and those in the daugh-
ters are separately threaded (A,A) and (B,B).

186

We apply various checks and filters to candi-
date rules to ensure that the logic of the gap
feature instantiations is consistent with the lin-
guistic principles embodied in the gap threading
analysis.

The gap threading logic is tested as follows.
Firstly, rules are checked to see whether they
match the general pat tern of the three types
above, gap-introduction, gap-threading, or gap-
discharge rules. Secondly, in each of the three
cases, the values of the gap features are checked
to ensure they match the relevant schematic ex-
amples above.

The most frequently postulated type of rule is
a gap threading rule. The rule in Fig 3 has the
general shape of such a rule but the feature val-
ues do not thread in the appropriate way and
so it will be in effect unified with a template
that makes this happen. The effect here will
actually be to instantiate all In and Out values
to ng, thus specialising the rule. Hypothesised
rules where the values are all variables will get
the In and Out values unified analogously to
the example threading rule (ii) above. Hypoth-
esised rules where the gap values are not vari-
ables are checked to see that they are subsumed
by the appropriate schema: thus all the differ-
ent threading patterns in Fig 4 would be substi-
tution instances of the pat tern imposed by the
example threading rule (ii). At the later gen-
eralisation stage the correct variable threading
regime should be the only one consistent with
all the observed instantiation patterns.

Y. [ng/ng,ng/ng, ng/ng] . 1
[a l l , big, companies, wrote, a, repor t , quickly] .

%[np/ng,np/ng,ng/ng]. 2
[what ,dont ,a l l ,b ig ,companies , read ,

with ,a ,machine] .

~[np/ng,np/np,np/ng] . 3
[what ,dont ,a l l ,b ig ,companies , read ,

a , r e p o r t , w i t h] .

~[np/np,np/np,np/np] . 4
[what ,dont ,a l l ,b ig ,companies , read ,

a , r epo r t , qu i ck ly , f rom] .

Figure 4: Artificial dataset showing 4 different
patterns of gap threading

Our constraints on head feature agreement

are similar to the gap threading constraints.
The specialised version of the naive rule in Fig 3
is displayed in Fig 5. Note that although the
rule in Fig 5 is not incorrect, it is overly specific,
applying only to mor=pl , aux=n where there is
no gap to thread. We now consider how to gen-
eralise rules.

vp : [gaps= [ng: [] , ng: []] ,mor=pl, aux=n] ==>
[vp: [gaps= [ng: [] ,ng: []] ,mor=pl, aux=n],
mod: [gaps= [ng: [] ,ng : []] , of=vp, type=n]]

Figure 5: VP ~ VP MOD rule specialised to
meet head and gap constraints

4 G e n e r a l i s a t i o n o p e r a t o r s

In this section, we show how to generate gram-
mar rules by generalising overly specific rules
using the VP -+ VP MOD running example.
Our target is to generate the missing grammar
rule displayed in Fig 1. We will use the ar-
tificial dataset given in Fig 4 which displays
4 different patterns of gap threading. From
the first three sentences we generate the ex-
pected overly specific grammar rules which cor-
respond to the three patterns of gap thread-
ing. These axe given, in abbreviated form, in
Fig 6. We use least general generalisation (lgg)

~Covers sentence l
vp : [gaps = [ng, ng] , mor=pl, aux=n] ==>
[vp : [gaps = [ng,ng] ,mor=pl, aux=n] ,
mod: [gaps= [ng, ng], of=vp, type=n]]

'/.Covers sentence 2
vp : [gaps= [np ,ng] ,mor=inf, aux=n] ==>
[vp : [gaps =[np ,ng] ,mor=inf, aux=n] ,
mod: [gaps = [ng,ng] , of=or (nom, vp), type=n]]

Y.Covers sentence 3
vp : [gaps =[np, ng] ,mor=inf, aux=n] ==>
[vp : [gaps = [np,np] ,mor=inf, aux=n] ,
mod: [gaps =[np, ng], of=or (nom, vp), type=n]]

Figure 6: Overly specific gap threading rules (in
abbreviated form)

as our basic generalisation operator. This is im-
plemented (for terms) in the Sicstus te rms li-
brary built-in te rm_subsumer /3 . Lgg operates
on the compiled form of the rules (such as the
cmp_synru le /3 unit clause displayed in Fig 5),

187

not the human-readable form as in Fig 6. The
lgg of the first two rules produces the follow-
ing rule (translated back into human-readable
form):

vp: [gaps= [_282, ng: []] , mor=or (i n f , p1), aux=n]
= = >

[
vp: [gaps= [_282,ng: []] ,mor=or(inf ,p1),aux=n],
rood: [gaps= [ng: [] ,ng: []] , of=or (nora, vp), type=n]
]

The lgg of this rule with the third is:

vp : [gaps= [_ 286, ng : []] , mor=or (i n f , p l) , aux=n]

[
vp : [gaps= [_286, _270], mor=or (i n f , p l) , aux=n],
rood: [gaps= [_270,ng: []] , of=or (nom,vp), type=n]
]

This rule covers the first three sentences but is
not general enough to cope with the situation
where the gap is not discharged on the mother
V P - - a pa t te rn present in the fourth sentence.

Unfortunately, the fourth sentence needs to
use the missing rule twice to get a parse, and
it is a fundamental l imitation of our approach
that a missing rule can only be recovered from
a failed parse if it is required only once. Note
that to induce a rule we only need one sentence
where the rule is needed oncc our assumption
is that in real (large) training datasets there will
be enough sentences for this to be true for any
missing grammar rule.

Although this assumption seems reasonable,
we have decided to experiment with a general-
isation operator, which is helpful when the as-
sumption does not hold true. A rule with a
context-free skeleton of VP -+ VP MOD MOD
is generated from the fourth sentence. This cor-
responds to the two applications of the target
VP --+ VP MOD rule. The rule we have, can be
derived by having the target rule resolve on it-
self. It follows that we can inductively generate
the target rule from VP ---+ VP MOD MOD by
implementing a special inverse resolution oper-
ator which produces the most specific clause C2
from a clause C1, when C1 can be produced by
C2 resolving with itself. Applying this operator
to the VP ~ VP MOD MOD rule renders:

vp : [gaps= [np, _342] ,mor=inf, aux=n] ==>
[vp: [gaps= [np ,np] ,mor=inf, aux=n] ,
mod: [gaps= [np, _342], of=or (nom, vp), type=n]]

'Lggifying' this latest rule with the lgg of the
3 other rules finally generates a g rammar rule

with the correct gap threading, which we dis-
play in Fig 7 as it appears to the user (with a
few added line breaks). However, this rule is
not general enough simply because our train-
ing data is not general enough. Adding in the
sentences All big companies will write a report
quickly, All big companies have written a report
quickly and All big companies wrote a report in-
credibly generates a more general version cover-
ing these various cases. However, there is still
a problem because our induced rule allows the
modifier to be modifying either a nom or a vp
(represented by the te rm f (0 ,_280,_280,1) in
the compiled form), where the correct rule al-
lows the modifier to modify an s or a vp (repre-
sented by the te rm f (0,0, ._280,1) in the com-
piled form). This is because our constraints still
need to be improved.

[7- display_rules.

r158 vp ==> [vp,mod]
vp : [gaps= [_384,_368] ,mor=or (in f , p l) , aux=n] ==>
[vp : [gaps= [_ 384, _ 366], mor=or (i n f , p l) , aux=n],
rood: [gaps= [_366, _368], of=or (nora, vp), type=n]]

cmp_synrule(r158,vp([_324,_322],
f (0 , 0 , _ 3 1 6 , _ 3 1 6 , 1 , 1 , 1 , 1 , 1) , n) ,

[vp([_324 ,_302] , f (0 ,0 ,_316 ,_316 ,1 ,1 ,1 ,1 ,1) ,n) ,
mod([_302,_322] , f (O,_280,_280,1) , f (0 ,1 ,1 ,1))])

INF0: [head_fea ture_s ta tus (good ,
[mor/f(O,O,_316,_316,1,1,1,1,1) ,aux/n]=
[mor / f (0 ,0 ,_316 ,_316 ,1 ,1 ,1 ,1 ,1) , aux /n]) ,
gap_feature_status (gap_threading_rule), score (2)]
Covers: 4 sentences:
[4 ,3 ,2 ,1]

** Hit ENTER to cont inue , anything e l se to stop **

Figure 7: Almost finding the missing grammar
rule

5 T w o e x p e r i m e n t s

Our experiments consist of (i) randomly gener-
ating 50 sentences from a grammar, (ii) deleting
some grammar rules and (iii) seeing whether we
can recover the missing g rammar rules using the
50 sentences. Our approach is interactive with
the user making the final decision on which hy-
pothesised rules to add to the grammar. Hy-
pothesised rules are currently ordered by cover-
age and presented to the user in that order. In

188

our artificial experiments the earlier the missing
rule is presented to the user the more successful
the experiment.

In the first experiment we deleted the VP --~
VP MOD rule in Fig 1 and the rule

np_det_nom syn
np : [gaps= [A, A] ,mor=B,type=C, case=_] ==>

[det : [type=C ,mor=B] ,nora: [mor=B]] .

After generalisation of naive rules, the rule with
the largest cover was

np: [gaps= [ng: [] ,ng: []] ,mor=or(pl ,s3),
type=_414, case=_415] ==>

[det : [type=or (n, q) ,mor=_405],
nom : [mor=or (pl, s3)]]

which is over-general since the morphology fea-
ture of the determiner is not constrained to
equal that of the mother. However, the third
most general rule covered 24 sentences and was:

np : [gaps= [ng : [] ,ng : []] ,mot=or (pl, s3),
type=n, case=_442] ==>

[det : [type=n, mot=or (pl, s3)] ,
nora: [mor=or (pl, s3)]]

which does have agreement on morphology.
Committing to this latter rule by asserting it as
a grammar rule, removing newly parsable sen-
tences and re-generating rules produced a vp
==> [vp,mod] rules which was more general in
terms of morphology than the one in Fig 7, but
less general in terms of gap threading. This just
reflects the sensitivity of our learning strategy
on the particular types of sentences in the train-
ing data.

In a second experiment, we deleted the rules:

nom_nom_mod syn nom: [mor=A]==>
[nom: [mot=A] ,
rood: [gaps= [ng: [1 ,ng : []] , of=nora,

type=or (n, q)]].

vp_v_np syn vp : [gaps=A,mor=B, aux=C] ==>
Iv : [mor=B, aux=C, inv=n, subc= [np: [gaps=_,

mor=_, type=_, case=_]]] ,
np: [gaps=A, mot=_, type=or (n, q),

case=nonsubj]] .

s_aux_np_vp syn
s:[gaps=A,mor=or(pl,or(sl,or(s2,s3))),

type=or(n,q),inv=y]==>
[v:[mor=or(pl,or(sl,or(s2,s3))),
aux=y,inv=y,
subc=[vp:[gaps=_,mor=B,aux=_]]],

np : [gaps=[ng : [] , ng : []] ,

mor=or(pl,or(sl,or(s2,s3))),
type=or(n,q),case=subj],

vp:[gaps=A,mor=B,aux=_]].

Our algorithm failed to recover the
s_aux np_vp rule but did find close ap-
proximations to the other two rules:

vp: [gaps= [_418, _420],
mor=or (i n f , or (i ng , s3)) , aux=n] ==>

[v : [mor=or (i n f , or (i ng , s3)) , aux=n, lay=n,
subc= [rip : [gaps=_430 ,mor=_431,
t ype=or (n , q) , case=nonsubj]]] ,

np: [gaps= [_418, _420] ,mor=or (p l , s3) ,
type=n , case=_407]]

nora: [mor=or (pl, s3)] ==>
[nom: [mor=or (pl, s3)] ,
rood: [gaps = [_339, _339],

of=or (nom,vp),type=or (n,q)]]

6 R e l a t e d w o r k

The strong connections between proving and
parsing axe well known (Shieber et al., 1995),
so it is no surprise that we find related methods
in both ILP and computational linguistics. In
ILP the notion of inducing clauses to fix a failed
proof, which is the topic of Section 2, is very old
dating from the seminal work of Shapiro (1983).
In NLP, Mellish (1989) presents a method for re-
pairing failed parses in a relatively efficient way
based on the fact that, after a failed parse, the
information in the chart is sufficient for us to be
able to determine what constituents would have
allowed the parse to go through if they had been
found.

6.1 R e l a t e d w o r k in I L P

The use of abduction to repair proofs/paxses
has been extensively researched in ILP as has
the importance of abduction for multiple pred-
icate learning. De Raedt (1992), for example,
notes that "Roughly speaking, combining ab-
duction with single predicate-leaxning leads to
multiple concept-leaxning". This paper, where
abduction is used to learn, say, verb phrases and
noun phrases from examples of sentences is an
example of this. Recent work in this vein in-
cludes (Muggleton and Bryant, 2000) and the
papers in (Flach and Kakas, 2000).

Amongst this work a particularly relevant pa-
per for us is (Wirth, 1988). Wirth's Learning

189

by Failure to Prove (LFP) approach finds miss-
ing clauses by constructing partial proof trees
(PPTs) and hence diagnosing the source of in-
completeness. A clause representing the P P T
is constructed (called the resolvent of the PPT)
as is an approximation to the resolvent of the
complete proof tree. Inverse resolution is then
applied to these two clauses to derive the miss-
ing clause. Wirth explains his method by way of
a small context-free DCG completion problem.

Our approach is similar to Wirth's in the
dependence on abduction to locate the source
of proof (i.e. parse) failure. Also both meth-
ods use a meta interpreter to construct partial
proofs. In our case the meta-interpreter is the
chart parser augmented with the generation of
needs and the partial proof is represented by the
chart augmented with the needs. In Wirth's
work the resolvent of the P P T represents the
partial proof and a more general purpose meta-
interpreter is used. (We conjecture that our
tabular representation has a better chance of
scaling up for real applications.) Thirdly, both
methods are interactive. Translating his ap-
proach to the language of this paper, Wirth asks
the user to verify that proposed needed atoms
(our needed edges) are truly needed. The user
also has to evaluate the final hypothesised rules.
We prefer to have the user only perform the
latter task, but the advantage of Wirth's ap-
proach is that the user can constrain the search
at an earlier stage. Wir th defends an interac-
tive approach on the grounds that "A system
that learn[s] concepts or rules from looking at
the world is useless as long as the results are not
verified because a user who feels responsible for
his knowledge base rarely use these concepts or
rules".

In contrast to (Cussens and Puhnan, 2000)
we now search bot tom-up for our rules. This is
because the rules we are searching for are near
the bot tom of the search space, and also because
bot tom-up searching effects a more constrained,
example-driven search. Bottom-up search has
been used extensively in ILP. For example, the
GOLEM algorithm (Muggleton and Feng, 1990)
used relative least general generalisation (rlgg).
However, bot tom-up search is rare in modern
ILP implementations. This is primarily be-
cause the clauses produced can be unmanage-
ably large, particularly when generalisation is

performed relative to background knowledge, as
with rlgg. Having grammar rules encoded as
unit clauses alleviates this problem as does our
decision to use lgg rather than rlgg.

Zelle and Mooney (1996) provides a bridge
between ILP and NLP inductive methods.
Their CHILL algorithm is a specialised ILP sys-
tem that learns control rules for a shift-reduce
parser. The connection with the approach pre-
sented here (and that of Wirth) is that inter-
mediate stages of a proof/parse are represented
and then examined to find appropriate rules. In
CHILL these intermediate stages are states of a
shift-reduce parser.

6.2 R e l a t e d w o r k in N L P

Most work on grammar induction has taken
place using formalisms in which categories
are atomic: context-free grammars, categorial
grammars, etc. Few at tempts have been made
at rule induction using a rich unification formal-
ism. Two lines of work that are exceptions to
this, and thus comparable to our own, are that
of Osborne and colleagues; and the work of the
SICS group using SRI's Core Language Engine
and similar systems.

Osborne (1999) argues (correctly) that the
hypothesis space of grammars is sufficiently
large that some form of bias is required. The
current paper is concerned with methods for
effecting what is known as declarative bias in
the machine learning literature, i.e. hard con-
straints that reduce the size of the hypothe-
sis space. Osborne, on the other hand, uses
the Minimum Description Length (MDL) prin-
ciple to effect a preferential (soft) bias towards
smaller grammars. His approach is incremental
and the induction of new rules is triggered by
an unparsable sentence as follows:

1. Candidate rules are generated where the
daughters are edges in the chart after the
failed parse, and the mother is one of
these daughters, possibly with its bar level
raised.

2. The sentence is parsed and for each success-
ful parse, the set of candidate rules used in
that parse constitutes a model.

3. The 'best' model is found using a Minimum
Description Length approach and is added
to the existing grammar.

190

So Osborne, like us, uses the edges in the
chart after a failed parse to form the daughters
of hypothesised rules. The mothers, though, are
not found by abduct ion as in our case, also there
is no subsequent generalisation step.

Unlike us Osborne induces a probabilistic
grammar. When candidate rules are added,
probabilities are renormalised and the n most
likely parses are found. If annotated data is
being used, models that produce parses incon-
sistent with this da ta are rejected. In (Os-
borne, 1999), the DCG is mapped to a SCFG
to compute probabilities, in very recent work a
stochastic attr ibute-value grammar is used (Os-
borne, 2000). Giving the increasing sophistica-
tion of probabilistic linguistic models (for ex-
ample, Collins (1997) has a statistical approach
to learning gap-threading rules) a probabilistic
extension of our work is a t t rac t ive-- i t will be
interesting to see how far an integration of 'log-
ical' and statistical can go.

Tha lmann and Samuelsson (1995) describe a
scheme which combines robust parsing and rule
induction for unification grammars. They use
an LR parser, whose states and actions are aug-
mented so as to t ry to recover from situations
that in a s tandard LR parser would result in an
error. The usual actions of shift, reduce, and
accept are augmented by

h y p o t h e s i s e d shif t : shift a new item on to
the stack even if no such action is specified in
that state

h y p o t h e s i s e d u n a r y r e d u c e : reduce a
symbol Y as if there was a rule X -~ Y, where
the value of X is not yet determined.

h y p o t h e s i s e d b i n a r y r e d u c e : reduce a
symbols Y Z as if there was a rule X ~ Y Z,
where the value of X is not yet determined.

The value of the X symbol is determined by
the next possibilities for reduction.

To illustrate, consider the grammar

1 S -+ NP VP
2 NP -+ Name
3 VP --+ Vi

and a sentence ' John snores loudly'.
Assume that all the words are known
(though this is not necessary for their
method). The sequence of events will be:

Operat ion Stack
1. Shift
2. Reduce with 2
3. Shift
4. Reduce with 3
5. HShift
6. HReduce
7. Reduce with 1

Name:john
NP[Name:john]
NP[Name:john] Vi:snores
NP[Name:john] VP[Vi:snores]
NP VP Adv:loudly
NP X[VP Adv]
S[NP [VP VP Adv]]

After stage 4 we could reduce with 1 but this
would not lead to an accepting state. Instead
we perform a hypothesised shift at stage 5 fol-
lowed by a hypothesised binary reduce with X

VP Adv in stage 6. Next we reduce with
rule 1 which instantiates X to VP and we have
a complete parse provided we hypothesise the
rule VP ~ VP Adv.

Two more hypothesised actions are used to
account for gap threading:

h y p o t h e s i s e d move : put the current sym-
bol on a separate movement stack (i.e. hypoth-
esise that this consti tuent has been fronted)

h y p o t h e s i s e d fill: move the top of the
movement stack to to top of the main stack

These actions have costs associated with
them and a control regime so that the 'cheap-
est' analysis will always be preferred. An anal-
ysis which uses none of the new actions will be
cost-free. Unary reduction is more expensive
than binary reduction because the consequent
unary rules may lead to cycles, and such rules
are often redundant .

These actions hypothesise only the context
free backbone of the rules. Feature principles
analogous to those we described above are used,
along with hand editing, to get the final form of
the hypothesised rule. Presumably the infor-
mat ion hypothesised by the move and fill oper-
ations as to be t ranslated somehow into the gap
threading notation which is also used by their
formalism. No details are given of the results of
this system, nor any empirical evaluation.

This work shares many of the goals of the
approach we describe, in particular the use of
explicit encoding of background knowledge of
feature principles. The main difference is that
the technique they describe only hypothesises
the context free backbone of the necessary rules,
whereas in our approach the feature structures
are also hypothesised simultaneously.

Asker et al. (1992) also describe a method
for inducing new lexical entries when extending

191

coverage of a unification grammar to a new do-
main, a task which is also related to our work in
that they are using a full unification formalism
and using partial analyses to constrain hypothe-
ses. Firstly, they use 'explanation based gener-
alisation' to learn a set of sentence templates
for those sentences in the new corpus that can
be successfully analysed. This process essen-
tially takes commonly occurring trees and 'flat-
tens' them, abstracting over the content words
in them. Secondly they use these templates to
analyse those sentences from the new corpus
which contain unknown words, treatimg the en-
tries implied by the templates for these words
as provisionally correct. Finally these inferred
entries are checked against a set of hand-coded
'paradigm' entries, and when all the entries cor-
responding to a paradigm have been found, a
new canonical lexical entry for this word is cre-
ated from the paradigm.

Again, no results are evaluation are given, but
it is clear that this method is likely to yield sim-
ilar results to our own for inference of lexical
entries.

7 F u t u r e d i r e c t i o n s

We find our preliminary results encouraging be-
cause (i) we usually get close to missing rules,
(ii) the rules are fairly linguistically sophisti-
cated, for example, involving gap threading and
(iii) the burden on the user is l ight- -by order-
ing induced rules by their coverage, the user sees
the best rules first, and does not have to bother
inspecting the mass of highly specialised rules
produced. The work is incomplete and ongo-
ing, and we conclude by listing three important
tasks for the next phase of our work: where we
intend to do thorough empirical testing on real
data.

(1) In (Cussens and Pulman, 2000), edges
were re-used to speed up cover testing. This is
still not working in the newer implementation.
(2) In real applications missing lexical items are
more significant than missing grammar rules.
Although one can easily learn lexical items by
encoding them as g rammar rules it should be
more efficient to replace an unknown word by a
variable, and then just see how it gets instan-
t iated as we parse. (3) In these small experi-
ments we could get away with an appealingly
simple learning strategy: produce and store all

naive rules then produce and store all possible
lggs. To scale up we will probably need to use
a greedier approach.

Acknowledgements
Thanks to Christer Samuelsson and BjSrn
Gamb£ck for pointing us to relevant literature.

R e f e r e n c e s

Lars Asker, BjSrn Gamb~ick, and Christer Samuels-
son. 1992. EBL2: An approach to automatic lex-
ical acquisition. In Proceedings of the l~th Inter-
national Conference on Computational Linguis-
tics, pages 1172-1176.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. In Proc. ACL'97.

James Cussens and Stephen Pulman. 2000. Ex-
periments in inductve chart parsing. In James
Cussens and Sago D~eroski, editors, Learning
Language in Logic. Springer.

Luc De Raedt. 1992. Interactive Theory Revision:
An Inductive Logic Programming Approach. Aca-
demic Press, London.

Peter A. Flach and Antonis C. Kakas, editors. 2000.
Abduction and Induction: Essays on their Rela-
tion and Integration, volume 18 of Applied Logic
Series. Kluwer, Dordrecht.

Chris Mellish. 1989. Some chart based techniques
for parsing ill-formed input. In Proc PTth ACL,
pages 102-109, Vancouver, BC. ACL.

Stephen Muggleton and Christopher Bryant. 2000.
Theory completion using inverse entailment. In
James Cussens and Alan Frisch, editors, Proceed-
ings of the lOth International Conference on In-
ductive Logic Programming, pages 130-146, Lon-
don, August. Springer.

Stephen Muggleton and Wray Buntine. 1988. Ma-
chine invention of first-order predicates by invert-
ing resolution. In Proceedings of the Fifth Inter-
national Conference on Machine Learning, pages
339-352. Kaufmann.

Stephen Muggleton and Cao Feng. 1990. Efficient
induction of logic programs. In Proc. of the
First Conference on Algorithmic Learning The-
ory, pages 473-491, Tokyo.

Miles Osborne. 1999. MDL-based DCG Induction
for NP Identification. In Miles Osborne and Erik
Tjong Kim Sang, editors, CoNLL99, pages 61-68,
Bergen, Norway, June. EACL.

Miles Osborne. 2000. Estimation of Stochastic
Attribute-Value Grammars using an Informative
Sample. In Coling 2000.

F.C.N. Pereira. 1981. Extraposition grammars.
Computational Linguistics, 7:243-256.

FraCaS project. 1 9 9 6 . Fracas: A frame-

192

work for computational semantics.
http:/ /www, cogsci , ed. ac. u k / - f r a c a s / .

Ehud Shapiro. 1983. Algorithmic Program Debug-
ging. MIT Press~ Cambridge.

Stuart M. Shieber, Yves Schabes, and Fernando
C. N. Pereira. 1995. Principles and implementa-
tion of deductive parsing. Journal o] Logic Pro-
gramming, 24(1-2):3-26. Available at the Com-
putation and Language e-print archive as cmp-
lg/9404008.

Lars Thalmann and Christer Samuelsson. 1995. A
uniform framework for grammar induction and ro-
bust parsing. In Proceedings o] the 5th Scandina-
vian Conference on Artificial Intelligence,, pages
293-304.

Ruediger Wirth. 1988. Learning by failure to prove.
In Derek Sleeman, editor, Proceedings of the 3rd
European Working Session on Learning, pages
237-251, Glasgow, October. Pitman.

J. M. Zelle and R. J. Mooney. 1996. Learning to
parse database queries using inductive logic pro-
gramming. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence, Port-
land, OR, August.

193

