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A b s t r a c t  

We s tudy the problem of identifying phrase 
structure. We formalize it as the problem of 
combining the outcomes of several different clas- 
sifiers in a way that  provides a coherent in- 
ference that  satisfies some constraints, and de- 
velop two general approaches for it. The first 
is a Markovian approach that  extends stan- 
dard HMMs to allow the use of a rich obser- 
vations s tructure and of general classifiers to 
model state-observation dependencies. The sec- 
ond is an extension of constraint satisfaction for- 
malisms. We also develop efficient algorithms 
under bo th  models and s tudy them experimen- 
tally in the context of shallow parsing. 1 

1 I d e n t i f y i n g  P h r a s e  S t r u c t u r e  

The problem of identifying phrase structure can 
be formalized as follows. Given an input string 
O = <  ol, 02 , . . . ,  On >, a phrase is a substring 
of consecutive input symbols oi, o i+l , . . . ,o j .  
Some external mechanism is assumed to consis- 
tently (or stochastically) annotate  substrings as 
phrases 2. Our goal is to come up with a mech- 
anism that,  given an input string, identifies the 
phrases in this string, this is a fundamental  task 
with applications in natural  language (Church, 
1988; Ramshaw and Marcus, 1995; Mufioz et 
al., 1999; Cardie and Pierce, 1998). 

The identification mechanism works by using 
classifiers that  process the input string and rec- 
ognize in the input string local signals which 

* This research is supported by NSF grants IIS-9801638, 
SBR-9873450 and IIS-9984168. 

1Full version is in (Punyakanok and Roth, 2000). 
2We assume here a single type of phrase, and thus 

each input symbol is either in a phrase or outside it. All 
the methods we discuss can be extended to deal with 
several kinds of phrases in a string, including different 
kinds of phrases and embedded phrases. 

are indicative to the existence of a phrase. Lo- 
cal signals can indicate that  an input symbol o 
is inside or outside a phrase (IO modeling) or 
they can indicate that  an input  symbol o opens 
or closes a phrase (the OC modeling) or some 
combination of the two. In any case, the lo- 
cal signals can be  combined to determine the 
phrases in the input string. This process, how- 
ever, needs to satisfy some constraints for the 
resulting set of phrases to be legitimate. Sev- 
eral types of constraints, such as length and or- 
der can be formalized and incorporated into the 
mechanisms studied here. For simplicity, we fo- 
cus only on the most basic and common con- 
straint - we assume that  phrases do not overlap. 

The goal is thus two-fold: to learn classifiers 
that  recognize the local signals and to combine 
these in a ways that  respects the constraints. 

2 M a r k o v  M o d e l i n g  

HMM is a probabilistic finite state automaton 
used to model  the probabilistic generation of 
sequential processes. The model  consists of 
a finite set S of states, a set (9 of observa- 
tions, an initial s tate distr ibution P1 (s), a state- 
transition distr ibut ion P(s[s') for s, # E S and 
an observation distr ibution P(o[s) for o E (9 
and s 6 S. 3 

In a supervised learning task, an observa- 
tion sequence O - -<  o l , o 2 , . . .  On > is super- 
vised by a corresponding state sequence S = <  
sl ,  s2,. • • sn >. The supervision can also be sup- 
plied, as described in Sec. 1, using the local sig- 
nals. Constraints can be incorporated into the 
HMM by constraining the state transition prob- 
ability distr ibution P(s]s'). For example, set 
P ( s V )  = 0 for all s, s' such that  the transition 
from s ~ to s is not allowed. 

aSee (Rabiner, 1989) for a comprehensive tutorial. 
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Combining HMM and classifiers (artificial 
neural networks) has been exploited in speech 
recognition (Morgan and Bourlard, 1995), how- 
ever, with some differences from this work. 

2.1 H M M  w i t h  Classif iers  
To recover the most likely state sequence in 
HMM, we wish to est imate all the required 
probability distributions. As in Sec. 1 we as- 
sume to have local signals that  indicate the 
state. Tha t  is, we are given classifiers with 
states as their outcomes. Formally, we assume 
that  Pt(slo ) is given where t is the t ime step in 
the sequence. In order to use this information 
in the HMM framework, we compute 

Pt(o[s) = Pt(slo)Pt(o)/Pt(s).  (1) 

instead of observing the conditional probability 
Pt (ols) directly from training data, we compute 
it from the classifiers' output.  Pt(s) can be cal- 
culated by Pt(s) = Es 'eS  P(s ls ' )Pt - l ( s ' )  where 
Pl(s)  and P(sls '  ) are the two required distri- 
bution for the HMM. For each t, we can treat  
Pt(ols ) in Eq. 1 as a constant r/t because our goal 
is only to find the most likely sequence of states 
for given observations which are the same for 
all compared sequences. Therefore, to compute 
the most likely sequence, s tandard  dynamic pro- 
gramming (Viterbi) can still be applied. 

2.2 P r o j e c t i o n  b a s e d  M a r k o v  M o d e l  

In HMMs, observations are allowed to depend 
only on the current  state and long term depen- 
dencies are not modeled. Equivalently, from the 
constraint point of view, the constraint struc- 
ture is restricted by having a stat ionary proba- 
bility distribution of a state given the previous 
one. We a t tempt  to relax this by allowing the 
distribution of a state to depend, in addition 
to the previous state, on the observation. For- 
mally, we make the independence assumption: 

P (  s t l S t - l  , S t -  2 ,  . . . , s l  , o t ,  o t - 1 ,  . . . , 0 1 )  

= P(stlSt_l,Ot). (2) 

Thus, we can find the most likely state sequence 
S given O by maximizing 

n 

P(SIO) = II[P(stls~,..., 8t-1, O)]Pl(slIO) 
t = 2  

n 

= H[P(st ls t_l ,o t )]Pl(s l lOl) .  (3) 
t=2 

Hence, this model generalizes the s tandard 
HMM by combining the state-transit ion prob- 
ability and the observation probability into one 
function. The most likely state sequence can 
still be recovered using the dynamic program- 
ming algorithm over the Eq.3. 

In this model, the classifiers' decisions are in- 
corporated in the terms P(s ls ' ,o  ) and Pl(slo ). 
In learning these classifiers we project P(sls  ~, o) 
to many functions Ps' (slo) according to the pre- 
vious states s ~. A similar approach has been 
developed recently in the context of maximum 
entropy classifiers in (McCallum et al., 2000). 

3 C o n s t r a i n t  S a t i s f a c t i o n  w i t h  
C l a s s i f i e r s  

The approach is based on an extension of 
the Boolean constraint  satisfaction formal- 
ism (Mackworth, 1992) to handle variables that  
are outcomes of classifiers. As before, we as- 
sume an observed string 0 =< ol ,o2 , . . .  On > 
and local classifiers that ,  w.l.o.g., take two dis- 
t inct values, one indicating the openning a 
phrase and a second indicating closing it (OC 
modeling). The classifiers provide their outputs  
in terms of the probabili ty P(o) and P(c), given 
the observation. 

To formalize this, let E be the set of all possi- 
ble phrases. All the non-overlapping constraints 
can be encoded in: f --/ke~ overlaps ej (-~eiV-~ej). 
Each solution to this formulae corresponds to a 
legitimate set of phrases. 

Our problem, however, is not simply to find 
an assignment • : E -+ {0, 1} that  satisfies f 
but  ra ther  to optimize some criterion. Hence, 
we associate a cost function c : E ~ [0,1] 
with each variable, and then find a solution ~- 
of f of min imum cost, c(~-) = n Ei=l 
In phrase identification, the solution to the op- 
t imization problem corresponds to a shortest 
path  in a directed acyclic graph constructed 
on the observation symbols, with legitimate 
phrases (the variables in E)  as its edges and 
their costs as the weights. Each path  in this 
graph corresponds to a satisfying assignment 
and the shortest pa th  is the optimal solution. 

A natural  cost function is to use the classi- 
fiers probabilities P(o) and P(c) and define, for 
a phrase e = (o, c), c(e) = 1 - P(o)P(c)  which 
means that  the error in selecting e is the er- 
ror in selecting either o or c, and allowing those 
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to overlap 4. The constant in 1 - P(o)P(c) bi- 
ases the minimization to prefers selecting a few 
phrases, possibly no phrase, so instead we min- 
imize -P(o) P(c). 

4 S h a l l o w  P a r s i n g  

The above mentioned approaches are evaluated 
on shallow parsing tasks, We use the OC mod- 
eling and learn two classifiers; one predicting 
whether  there should be a open in location t 
or not, and the other whether  there should a 
close in location t or not. For technical reasons 
it is easier to keep track of the constraints if 
the cases --1 o and --1 c are separated according to 
whether  we are inside or outside a phrase. Con- 
sequently, each classifier may output  three pos- 
sible outcomes O, nOi ,  n O o  (open, not open 
inside, not open outside) and C, nCi ,  nCo ,  
resp. The state-transit ion diagram in figure 1 
captures the order constraints. Our modeling of 
the problem is a modification of our earlier work 
on this topic that  has been found to be quite 
successful compared to other learning methods 
a t tempted on this problem (Mufioz et al., 1999) 
and in particular, bet ter  than  the IO modeling 
of the problem (Mufioz et al., 1999). 

Figure 1: State-transit ion diagramfor the 
phrase recognition problem. 

The classifier we use to learn the states as 
a function of the observations is SNoW (Roth, 
1998; Carleson et al., 1999), a multi-class clas- 
sifter that  is specifically tailored for large scale 
learning tasks. The SNoW learning architec- 
ture learns a sparse network of linear functions, 
in which the targets (states, in this case) are 
represented as linear functions over a common 
feature space. Typically, SNoW is used as a 
classifier, and predicts using a winner-take-all 

4Another solution in which the classifiers' suggestions 
inside each phrase axe also accounted for is possible. 

mechanism over the activation value of the tax- 
get classes in this case. The activation value 
itself is computed using a sigmoid function over 
the linear sum. In this case, instead, we normal- 
ize the activation levels of all targets to sum to 1 
and output  the outcomes for all targets (states). 
We verified experimentally on the training data  
that  the output  for each state is indeed a dis- 
tr ibution function and can be used in further 
processing as P(slo ) (details omitted).  

5 Experiments 

We experimented both with base noun phrases 
(NP) and subject-verb pat terns (SV) and show 
results for two different representations of the 
observations (that is, different feature sets for 
the classifiers) - part  of speech (POS) tags only 
and POS with additional lexical information 
(words). The data  sets used are the s tandard 
data  sets for this problem (Ramshaw and Max- 
cus, 1995; Argamon et al., 1999; Mufioz et 
al., 1999; Tjong Kim Sang and Veenstra, 1999) 
taken from the Wall Street Journal  corpus in 
the Penn Treebank (Marcus et al., 1993). 

For each model we s tudy three different clas- 
sifiers. The simple classifier corresponds to the 
s tandard HMM in which P(ols ) is est imated di- 
rectly from the data. The NB (naive Bayes) and 
SNoW classifiers use the same feature set, con- 
junctions of size 3 of POS tags (+ words) in a 
window of size 6 around the target word. 

The first important  observation is that  the 
SV task is significantly more difficult than  the 
NP task. This is consistent for all models and 
all features sets. When  comparing between dif- 
ferent models and features sets, it is clear that  
the simple HMM formalism is not competitive 
with the other two models. What  is interest- 
ing here is the very significant sensitivity to the 
wider notion of observations (features) used by 
the classifiers, despite the violation of the prob- 
abilistic assumptions. For the easier NP task, 
the HMM model  is competitive with the oth- 
ers when the classifiers used are NB or SNOW. 
In particular,  a significant improvement in both 
probabilistic methods is achieved when their in- 
put  is given by SNOW. 

Our two main methods,  PMM and CSCL, 
perform very well on predicting NP and SV 
phrases with CSCL at least as good as any other 
methods tried on these tasks. Both for NPs and 
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Table 1: Results  (F~=l) of different methods 
and comparison to previous works on NP and 
SV recognition. Notice that,  in case of simple, 
the data  with lexical features are too sparse to 
directly est imate the observation probabil i ty so 
we leave these entries empty. 

Method POS POS 
Model[  Classifier only +words 

SNoW 90.64 92.89 
HMM NB 90.50 92.26 

Simple 87.83 
SNoW 90.61 92.98 

NP PMM NB 90.22 91.98 
Simple 61.44 
SNoW 90.87 92.88 

CSCL NB 90.49 91.95 
Simple 54.42 

Ramshaw & Marcus 90.6 92.0 
Argamon et al. 91.6 N/A 
Mufioz et al. 90.6 92.8 
Tjong Kim Sang 

Veenstra N/A 92.37 
SNoW 64.15 77.54 

HMM NB 75.40 78.43 
Simple 64.85 
SNoW 74.98 86.07 

PMM NB 74.80 84.80 
Simple 40.18 
SNoW 85.36 90.09 

CSCL NB 80.63 88.28 
Simple 59.27 

Argamon et al. 86.5 N/A 
i Mufioz et al. 88.1 92.0 

SV 

SVs, CSCL performs bet ter  than the probabilis- 
tic method,  more significantly on the harder, 
SV, task. We a t t r ibute  it to CSCL's  ability to 
cope bet ter  with the length of the phrase and 
the long term dependencies. 

Our methods  compare favorably with others 
with the exception to SV in (Mufioz et al., 
1999). Their method is fundamental ly simi- 
lar to our CSCL; however, they incorporated 
the features from open in the close classifier al- 
lowing to exploit the dependencies between two 
classifiers. We believe that  this is the main fac- 
tor of the significant difference in performance. 

6 C o n c l u s i o n  

We have addressed the problem of combining 
the outcomes of several different classifiers in a 

way that  provides a coherent inference that  sat- 
isfies some constraints, While the probabilistic 
approach extends s tandard  and commonly used 
techniques for sequential decisions, it seems 
that  the constraint satisfaction formalisms can 
support  complex constraints and dependencies 
more flexibly. Future  work will concentrate on 
these formalisms. 
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